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S1 Experimental  

S1.1 Synthesis of Metal LDH@Carbon Substrate Composites 

Ni(OH)2@CC, Co(OH)2@CC and FeOOH@CC: At room temperature, 5 mM 

Nickel(II) Chloride Hexahydrate (Cobalt(II) chloride hexahydrate, Ferrous(III) 

chloride tetrahydrate) was dissolved in 10 mL deionized water under magnetic stirring. 

Next, the solution was transferred into a ceramic boat. A piece of treated carbon cloth 

was dipped into the metal salt solutions for 2 min. Then, the Joule-heating process was 

achieved by directly applying voltage to the both ends of treated carbon cloth for about 

13 s in a salt solution. Finally, after water/alcohol washing for several times and dried 

in vacuum oven, the Ni(OH)2@CC (Co(OH)2@CC and FeOOH@CC) was successfully 

prepared. 

NiMn LDH@CC: The synthesis method is similar to that of NiCo LDH@CC, except 

that is replaced Cobalt(II) chloride hexahydrate by Anhydrous manganese(II) chloride. 

NiFe LDH@CC/NiCoFe LDH@CC: Since the solubility product constant of Fe(OH)3 

is much smaller than that of Ni(OH)2, the hydroxide of iron in solution will nucleate 

preferentially. Therefore, We choosed two-step thermal shock to generate NiFe LDH. 

Briefly, we first put the carbon cloth in the solution containing Nickel(II) Chloride 

Hexahydrate for thermal shock to generate Ni(OH)2@CC, and then washed it with 

water/alcohol for several times, it was placed in a salt solution containing Ferrous(III) 

chloride tetrahydrate for further thermal shock to prepare NiFe LDH@CC. The 

synthesis process of NiCoFe LDH is similar to NiFe LDH@CC.  

S1.2 Preparation of the PVA-KOH Gel Electrolyte 

First, 2 g Polyvinyl alcohol (PVA) was dissolved in 20 mL deionized water under 

stirring at 80 ℃ for 2 h. Then, 20 mL 2 M KOH was added slowly into the obtained 

https://springer.com/40820
mailto:yzhao@bit.edu.cn
mailto:jingxie@bit.edu.cn


Nano-Micro Letters 

S2 / S16 

PVA solution under vigorous stirring. After cooling down, a quasi-solid-state PVA-

KOH gel formed. 

S1.3 Preparation of the Zn Microbattery 

Briefly, as for the fabrication of positive microelectrode, the obtained NiCo LDH@CC 

was cut into 3 interdigital shapes with a total size of about 6 × 1 mm2 of each finger by 

the computer-controlled laser cutting system. The gap between neighboring 

interdigitated fingers was 0.5 mm. A same method was adopted to prepare the Zn anode, 

except that the NiCo LDH@CC was replaced by Zn foil. And then, the planar 

interdigital positive and negative electrodes were transferred to the PET tape. 

Afterwards, PVA-KOH gel electrolyte was uniformly applied on the in-plane 

microelectrodes. Finally, the part of both ends of the interdigital electrode was acted as 

the electrode, which is bonded with the copper wire through conductive silver glue to 

extend the wire part, and the whole device was sealed with PET heat sealing film. 

S2 Supplementary Figures and Tables 

 

Fig. S1 Photograph of Joule heating setup 

 

Fig. S2 The tensile stress-strain curve of a primary carbon cloth (before thermal shock) 

and b NiCo LDH@CC (after thermal shock) 
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Fig. S3 Digital photo of primary carbon cloth (left) and treated carbon cloth (right) 

submerged in water 

 

Fig. S4 SEM image of treated carbon cloth 

 

Fig. S5 Raman spectrum of primary carbon cloth and treated carbon cloth 
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Fig. S6 SEM images of NiCo LDH@CC prepared by different precursor concentrations 

a, b 0.2 mol L-1 NiCl2/CoCl2, c, d 0.3 mol L-1 NiCl2/CoCl2. The yield of target phase is 

positively correlated with concentration of the precursor solution, approximately ~0.7 

mg cm-2 for 0.2 mol L-1 NiCl2/CoCl2, ~1.0 mg cm-2 for 0.25 mol L-1 NiCl2/CoCl2, ~1.2 

mg cm-2 for 0.3 mol L-1 NiCl2/CoCl2, respectively 

 

Fig. S7 Lattice space of NiCo LDH 

 

Fig. S8 Raman spectrum of the obtained NiCo LDH@CC 
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Fig. S9 XPS spectra of the NiCo-LDH@CC composite for a full spectra and b O 1s 

 

Fig. S10 a-b SEM images of the NiCo-LDH@CC (thermal shock for 18 s), c XRD 

patterns of the NiCo-LDH@CC prepared by different thermal shock time 

 

Fig. S11 SEM image and elements mapping of NiCo LDH@CC after 13 s thermal 

shock in nickel-cobalt solution (10 ml) with 6 g ice 

 

Fig. S12 SEM image of the obtained sample via hydrothermal synthesis method 
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Table S1 The molar ratio of NiCo LDH analyzed by inductively coupled plasma 

optical emission spectroscopy analysis (ICP-OES) 

Elements  Mass contents  Normalized molar content 

Co 12.67 % 74 % 

i 4.37 %  

 

26 % 

 

Fig. S13 a the pH vaules of the metal salt (NiCl2/CoCl2) solution before and after 

thermal shock. b the relationship between temperature of carbon cloth center and 

thermal shock power in the air 

Computational methods:  

Spin-polarized and periodic density functional theory (DFT) calculations are performed 

in Vienna Ab initio Simulation Package (VASP) software [S1, S2]. The GGA−PBE 

functional is used to account for the exchange-correlation interaction, with the DFT-D3 

semi-empirical correction method to describe the dispersion interaction [S3, S4]. The 

projector augmented wave (PAW) method is utilized to describe the electrons-ionic 

interactions [S5, S6]. And DFT + U method is used to account for the strong correlation 

for the transition metals [S7], where the U parameter for Ni and Co is 3.8 eV [S8]. An 

energy cutoff of 520 eV and a 3 × 3 × 1 k-point mesh are used for modeled systems. 

Convergence criteria are set to be 10−5 eV for energy and 0.02 eV/Å for the forces. 

The solvation effect of water is included with an implicit solvation model by using the 

VASP sol tool [S9, S10], the dielectric constant of 78.5 for water is selected [S11]. The 

CINEB (Climbing Image Nudged Elastic Band) method [S12] is used to locate the 

transition state (TS) structures for H2O decomposition, and six images are considered 

for the CINEB calculations. Vibrational frequency calculations are performed on the 

adsorbate to confirm the nature of the stationary structures. The Gibbs free energies are 

reported at 1300 K and computed by Eq. S1: 

G = EDFT + EZPE – TS   (S1) 

where EDFT is the electronic energy, EZPE is zero point energy, S is entropy. The latter 

two values are obtained by using the VASPKIT code [S13]. 

The adsorption free energy of H2O is calculated by Eq. S2: 
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∆Gads = Gtotal – (Gsurface + GH2O)    (S2) 

where Gtotal, Gsurface and GH2O are the Gibbs free energies of the adsorption complex 

structure, the NiCo/graphene materials, and the H2O, respectively. According to this 

definition, a more negative value of adsorption free energy corresponds to a stronger 

binding.  

The decomposition free energy (∆Gde) and decomposition barrier (∆G‡
de) of the H2O 

are calculated by Eqs. S3-S4; 

∆Gde= G*HO−H – G*H2O   (S3) 

∆G‡
de = G‡ – G*H2O       (S4) 

where G*H2O, G‡, G*HO−H are the Gibbs free energies of the adsorbed H2O, transition 

state, and the adsorbed HO with H. 

 

Fig. S14 SEM images of synthetic NiCo LDH@CC under different thermal shock 

power. a 25 W, b 70 W, c 130 W, d 210 W, e 300 W, f 400 W 

 

 

Fig. S15 XRD patterns of synthetic NiCo LDH@CC under different thermal shock 

power 
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Table S2 The solubility product of some transition metal layered hydroxides 

transition metal layered 

hydroxides 

solubility product (Ksp) 

Co(OH)2 1.6×10-15 

Ni(OH)2 2.0×10-15 

Mn(OH)2 1.1×10-13 

Fe(OH)3 3.2×10-38 

 

Fig. S16 SEM images of metal hydroxides based on carbon cloth a Co(OH)2@CC, b 

Ni(OH)2@CC, c FeOOH@CC, d NiMn LDH@CC, e NiFe LDH@CC, f 

NiCoFe@CC 

 

Fig. S17 pH values of the each metal salt solution before and after thermal shock 
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Fig. S18 a, b High-resolution XPS spectra of Ni 2p c and Co 2p d in NiCo LDH@CC 

at charge (+1.7 V) and discharge (+1.5 V) states 

The XPS data and XRD patterns of NiCo LDH@CC during the charge/discharge 

processes were shown in Fig. S18. The minor shift of XPS data (Fig. S18a, b) during 

the charge/discharge processes further reveals the change of Ni and Co valence state 

(the valence increases of charging, compared with discharging), which is consistent 

with previous work [14]. The appearance of new peaks (Fig. S18c, d, ~48.3 ° and 51.6 ° 

for (107) and (108) planes of NiOOH, and ~41.1° for (006) plane of CoOOH) during 

charging is due to the phase transition of NiCo LDH@CC, and the weak signal of these 

peaks may be attributed to the strong signal of carbon peaks in CC and the low NiCo 

LDH loading. These results support the possible charge storage mechanism. 

 

 

Fig. S19 GCD curves of Co(OH)2@CC and Ni(OH)2@CC at 1.0 A g-1 

 

https://springer.com/40820


Nano-Micro Letters 

S10 / S16 

 

Fig. S20 GCD curves of the NiCo LDH@CC prepared by different powers (130 W and 

210 W) at 1.0 A g-1 

Table S3 Summary the state of the art cathode materials in ZIBs and their 

electrochemical performance 

Cathode Specific capacity Energy density References 

 

Co-doped Ni(OH)2 

247 mAh g
-1 at 1 A 

g-1 

 

148 Wh kg
-1 

 

[S15] 

 

Ni(OH)2/NiOOH 

276 mAh g
-1 at 

0.29 A g-1 

 

152 Wh kg
-1 

 

[S16] 

 

Ni0.95Zn0.05(OH)2 

258 mAh g
-1 at 

0.21 A g-1 

 

275 Wh kg
-1 

 

[S17] 

 

N-Fe2O3−x 

288 mAh g
-1 at 1 A 

g-1 

 

135 W h kg-1 

 

[S18] 

 

NiAlCo LDH 

184 mAh g
-1 at 3.5 

A g-1 

 

274 W h kg-1 

 

[S19] 

 

CoNi LDH 

185 mAh g
-1 at 1.2 

A g-1 

 

296 W h kg-1 

 

[S20] 

 

Ni3Mn0.7Fe0.3-LDH 

112 mAh g
-1 at 1 A 

g-1 

 

− 

 

[S21] 

 

Ni3S2/NiS@NiCo-LDH 

318 mAh g
-1 at 2 A 

g-1 

 

556 W h kg-1 

 

[S22] 

 

NiCo LDH 

108 mAh g
-1 at 

0.49 A g-1 

 

172 W h kg-1 

 

[S23] 

 

Co3O4 

160 mAh g
-1 at 1 A 

g-1 

 

241 W h kg-1 

 

[S24] 

 

NiCo LDH 

211 mAh g
-1 at 1 A 

g-1 

 

302 W h kg-1 

 

This work 
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Fig. S21 SEM images of a, b Zn foil. c, d NiCo LDH@CC after 5000 cycles 

 

Fig. S22 Rotating optical photograph of a small electric fan powered by a single 

device 

 

Fig. S23 SEM images of a graphite paper, b, c NiCo LDH@graphite paper, d the 

element mapping of NiCo LDH@graphite paper 
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Fig. S24 a GCD curve of NiCo LDH@ graphite paper//Zn at 1.0 mA cm-2, b Nyquist 

plots of NiCo LDH@ graphite paper//Zn 

 

As shown in Figs. S24 and 5e, compared with NiCo LDH@ graphite paper//Zn, the plot 

for the NiCo-LDH@CC//Zn (Fig. 5e) presents a substantially smaller semicircle in the 

high-frequency area, indicating that it has a much smaller electron-transfer resistance 

due to the 3D interconnect network structure of the NiCo-LDH@CC.  

 

Fig. S25 Illustration the flexibility of the as-prepared samples, scale bar equals 2 mm 

 

 

Fig. S26 Kinetics analysis of NC-ZMBs. a CV curves of NC-ZMBs at different scan 

rates of 0.5-1.0 mV s-1, b Peak current as a function of scan rate, c Normalized 

contribution proportion of capacitive and diffusion-controlled capacity at different scan 

rates 
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Table S4 Performance comparison of recently reported in-plane energy storage devices 

Cathode//Anode Electrolyte Energy density 

(μWh cm-2 ) 

References 

Ni-Co LDH//Zn KOH 135.61 [S25] 

Ni@Ni(OH)2//Zn 6.0 M KOH+ ZnO 260 [S26] 

Co(OH)2@NiCo 

LDH// Zn 

3.0 M KOH+ ZnO 170 [S27] 

AC//Zn ZnSO4 115.40 [S28] 

NiCoP//ZIF-C KOH 13.90 [S29] 

Cu(OH)2@FeOOH [EMIM][BF4] 18.07 [S30] 

CNT//Zn 1.0 M ZnSO4 29.6 [S31] 

NiCo LDH//Zn 6.0 M KOH+ 0.2 

M zinc acetate 

120 [S32] 

NiCo LDH//Zn 1.0 M KOH 146 This work 
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