Graphene Bridge Heterostructure Devices for Negative

Differential Transconductance Circuit Applications

Minjong Lee^{1, 2, †}, Tae Wook Kim^{3, †}, Chang Yong Park^{1, †}, Kimoon Lee⁴, Takashi Taniguchi⁵, Kenji Watanabe⁵, Min-gu Kim^{1, 6, *}, Do Kyung Hwang^{3, 7, *}, Young Tack Lee^{1, 8, *}

¹ Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea

² Department of Materials Science and Engineering, The University of Texas at Dallas, Texas 75080, USA

³ Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea

⁴ Department of Physics, Kunsan National University, Gunsan, 54150, Republic of Korea

⁵ Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba 305-0044, Japan

⁶ Department of Information and Communication Engineering, Inha University, Incheon 22212, Republic of Korea

⁷ Division of Nanoscience and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea

⁸ Department of Electronic Engineering, Inha University, Incheon 22212, Republic of Korea

[†] Minjong Lee, Tae Wook Kim and Chang Yong Park contributed equally to this work.

* Corresponding authors. E-mail: <u>mgk@inha.ac.kr</u> (Min-gu Kim), <u>dkhwang@kist.re.kr</u> (Do Kyung Hwang), <u>ytlee@inha.ac.kr</u> (Young Tack Lee)

Supplementary Figures

Fig. S1 WSe₂- and PdSe₂-based FET devices. **a** Cross-sectional schematic and OM images of the h-BN sandwiched WSe₂- and PdSe₂-FETs. **b** I_D-V_G transfer characteristic curves of the WSe₂-FET (blue line) and PdSe₂-FET (red line)

Nano-Micro Letters

Fig. S2 Device fabrication flow of the PGM-FET. Device fabrication flow of the h-BN sandwiched PGM-FET as following: transferring **a** the bottom h-BN, Gr S/B/D, **b** PdSe₂, MoS₂, and **c** h-BN gate insulator; **d** patterning and depositing metal S/G/D electrodes

Fig. S3 Thickness of each flake in the PGM-FET. Step-height analysis of each flake in the PGM-FET by using atomic force microscopy (AFM)

Fig. S4 Non-interative interface properties of Gr-bridge and TMDC channels. Raman spectrum analysis of **a** MoS₂/Gr, **b** WSe₂/Gr, and **c** PdSe₂/Gr junction devices on SiO₂/Si substrate

Fig. S5 Electrical characteristics of the PdSe₂-MoS₂ junction FET (PMJ-FET). a Cross-sectional schematic and the circuit symbol corresponding to each region in PMJ-FET. **b** OM image of the PMJ-FET. **c** I–V characteristic curve of the PdSe₂-MoS₂ heterojunction device, which shows the rectification properties. **d** I_D–V_G transfer characteristic curves of the MoS₂-FET (blue dashed line), PdSe₂-FET (red dashed line), and PMJ-FET (black solid line). **e** Circuit diagram of the PMJ-FET based inverter application with 20 MΩ load resistor. **f** VTC characteristic curves of the demonstrated circuit at V_{DD} of 0.5, 1, and 1.5 V

Nano-Micro Letters

Fig. S6 Device fabrication flow of the WGM-FET. Device fabrication flow of the h-BN sandwiched WGM-FET as following: transferring **a** the bottom h-BN, Gr S/B/D, **b** WSe₂, MoS₂, and **c** h-BN gate insulator; **d** patterning and depositing metal S/G/D electrodes

Fig. S7 Thickness of each flake in the WGM-FET. Step-height analysis of each flake in the WGM-FET by using AFM

Fig. S8 Real-time V_{out} responses from ramp waveform V_{in} . Dynamic V_{out} responses from the 1Hz ramp waveform V_{in} ranging from -1 to 2 V

Fig. S9 Fast Fourier transform analysis of the frequency tripler application. Relative power spectrum of output signals converted by fast Fourier transform (FFT) method