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A Thermoregulatory Flexible Phase Change 
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HIGHLIGHTS

• The first assembled flexible phase change nonwoven is reported by wet-spinning.

• The unprecedented thermal properties of such flexible phase change nonwoven are achieved.

• Such phase change nonwoven is highly applicable for mask and cloth intelligent temperature control.

ABSTRACT Phase change materials have a key role for wearable thermal management, but suffer from poor water vapor permeability, 
low enthalpy value and weak shape stability caused by liquid phase leakage 
and intrinsic rigidity of solid–liquid phase change materials. Herein, we report 
for the first time a versatile strategy for designed assembly of high-enthalpy 
flexible phase change nonwovens (GB-PCN) by wet-spinning hybrid graphene-
boron nitride (GB) fiber and subsequent impregnating paraffins (e.g., eicosane, 
octadecane). As a result, our GB-PCN exhibited an unprecedented enthalpy 
value of 206.0 J  g−1, excellent thermal reliability and anti-leakage capacity, 
superb thermal cycling ability of 97.6% after 1000 cycles, and ultrahigh water 
vapor permeability (close to the cotton), outperforming the reported PCM films 
and fibers to date. Notably, the wearable thermal management systems based 
on GB-PCN for both clothing and face mask were demonstrated, which can 
maintain the human body at a comfortable temperature range for a significantly 
long time. Therefore, our results demonstrate huge potential of GB-PCN for 
human-wearable passive thermal management in real scenarios.
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1 Introduction

Rapidly growing demand for wearable thermal energy man-
agement systems in various applications [1, 2], such as wear-
able sensors [3, 4], supercapacitors [5, 6] and clothing [7, 8], 
has accelerated the development of flexible multifunctional 
phase change materials (PCMs) [9]. In particular, organic 
PCMs (such as polyethylene glycol (PEG) [10], paraffin wax 
(PW) [11, 12] and fatty amine [13]) based on temperature-
regulating composites have garnered widespread atten-
tion, owing to their high heat storage density [14], excel-
lent chemical and thermal stability [15], nontoxicity [16], 
environmental friendliness [17], approximately constant-
temperature phase change process [18] in human wearable 
thermal management [19]. However, these conventional 
phase change composites suffer from inherent shortcomings, 
[20], such as liquid leakage [21], strong mechanical rigidity 
[22] and poor water vapor permeability [23], substantially 
preventing their practical application in wearable thermal 
energy management [24]. To this end, two key strategies 
have been developed for temperature-regulating compos-
ites so far [25]. One is a method recently reported by our 
group [26] for synthesizing intrinsically flexible PEG films 
by chemical cross-linking, demonstrating adjustable phase 
change temperature and enthalpy, excellent flexibility and 
shape stability. However, this flexible phase change film 
displayed poor water vapor permeability and low thermal 
energy storage density. Another strategy is to fabricate flex-
ible phase change fibers [27], mainly prepared by directly 
encapsulating PCMs into fibers through electrospinning 
technology [28]. As an example, Wan et al. [29] prepared 
polyacrylonitrile/isopropyl palmitate sheath/core-shaped 
nanofibers with various phase change temperature. Similarly, 
Lu et al. [30] developed core-sheath structured composite 
films with PW as core and polyacrylonitrile as sheath. How-
ever, these reported flexible phase change fabrics via one-
step electrospinning process also exhibit low enthalpy value 
of less than 150 J  g−1 [31]. Therefore, to further meet practi-
cal requirement, the designed fabrication of high-enthalpy 
phase change fabric with wearability, flexibility, outstand-
ing water vapor permeability and anti-leakage capability is 
urgently needed.

Hence, we report, for the first time, the designed assem-
bly of graphene–boron nitride (GB) phase change nonwoven 
(GB-PCN) by wet-spinning and vacuum impregnation for 

high-efficiency wearable thermal management. Firstly, a fac-
ile, mass-producible and low-cost wet-spinning strategy is 
proposed to construct hierarchically connected three-dimen-
sional (3D) free-standing flexible GB nonwovens. Subse-
quently, the PCMs (e.g., eicosane, octadecane) were impreg-
nated into the GB nonwovens with abundant mesopores to 
prepare the shape-stable GB-PCN. The optimized GB-PCN 
delivered an ultrahigh enthalpy and high loading of 206 J  g−1 
and 83%, respectively. Further, GB-PCN displays an excel-
lent thermal conductivity and solar-thermal conversion abil-
ity, superior water vapor permeability (close to cotton) and 
hydrophobicity (136°). In addition, GB-PCN showed excel-
lent temperature control performance in the human-wearable 
intelligent temperature-regulating clothes for about 24 min. 
And the smart thermal management face mask prepared 
using GB-PCNs can keep warm in winter and cool in sum-
mer for about 19 min.

2  Experimental Section

2.1  Materials

Eicosane (AR) and octadecane (AR) were obtained from 
Aladdin Reagent (Shanghai, China). Stannous chloride 
 (SnCl2·2H2O) (AR) was purchased from Guoyao Chemical 
Co., Ltd. All the reagents were used without any further 
treatment.

2.2  Synthesis of the GO‑BN Hybrid Nonwoven

Graphene oxide (GO) suspension was prepared by a 
modified Hummers method [29], and boron nitride (BN) 
nanosheets were was prepared by ball-milling-assisted 
method [30]. Subsequently, a uniform hybrid suspension 
containing GO (10 mg  mL−1) and BN nanosheets with the 
mass radio of 2:1, 4:1 and 1:0 was prepared by sonication for 
60 min and stirring for 30 min. Next, the mixed suspension 
was spun into 1-ethyl-3-methylimidazolium (EMCl)/ethanol 
(1.5 g/100 mL) at a rate of 60 µL  min−1 to form xGO-BN 
(xGOB) hybrid fiber, which was cut into small pieces with a 
scissor. Furthermore, the xGOB hybrid nonwoven (xGOB-
N) fabrics could be prepared by suction filtration with short 
fibers. Then, the xGOB hybrid nonwoven was immersed in 
0.1 g  mL−1  SnCl2 hydrochloric acid solution (0.1 mol  L−1) at 



Nano-Micro Lett.           (2023) 15:29  Page 3 of 12    29 

1 3

80 °C for 12 h. Last but not least, the xGB hybrid nonwoven 
was washed by deionized water for three times and freeze-
dried for 24 h under vacuum.

2.3  Preparation of Phase Change Nonwoven

The PCN was prepared using vacuum-assisted impregna-
tion methods. Typically, both xGB nonwoven and PCMs 
(eicosane or octadecane) placed in one container were 
heated to 80 °C in a vacuum oven and maintained for 24 h 
for effective infusion of PCMs into the xGB hybrid nonwo-
ven. After that, the PCN was taken out and placed on filter 
paper under 80 °C until the excess PCMs adhered to the 
PCN surface were completely removed. After cooling down 
to room temperature, the PCN was obtained.

2.4  Solar‑Thermal Energy Conversion Measurement

Solar–thermal energy conversion measurement was taken 
using the simulated sunlight provided by the xenon lamp 
source (Beijing Bofeilai Technology Co., Ltd., China), 
where the distance between the sample and the light source 
is set to 20 cm, and the illumination intensity is 100, 150, 
200, and 300 mW  cm−2.

2.5  Water Vapor Transmission Rate Test

The testing procedure is based on ASTM E96 with glass bot-
tle were filled with distilled water. The bottles were sealed 
by polyethylene (PE), cotton and cotton-GB-PCN, respec-
tively. The sealed bottles were then placed into an environ-
mental chamber in which temperature and relative humidity 
were held at 25 °C and at 50 ± 5%. The mass of the bottle 
and the sample were measured periodically, and the reduced 
mass was thought as the mass of the evaporated water. The 
reduced mass was then divided by the area to evaluate the 
water vapor transmission.

2.6  Face Mask Thermal Management Experiment

Cold environment: After heating above the phase transition 
temperature, the author wears the PCN on the face. In the 
outdoor environment (3–9 °C, November 30, 2021), use an 
infrared camera to take infrared pictures at different times to 

monitor temperature changes. Hot environment: Due to the 
low outside temperature, we used high-flow, heated (38 °C) 
nitrogen gas to flow through the mask, while using an infra-
red camera to monitor temperature changes.

2.7  Material Characterization

The morphology of the samples was visually character-
ized via scanning electron microscopy (SEM, JSM-7900) 
at an accelerating voltage of 20 kV. Transmission electron 
microscopy (TEM) measurement was taken on a Tecnai 
G2F20 S-Twin with an acceleration voltage of 200 kV. 
The pore size distribution and average pore diameter of the 
nonwoven were analyzed by the BJH nitrogen adsorption 
and desorption instrument (ASAP 2020, Micromeritics, 
USA). The surface area of the aerogels was determined by 
the Brunauer–Emmett–Teller (BET) method, based on the 
amount of  N2 adsorbed at pressures 0.05 < P/P0 < 1. The 
crystal structures of the PCM composites were investigated 
using an automated X-ray powder diffractometer (XRD, 
SmartLab, Japan). The XRD patterns were tested at a scan 
rate of 20°  min−1 with a 2θ range of 5°–80°. Raman spectra 
were obtained using a Renishaw Invia Raman microscope 
system (Renishaw, Britain) with 575 nm laser excitation. The 
chemical compositions of the PCM composites were investi-
gated using Fourier transform infrared (FTIR) spectroscopy. 
The phase change properties of the composite PCMs were 
estimated using a differential scanning calorimeter (DSC, 
Discovery DSC from TA Instruments), and the test was car-
ried out from − 10 to 80 °C with a heating and cooling rate 
of 10 °C  min−1 under a nitrogen atmosphere. The mass of 
the samples was in the range of 5–10 mg. The measurement 
uncertainties of DSC measurement are within ± 0.025 °C 
for the temperature and within ± 0.04% for the enthalpy. 
Thermal gravimetric analysis (TGA) and DTG were carried 
out using a TG 209F1 Libra (NETZSCH) analyzer with a 
heating rate of 10 °C  min−1 in a nitrogen atmosphere. The 
masses of the samples were about 10–20 mg.

3  Results and Discussion

3.1  Preparation of the GB‑PCN

The fabrication process for hybrid GB-PCN is sche-
matically in Fig. 1a. First, GO and BN nanosheets are 
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synthesized [32–34]. It can be seen from  TEM images 
(Fig. 1b, c) that both of GO and BN nanosheets have a 
few-layer structure, proving a high degree exfoliation. 
After homogeneously mixing of these two 2D nanosheets 
solutions (Fig. 1a, inset image), GB-N was prepared by 
wet spinning, filtration, and reduction process. The cross-
sectional SEM image (Fig. 1d) of GB fiber shows that the 
nanosheets were stacked and wrapped in parallel, aligned 
with the fiber’s long axis owing to the shear force during 
wet spinning, which is highly conducive to the transmis-
sion and utilization of thermal energy. Further, the GB-
PCN fabric was obtained by vacuum-assisted impregnation 
of the GB-N and alkane under heating treatment at 80 °C. 

Figure  1e shows that the GB-PCN has an interlinked 
network between fibers, which enhances the mechanical 
strength of the overall structure and establishes a wide 
thermal energy transmission network. High-magnification 
SEM image (Fig. 1f) shows that the surface of the GB-
PCN fabric is flat. Furthermore, it is worth mentioning 
that the GB-PCN displays satisfactory flexibility (Fig. 1a), 
an important parameter in practical applications. In addi-
tion, hydrophobicity is also vital for fabrics, which could 
endow the cloth with outstanding self-cleaning [35]. In 
order to study the hydrophilic and hydrophobic properties 
of the GB-PCN, static water contact angle measurements 
were taken at room temperature. As shown in Fig. 1g, 
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Fig. 1  Schematic diagram of the preparation process and structural characterizations for GB-PCN. a Schematic illustrating the fabrication of 
GB-PCN nonwoven. Inset images are the photographs of GO-BN spinning solution (left) and GB-PCN (right). TEM images of b GO nanosheets 
and c BN nanosheets. d Cross-sectional SEM image of a GB fiber. e, f Top-view SEM images of GB-PCN. g Photograph of the contact angle 
measurement of GB-PCN
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the contact angle of water droplets on GB-PCN is 136° 
(more than 90°), confirming the hydrophobic nature of 
the GB-PCN.

3.2  Structural Characterizations and Thermal 
Properties of GB‑PCN

Raman spectroscopy was applied to explore the structure 
evolution from GOB-N to GB-N (Fig. S1), in which two sig-
nificant peaks are observed at approximately 1580  cm−1 (G 

peak) and 1340  cm−1 (D peak). Meanwhile, GOB-N shows 
a sharp D peak while the corresponding peak for the GB-N 
was weak after chemical reduction. Furthermore, X-ray pho-
toelectron spectroscopy (XPS) (Figs. 2a and S2) confirms 
the increased C/O ratio of 4.63 for GOB-N to 7.28 for GB-N 
due to the significant removal of oxygen-functional groups, 
suggestive of efficient reduction of GOB-N into GB-N.

The nitrogen adsorption and desorption isotherm of the 
GB-N show a Type-IV curve with an H3 hysteresis loop 
(Fig.  2b). It can be seen that the capillary agglomera-
tion occurs at a relative pressure of 0.5 < P/P0 < 1.0, and 

Fig. 2  Structural characterizations and thermal properties of GB-PCN. a XPS spectra of GOB-N and GB-N before and after reduction. b Nitro-
gen adsorption and desorption isotherm of 4 GB-N. c XRD patterns of eicosane, 2 GB-N and E-2 GB-PCN. d, e DSC curves of eicosane, E–G-
PCN, E-4 GB-PCN and E-2 GB-PCN. (f) TG curves of eicosane and E-2 GB-PCN. g Comparisons of the enthalpy value and the latent heat 
retention of GB-PCN with the reported PCMs. h XRD patterns of E-4 GB-PCN before and after 1000 cycles. i Cycling stability of E-4 GB-PCN
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the amount of adsorption increases sharply, indicative of 
the presence of mesopores/macropores. According to the 
amount of gas adsorbed, the pore volume and specific sur-
face area of GB-N were calculated to be 0.324  cm3  g−1 and 
325  m2  g−1, respectively. In addition, the pore size distribu-
tion of the GB-N gives an average pore size around 4.1 nm 
(Fig. S3), characteristic of mesopores, which is the key 
to confine the melted PCMs. Furthermore, XRD patterns 
(Fig. 2c) validated the phase structures of 2 GB-N, eicosane 
and eicosane-based 2 GB-PCN (E-2 GB-PCN). Apparently, 
no new peaks appeared in the XRD pattern of E-2 GB-PCN 
except those of 2 GB-N and eicosane, indicative of physi-
cal interaction connection between 2 GB-N and eicosane. 
Moreover, to further explore the interaction between the 
carrier material and PCM, we also tested the FT-IR spec-
tra (Fig. S10) of eicosane, 2 GB-N and E-2 GB-PCN. It is 
confirmed that there is no new chemical bond formed in the 
E-2 GB-PCN composite, indicating that the combination of 
PCM and 2 GB-N carrier is likely from physical interaction.

For solid–liquid PCMs, the liquid leakage is a huge 
obstacle hindering practical application. Compared with 
pure eicosane, a good anti-leakage capability of E-GB-
PCNs upon heating at 80 °C is confirmed by the leakage 
test (Table S1). In the initial state, both samples are solid 
state. After heating for a few minutes, the eicosane began 
to melt, and after heating for 10 min, the pure eicosane was 
completely melted and overspread on the filter paper. On the 
other hand, GB-PCN could retain its initial shape owing to 
the confinement of the liquefied eicosane in the mesopores 
of GB-N. Furthermore, in comparison with pure eicosane, 
the quality of the filter paper of eicosane-based 2 GB (mass 
ratio of G:B is 2:1)-PCN (E-2 GB-PCN) and eicosane-based 
4 GB (mass ratio of G:B is 4:1)-PCN (E-4 GB-PCN) before 
and after melting had no significant change, further confirm-
ing excellent anti-leakage capability of GB-PCN.

Latent heat is the most fundamental parameter to assess 
the performance of phase change composites, which is 
closely related to the energy density of thermal manage-
ment systems. Owing to the presence of abundant mesopores 
inside GB-N, we realized an ultrahigh enthalpy value of 
206 J  g−1 (Fig. 2d, e), far beyond the normal phase change 
fibers (< 150 J   g−1) [27, 28]. The detailed phase change 
parameters were extracted from the DSC curves, such as 
melting/cooling temperature (Tm/Tc) and enthalpy (ΔHm/
ΔHc), which are presented in Table S3. To the best of our 
knowledge, our GB-PCN exhibiting a superb enthalpy 

value of 206 J  g−1 and superior latent heat retention of 83% 
(Fig. 2g) far exceed the performance of previously reported 
phase change fibers or phase change films (Table S5), such 
as flexible melamine-toluene diisocynate-PEG (MTPEG) 
phase change films (110  J   g−1) [26], CNT sponge-PEG 
film(118 J   g−1) [19], commercial hollow polypropylene 
(PP) fiber-PW (199.9 J  g−1) [36], graphene fiber (GF)—
PEG (124 J  g−1) [7], polyvinyl pyrrolidone (PVP)/alkane 
fiber (114 and 88 J  g−1) [31], and polyacrylonitrile (PAN)/
isopropyl palmitate (IPP) fiber (30.8 J  g−1) [29].

A better thermal stability of GB-PCN compared to 
pure PCMs is verified through thermogravimetric analy-
sis. According to thermogravimetric curves in Fig. 2f, the 
E-2 GB-PCN experiences a major weight loss between 200 
and 300 °C, while the weight loss of pure eicosane mainly 
occurs between 150 and 250 °C. The superior thermal sta-
bility of 2 GB-PCN over that of pure PCMs is likely due to 
the capillary force between the eicosane and GB-N [37]. 
The long-term usability of GB-PCN as fabrics for clothing 
depends largely on the thermal cycling capacity of phase 
change composites. Cycling tests were conducted to judge 
the thermal durability of GB-PCN and evaluated based on 
the changes of phase transition temperature and enthalpy 
value at different thermal cycles. From the DSC curves in 
Fig. 2i, it can be seen that after 1000 thermal cycles, the 
melting and crystallization temperature and latent heat had 
little change, manifesting excellent thermal cycle stability of 
GB-PCN. In addition, there is no prominent change in the 
shape and position of the diffraction peaks through XRD 
patterns for E-4 GB-PCN before and after 1000 thermal 
cycles. Moreover, to prove wide applicability of GB non-
woven for supporting  other PCMs for different demands, 
we further adopt a similar strategy to fabricate the GB-PCN 
using octadecane as thermal energy storage material (Figs. 
S4, S6, S7, S8 and Table 2). The composites present the 
phase change temperature of 22.7 °C and high enthalpy 
value of 188.7 J  g−1.

3.3  Solar–Thermal Conversion of GB‑PCN

To evaluate the solar–thermal conversion performance, the 
light absorption capacity of eicosane and composite PCM 
was measured by UV–Vis spectrophotometry. As shown in 
Fig. S9, it is clearly seen that the light absorption capac-
ity of the E-2 GB-PCN is significantly better than that of 
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eicosane in the wavelength range of 400–800 nm. It is 
indicated that the graphene-BN nonwoven support has an 
ultra-high light absorption capability, which enables the 
PCM composite to capture light energy more efficiently 
and further convert it into thermal energy owing to the effi-
cient solar–thermal conversion. To verify the solar–ther-
mal energy conversion, storage and release ability of 
the GB-PCN, we conducted corresponding solar–ther-
mal conversion measurement. The GB-PCN was placed 
under the simulated solar illumination with intensity of 
200 mW  cm−2 (2 sun), and the light remained turned on 
for 60 s. Impressively, the temperature of GB-PCN still 
remains at 31.4 °C after 1410 s (Fig. 3a–d). Furthermore, 
the temperature of GB-PCN rises rapidly under solar 
radiation compared to pure PCM, which is attributed to 
the function of graphene nanosheets as effective photon 
traps. It is also evidenced that GB-PCN displays excellent 

light absorption and heat storage capabilities.  After irra-
diation for 90 s, the temperature of GB-PCN gradually 
increases significantly with the increase of irradiation 
intensity (Fig. 3e–h). When the solar intensity is adjusted 
from 1 to 3 sun, the temperature rise rate becomes higher 
(from 50 to 80 °C), indicating that high-intensity light is 
conducive to faster solar–thermal conversion and storage. 
In short, GB-PCN is very promising for spontaneous and 
efficient absorption of the energy of sunlight to store ther-
mal energy (Fig. 3i).

To utilize thermal energy more efficiently, higher thermal 
conductivity (κ) is a fundamental condition. The κ of pure 
E and GB-PCN was evaluated (Fig. 3j), which was signifi-
cantly increased to 0.83 W  m−1  K−1 for E-4 GB-PCN. This 
is mainly owing to the addition of high thermal conductivity 
BN nanosheets and the rational construction of 3D thermal 
pathways in GB  nonwoven.
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3.4  Wearable Thermal Management in Clothing

Due to the outstanding anti-leakage capability, excellent 
phase change property, long cycle performance and good 
thermal stability, the GB-PCN with phase change temper-
atures of 27.3–31.3 °C holds great potential to construct 
wearable thermal management cloths with the appropriate 
working temperature of 20–36 °C [38, 39]. To this aim, we 
fabricated a sandwich-like thermal energy storage and tem-
perature control device through the layer-by-layer assem-
bly of cotton/GB-PCN/cotton film (3 × 9   cm2), in which 

graphene was selected as the light absorption unit and BN 
as the thermally conductive filler, eicosane as the heat stor-
age unit, and cotton as package cloth to further increase the 
comfort of the human body (Fig. 4a). First, under the light 
intensity of 200 mW  cm−2, the clothes are heated to above 
40 °C, and GB-PCN could release heat for about 1500 s 
smoothly in a narrow temperature range (Fig. 4c–h). Fur-
thermore, water vapor transmission rate is an important 
indicator of the materials used in human wearable fabrics. 
When the human body is sweating, efficient water trans-
mission ability can enhance the comfort degree of human 
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body. Based on this, we quantitatively examined the water 
vapor permeability of polyethylene (PE), cotton and cotton-
GB-PCN-cotton [40]. After measuring the loss of qual-
ity of the bottle every few hours, the relationship between 
mass and time is almost linear (Fig. 4b). It is revealed that 
the water vapor transmission rate of the cotton-GB-PCN-
cotton reaches 0.00709 g  cm−2  h−1, which is very close to 
0.00799 g  cm−2  h−1 of cotton. The results show that the PE 
material basically has no water vapor permeability, while 
cotton-GB-PCN has a good water vapor permeability. There-
fore, it is demonstrated that under the condition of natu-
ral convection, the GB-PCN has outstanding water vapor 
permeability.

3.5  Wearable Thermal Management in Face Masks

Owing to excellent water vapor permeability, GB-PCN fab-
ric is demonstrated to be used in face masks to achieve the 
functions of keeping cool in summer and warm in winter, 
as shown in Fig. 5a–c. We added the E-2 GB-PCN on one 
side of the face mask, and the other side as a contrast. In 
a cold environment, there is a significant temperature dif-
ference on the two sides of the mask, corresponding to the 
phase change process (Fig. 5h–k). Notably, the lag time is as 
long as 19 min, which is consistent with previously reported 
level [16]. Such superior heat storage and heat preserva-
tion performance are attributed to the hierarchical structure 
inside the GB  nonwoven fabric, and in the hybrid structure, 
micropores and mesopores provide numerous adsorption 
sites. In addition, the capillary action induced by graded 
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Fig. 5  Wearable thermal management in face masks. a–c Schematic of GB-PCN used for face mask thermal management. The simulative effect 
through IR images of O-2 GB-PCN for face mask thermal management at different times of d 0 s, e 120 s, f 540 s, g 1140 s under ambient 
temperature of 38 °C (left part is the functionalized face mask with O-2 GB-PCN, right part is a traditional face mask without O-2 GB-PCN). 
The actual effect through IR images of E-2 GB-PCN for face mask thermal management at different time of h 0 s, i 480 s, j 720 s, k 1140 s 
under ambient temperature about 4 °C (right part is the functionalized face mask with E-2 GB-PCN, left part is a traditional face mask without 
E-2 GB-PCN)
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pores can ensure the stability of eicosane molecules. At the 
same time, the interconnected graphene and BN nanosheets 
network could form high 3D thermal conductivity chan-
nel so that PCN could maintain temperature uniformity as 
much as possible. However, the traditional face mask with-
out PCMs shows a rapid cooling process. It is validated from 
the experimental results that the eicosane-based face mask 
can provide enough thermal energy and maintain a long tem-
perature platform to meet the basic requirements of actual 
use. As demonstrated, this kind of face masks in summer 
also can efficiently cool the incoming air and improve the 
comfort of human body. When the face mask is used for 
19 min in an environment of 38 °C, the temperature of the 
face mask is still maintained at a very comfortable tempera-
ture of 25 °C (Fig. 5d–g).

4  Conclusions

In summary, we report a general strategy to fabricate a novel 
class of GB-PCN by wet-spinning and subsequent paraffin 
impregnation for high-efficiency wearable thermal manage-
ment system. The GB-PCN showed a surprising ultrahigh 
enthalpy value of 206 J  g−1, excellent thermal reliability and 
anti-leakage capability, outstanding thermal cycling capabil-
ity of 97.6% after 1000 cycles, and ultra-high water vapor 
permeability (close to cotton), outperforming PCM films 
and fibers reported so far. Unlike active heating or cooling 
devices, such as air conditioners and electric heating blan-
kets, the GB-PCN has complete self-absorbing and self-exo-
thermic properties in response to changes with external tem-
perature. This spontaneous heat absorption and exothermic 
property could greatly save extra energy usage. Based on it, 
assembled GB-PCN-based wearable thermal management 
system for clothing and face masks can keep the human body 
at a comfortable temperature range. This novel strategy fur-
ther expands the advanced functional application of PCMs, 
and it is foreseeable that GB-PCNs will have a wide range of 
applications in the field of human wearable passive thermal 
management in real-world environments.
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