Supporting Information for

# **3D** Artificial Array Interface Engineering Enabling Dendrite-Free

## Stable Zn Metal Anode

Jianbin Ruan<sup>1</sup>, Dingtao Ma<sup>1, 2, \*</sup>, Kefeng Ouyang<sup>1</sup>, Sicheng Shen<sup>1</sup>, Ming Yang<sup>1</sup>, Yanyi Wang<sup>1</sup>, Jinlai Zhao<sup>3</sup>, Hongwei Mi<sup>1, 4</sup>, Peixin Zhang<sup>1, 4, \*</sup>

- <sup>1</sup> College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- <sup>2</sup> Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
- <sup>3</sup> College of of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- <sup>4</sup> Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Center, Shenzhen 518060, P. R. China

\*Corresponding authors. E-mails: <u>mdt2500@szu.edu.cn</u> (Dingtao Ma); <u>pxzhang@szu.edu.cn</u> (Peixin Zhang)

### **Supplementary Figures**



**Fig. S1** Schematic illustration of structural evolution of (**a**) pure Zn anode and (**b**) 2D interface engineered Zn anode after long-term of plating and stripping cycling

Nano-Micro Letters







Fig. S3 (a) FESEM image and (b) corresponding TEM image of the  $Ti_3C_2T_x$  MXene nanosheets







**Fig. S5** Side-view FESEM images of the 3D MXene array interface with different thickness of (a)  $30 \mu m$ , (b)  $60 \mu m$ , and (c)  $80 \mu m$ 

#### Nano-Micro Letters



**Fig. S6** The galvanostatic cycling of symmetrical 3D MXene array@Zn with different thickness (30, 60 and 80  $\mu$ m) and corresponding partially enlarged view at (**a**, **b**) 0.5 mA cm<sup>-2</sup> with a fixed areal capacity of 0.5 mAh cm<sup>-2</sup>, and (**c**, **d**) 5 mA cm<sup>-2</sup> with a fixed areal capacity of 1.25 mAh cm<sup>-2</sup>



**Fig. S7** Partial enlargement in the high-medium frequency of EIS curves in Figure 2c. (**a**) Pure Zn, (**b**) 3D MXene array@Zn

Nano-Micro Letters



**Fig. S8** The galvanostatic cycling of symmetrical 3D MXene array@Zn and Zn cells at 0.5 mA  $cm^{-2}$  with a fixed areal capacity of 0.5 mAh  $cm^{-2}$ 



**Fig. S9** The galvanostatic cycling of symmetrical 3D MXene array@Zn and Zn cells at 20 mA  $\text{cm}^{-2}$  with a fixed areal capacity of 10 mAh  $\text{cm}^{-2}$ 



**Nano-Micro Letters** 

**Fig. S10** The comparison of electrochemical performance between this work and other previous reports [S1-S9]



**Fig. S11** Cycle performance of symmetric cell assembled by the electrode that zinc deposited on the 3D MXene array current collector at the condition of 1 mA cm<sup>-2</sup> and 1 mAh cm<sup>-2</sup>



**Fig. S12** FESEM images of electrode that zinc deposited on the 3D MXene array current collector. (**a**) before, and (**b**) after cycling for 100 h

Nano-Micro Letters



Fig. S13 Simulation models for the (a) pure Zn anode, and (b) 3D MXene array@Zn anode



**Fig. S14** Schematic diagram of the hollow site and top site on the  $Ti_3C_2T_x$  MXene



Fig. S15 Distortion of the position of Ti atoms in the subsurface when Zn atom adsorption on the top site of  $Ti_3C_2O_2$  MXene

Nano-Micro Letters



**Fig. S16** The nucleation overpotential of 3D MXene array interface engineered Zn metal anodes with different terminal groups content at the current density of 0.5 mA cm<sup>-2</sup>



**Fig. S17** In-situ 2D XRD pattern of 3D MXene array@Zn at the condition of continuous electroplating of zinc ions at a current density of 0.5 mA cm<sup>-2</sup>



Fig. S18 In-situ 2D XRD pattern of pure Zn anode at the condition of continuous electroplating of zinc ions at a current density of  $0.5 \text{ mA cm}^{-2}$ 

#### Nano-Micro Letters



Fig. S19 Crystal structure of Zn metal



**Fig. S20** XRD pattern of different stages in the in-situ measurement (continues Zn planting for 8 h at a current density of 0.5 mA cm<sup>-2</sup>) of (**a**) pure Zn anode, and (**b**) 3D MXene array@Zn anode



**Fig. S21**  $I_{(002)}/I_{(101)}$  ratio of different stages in the in situ measurement (continues Zn planting for 8 h at a current density of 0.5 mA cm<sup>-2</sup>) of 3D MXene array@Zn and pure Zn anode



**Fig. S22** FESEM images of (**a**) 3D MXene array@Zn and (**b**) pure Zn anodes after continuous deposition for 30 mins



Fig. S23 FESEM image of the VO<sub>2</sub> cathode material



**Fig. S24** (a) EIS curves of 3D MXene  $\operatorname{array} @Zn/VO_2 and Zn/VO_2 batteries$ , (b) the corresponding enlarged EIS curve of 3D MXene  $\operatorname{array} @Zn/VO_2 battery$ 

Nano-Micro Letters



Fig. S25 CV curves of the initial five cycles of  $Zn/VO_2$  battery at the scan rate of 0.2 mV s<sup>-1</sup>



Fig. S26 Long-term cycling performance of 3D MXene array@Zn/VO<sub>2</sub> and pure Zn/VO<sub>2</sub> batteries at the current density of 0.5A  $g^{\text{-1}}$ 

Table S1 DFT calculation results of the adsorption energy between zinc atom and  $Ti_3C_2T_x$  MXene (x=-O, -OH and -F)

|          |             | E <sub>tot</sub> | Ebase    | $\mathbf{E}_{\mathbf{mol}}$ | E <sub>ads</sub> |
|----------|-------------|------------------|----------|-----------------------------|------------------|
| MXene-O  | top site    | -573.122         | -573.143 | -0.00786                    | 0.028444         |
|          | hollow site | -573.423         | -573.143 | -0.00786                    | -0.27272         |
| MXene-OH | top site    | -631.665         | -631.499 | -0.00786                    | -0.15809         |
|          | hollow site | -631.701         | -631.499 | -0.00786                    | -0.19462         |
| MXene-F  | top site    | -525.224         | -525.198 | -0.00786                    | -0.01826         |
|          | hollow site | -525.225         | -525.198 | -0.00786                    | -0.01981         |

**Table S2** The content of different terminal groups of MXene synthesized by different methods (O contain both of -O and -OH)

|    | HF etching (weight %) | HCl+LiF etching (weight %) |
|----|-----------------------|----------------------------|
| 0  | 30.57                 | 49.06                      |
| F  | 68.48                 | 48.45                      |
| Cl | 0.95                  | 2.49                       |

### **Supplementary References**

- [S1] X. Liu, F. Yang, W. Xu, Y. Zeng, J. He et al., Zeolitic imidazolate frameworks as Zn<sup>2+</sup> modulation layers to enable dendrite-free Zn anodes. Adv. Sci. 7(21), 2002173 (2020). <u>https://doi.org/10.1002/advs.202002173</u>
- [S2] J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogendoped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33(33), 2101649 (2021). <u>https://doi.org/10.1002/adma.202101649</u>
- [S3] S. Li, J. Fu, G. Miao, S. Wang, W. Zhao et al., Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv. Mater. 33(21), 2008424 (2021). <u>https://doi.org/10.1002/adma.202008424</u>
- [S4] X. Li, Q. Li, Y. Hou, Q. Yang, Z. Chen et al., Toward a practical Zn powder anode: Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene as a lattice-match electrons/ions redistributor. ACS Nano 15(9), 14631-14642 (2021). <u>https://doi.org/10.1021/acsnano.1c04354</u>
- [S5] Q. Zhang, J. Luan, X. Huang, L. Zhu, Y. Tang et al., Simultaneously regulating the ion distribution and electric field to achieve dendrite-free Zn anode. Small 16(35), 2000929 (2020). <u>https://doi.org/10.1002/smll.202000929</u>
- [S6] J.H. Park, M.J. Kwak, C. Hwang, K.N. Kang, N. Liu et al., Self-assembling films of covalent organic frameworks enable long-term, efficient cycling of zinc-ion batteries. Adv. Mater. 33(34), 2101726 (2021). <u>https://doi.org/10.1002/adma.202101726</u>
- [S7] Z. Guo, L. Fan, C. Zhao, A. Chen, N. Liu et al., A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv. Mater. 34(2), 2105133 (2022). <u>https://doi.org/10.1002/adma.202105133</u>
- [S8] N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao et al., Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. 60(6), 2861-2865 (2021). <u>https://doi.org/10.1002/anie.202012322</u>
- [S9] Y. Wang, T. Guo, J. Yin, Z. Tian, Y. Ma et al., Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers. Adv. Mater. 34(4), 2106937 (2022). <u>https://doi.org/10.1002/adma.202106937</u>