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S1 Experimental Methods 

S1.1 Electrochemical Equations and Calculations 

In PIHCs full-cell tests, the calculations of energy (E, Wh kg–1) and power densities (P, W kg–

1) based on the total mass of both anode and cathode materials were performed using the 

equations below [S1, S2]:  

𝑃 = ∆𝑉 × 𝑖                                                            (S1) 

𝐸 = 𝑃 × 𝑡 3600⁄                                                        (S2) 

∆𝑉 = (𝑉𝑚𝑎𝑥 + 𝑉𝑚𝑖𝑛)/2                                                 (S3) 

in which t (s) is the discharge time, i (A g–1) is the charge/discharge current, Vmax (V) is the 

discharge potential excluding the IR drop, and Vmin (V) is the potential at the end of discharge 

voltages. 

The contributions to capacitive controlled and diffusion-controlled processes are estimated as 

follows [S3]:  

𝑖 = 𝑎𝑣𝑏                                                              (S4) 

𝑖 = 𝑘1𝑣 + 𝑘2𝑣
1

2                                                        (S5) 

or 

𝑖

𝑣
1
2

= 𝑘1𝑣
1

2 + 𝑘2                                                        (S6) 
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where 𝑖 is the instantaneous current density, v is the scanning rate, and a and b are adjustable 

parameters obtained from the v1 and v2 scanning rates, respectively. The electrode reaction is 

controlled by the diffusion process when the value of b is 0.5, and the electrode response is 

controlled by the surface-dominated process when the b value is 1. The contributions of the 

capacitive current and the diffusion-controlled current to the whole electrode reaction process 

are represented by the k1v and k2v
1/2 in equations (S5) and (S6), respectively. 

The diffusion coefficients of K+ were calculated from the Galvanostatic Intermittent Titration 

Technique (GITT) using the following equation [S4].  

𝐷𝐾+ =
4

𝜋𝜏
(
𝑚𝐵𝑉𝑀

𝑀𝐵𝑆
)2(

∆𝐸𝑆

∆𝐸𝜏
)2                                                   (S7) 

Where τ denotes the duration of the current pulse, s; mB is the mass of electrode active material, 

g; S is the geometric area of the electrode, cm2; ΔEs is the quasi-thermodynamic equilibrium 

potential difference before and after the current pulse, V; ΔEt is the potential difference during 

current pulse neglecting the IR-drop, V; VM is the molar volume of the active materials, MB is 

the molar mass of carbon. The value of MB/VM is the density of electrodes (1.5 g cm–3), which 

is estimated to be lower than the density of graphite (2.2 g cm–3). Before the GITT measurement, 

the NSLPCs electrodes were pre-cycled for three cycles under a constant current density of 50 

mA g–1. 

S2 Molecular Dynamic Simulation and Density Functional Theory 

Calculation 

Firstly, Hundreds of initial configurations were generated by the genmer module of the Molclus 

program [S5]. All the clusters were then pre-optimized under the semi-empirical method GFN2-

Xtb [S6]. The obtained configurations with the low energy were further optimized and 

calculated the frequency under B3LYP-D3(BJ)/6-31G* level using Gaussian16 package with 

the consideration of implicit solvent model. The interaction energy between the LS and 

MA+TCA and the energy among the MA and TCA molecules were calculated with the 

correction of basis set superposition error (BSSE) under the B3LYP-D3(BJ)/6-311G** level. 

To study the weak interaction among the molecules, the Independent gradient model based on 

Hirshfeld partition (IGMH) [S7] were analyzed by Multiwfn 3.8 (dev) program [S8] and 

visualized by VMD 1.9.4. software [S9].  

All the calculations are performed in the framework of the density functional theory with the 

projector augmented plane-wave method, as implemented in the Vienna ab initio simulation 

package [S10]. The generalized gradient approximation proposed by Perdew, Burke, and 

Ernzerhof is selected for the exchange-correlation potential [S11]. The long-range van der 

Waals interaction is described by the DFT-D3 approach [S12]. The cut-off energy for the plane 

wave is set to 500 eV. The energy criterion is set to 10-6 eV in the iterative solution of the 

Kohn-Sham equation. The Brillouin zone integration is performed at the Gamma point with a 

2 × 2 × 1 k-mesh grid for structural optimization calculations and a 6×6×1 k-mesh grid for the 

electronic structure calculations. All the structures are relaxed until the residual forces on the 

atoms have declined to less than 0.03 eV Å–1. The vacuum thickness along the z-axis is set to 

15 Å, which is large enough to avoid interaction between periodic images. 
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S3 Supporting Figures and Tables 

 

Table S1 Porosity parameters of NSLPCs samples 

Sample 
SBET 

(m2 g–1) 

VTotal 

(cm3 g–1) 

Vmicro 

(cm3 g–1) 

Vmeso 

(cm3 g–1) 

Vmicro/Vtotal 

(%) 

Dave 

(nm) 

NSLPC-700 229 0.56 0.02 0.54 96.4 10.8 

NSLPC-800 362 0.95 0.06 0.89 93.6 18.1 

NSLPC-900 322 1.52 0.02 1.50 98.7 21.5 

NSLPC-1000 589 1.86 0.08 1.78 95.7 17.3 

 

Table S2 Atomic elemental content of NSLPCs 

sample C (at%) N (at%) O (at%) S (at%) 

NSLPC-700 70.0 21.6 7.6 0.8 

NSLPC-800 76.4 17.0 6.0 0.6 

NSLPC-900 88.2 7.2 4.0 0.6 

NSLPC-1000 92.5 2.4 3.9 1.2 

 

Table S3 Table of binding energies and element content for different bond types 

 Bonding type NSLPC-700 NSLPC-800 NSLPC-900 NSLPC-1000 

C 1s 

C=C/C-C 284.8 284.8 284.8 284.8 

C-N 286.0 285.8 285.8 285.9 

C-S 287.2 287.9 287.3 287.0 

C=O 288.7 289.7 229.5 288.8 

O-C=O 291.0 291.8 291.6 290.7 

O 1s 

C=O 531.4 530.9 530.9 531.0 

C-OH/C-O-C 532.5 532.2 532.1 532.4 

-COOH/H2O 534.0 533.4 533.2 533.5 

N 1s 

Pyridinic-N 398.2 398.2 398.1 398.3 

Pyrrolic-N 399.6 399.7 399.6 399.2 

Graphitic-N 400.2 400.3 400.8 401.2 

Oxidized-N 401.2 402.4 402.6 403.2 

S 2p 

S 2p3/2 (C-S-C) 163.9 163.7 163.8 163.7 

S 2p1/2 (C-SOX-C) 165.1 165.2 164.7 164.9 

Oxidized-S (-SOX-) 167.4/168.5 167.5/168.8 167.3/168.6 167.5/168.7 
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Table S4 Different chemical bonding concentrations of NSLPCs 

 Bonding type 
NSLPC-700 

(%) 

NSLPC-800 

(%) 

NSLPC-900 

(%) 

NSLPC-1000 

(%) 

 

C 1s 

C=C/C-C 51.3 39.5 55.8 61.8 

C-N 27.3 46.2 24.1 16.8 

C-S 9.6 6.7 10.2 10.1 

C=O 7.7 5.6 7.4 5.0 

O-C=O 4.1 1.9 2.6 6.3 

O 1s 

C=O 44.8 39.0 51.1 51.1 

C-OH/C-O-C 37.2 26.9 23.8 28.2 

-COOH/H2O 18.0 34.1 25.1 20.6 

N 1s 

Pyridinic-N 42.7 35.7 31.2 13.8 

Pyrrolic-N 42.3 45.8 18.2 14.8 

Graphitic-N 8.6 8.3 27.1 44.8 

Oxidized-N 6.4 10.2 22.9 26.7 

S 2p 

S 2p3/2 (C-S-C) 26.9 12.4 29.1 34.7 

S 2p1/2 (C-SOX-

C) 
26.4 49.7 13.4 37.2 

Oxidized-S (-

SOX-) 
43.3 37.9 57.5 28.1 

Table S5 Comparison of different defective carbon anode materials of PIHCs 

Materials 

Current 

density 

(A g–1) 

Initial coulombic 

Efficiency (%) 
Refs. 

S/N@C 0.05 24.6 
Adv.Mater.2019, 31, 1805430 

DOI:10.1002/adfm.201801989 

nitrogen-doped 

graphitic 

nanocarbons-600 

0.05 15.5 
Adv. Funct. Mater. 2019, DOI: 

10.1002/adfm.2019036411903641. 

nitrogen-doped 

hierarchical 

porous 

hollow carbon 

spheres 

0.028 37.1 
Adv. Funct. Mater. 2019, DOI: 

10.1002/adfm.2019034961903496. 

nitrogen/oxygen in 

situ dual-doped 

hierarchical 

porous 

hard carbon 

0.05 25 
Adv. Mater. 2018, 30, 1700104. 

DOI:10.1002/adma.201700104 

N/O dual-doped 

carbon network 
0.05 47.1 

Energy Storage Mater. 2019, DOI: 

10.1016/j.ensm.2019.05.037 

three-dimensional 

nitrogen-doped 

framework carbon 

0.1 24.3 
Energy Storage Mater. 2019, DOI: 

10.1016/j.ensm.2019.04.008. 
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carbon 

nanosheets750 
0.05 38 

Adv. Energy Mater. 2019, 9, 

1803894. 

DOI:10.1002/aenm.201803894 

nitrogen-doped 

carbon 

nanosheets 

0.05 20 

Adv. Funct. Mater. 2018, 28, 

1801989. 

DOI:10.1002/adfm.201801989 

NSLPC-700 0.05 48.0 This work 

 

Table S6 Comparison of different defective carbon anode materials for PIHCs 

Anode Specific capacity Rate capability Cyclic stability Refs. 

N-doped 

hollow 

carbon 

307 mAh g−1 at 

0.05 A g−1 
200 mAh g−1 at 1 A g−1 

160 mAh g−1 after 800 

cycles at 1 A g−1 

Nano Energy 

2019, 65, 

104038. 

N, S co-

doped 

carbon 

276 mAh g−1 at 

0.1 A g−1 
218.5 mAh g−1 at 3 A g−1 

144.9 mAh g−1 after 

1200 cycles at 3 A g−1 

Adv. Energy 

Mater. 2019, 

9, 1901379. 

N, S co-

doped 3D 

porous 

carbon 

nanosheets 

392 mAh g−1 at 

0.1 A g−1 
265 mAh g−1 at 1 A g−1 

271 mAh g−1 after 1000 

cycles at 1 A g−1 

Adv.Energy 

Mater. 2019, 

9, 1901533 

Pitch-

derived soft 

carbon 

296 mAh g−1 at 

0.1 C 
115.2 mAh g−1 at 5 C 

retention after 1000 

cycles at 1 C 

Adv.Mater. 

2020, 32, 

2000505. 

N/O dual-

doped hard 

carbon 

304.6 mAh g−1 at 

0.1 A g−1 

223.4 mAh g−1 at 1 A 

g−1 

189.5 mAh g−1after 

5000 cycles at 1 A g−1 

Adv. Sci. 

2020, 7, 

1902547. 

Highly N-

doped 

carbon 

nanofibers 

217 mAh g–1 at 

0.2 A g–1 
101 mAh g−1 at 20 A g−1 

191 mAh g−1after 200 

cycles at 0.2 A g−1 

Nat. Commun. 

2018, 9, 1720. 

Edge N-

doped 

carbon 

spheres 

290 mAh g−1 at 

0.2 A g−1 

195 mAh g−1 at 1 A 

g−1 

305 mAh g−1 after 600 

cycles at 0.2 A g−1 

Angew. Chem. 

Int. Ed. 2020, 

59, 4448. 

3D Carbon 

framework 

348.2 mAh g−1 at 

0.05 A g−1 
245 mAh g−1 at 2 A g−1 

188.8 mAh g−1 after 

2000 cycles at 1 A g−1 

ACS Energy 

Lett. 2020, 5, 

1653. 

NSLPC-

700 

419 mAh g−1 at 

0.05 A g−1 
246 mAh g−1 at 1 A g−1 

179 mAh g−1 after 

1500 cycles at 2 A g−1 
This work 
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Fig. S1 (a, d) SEM image of NSLPC-800, (b, e) SEM image of NSLPC-900, (c, f) SEM image 

of NSLPC-1000, and the (g) Energy dispersive spectroscopy (EDS) mapping images of 

NSLPC-800 for the elements of carbon, nitrogen, oxygen, and sulfur 

 

Fig. S2 Digital figures for the different states for the synthesis of the supermolecule 

precursors at each stage 

 

Fig. S3 Digital pictures of a mixture of (left) TCA+MA+LS and a mixture of (right) 

TCA+MA 
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Fig. S4 FT-IR spectra of the TCA and MA 

 

 

Fig. S5 (a) The XRD patterns of TCA and MA, (b) The XRD patterns of TCA+MA+LS, 

TCA+MA, and TCA+MA+LS-300 (heat-treated at 300 oC). Heat treatment of TCA+MA+LS 

would not cause apparent change in its XRD patterns 
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Fig. S6 FT-IR spectra of the pyrolysis product of TCA+MA+LS precursors at different 

temperatures 
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Fig. S7 (a, b) FT-IR spectra of TCA+MA+LS precursors heat-treated at temperatures of 

350 ℃ and 360 ℃ 

 

Fig. S8 2D temperature-dependent FT-IR spectrum of TCA+MA+LS precursor 

 

Fig. S9 Raman spectra of the NSLPC-600 
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Fig. S10 SEM images of the assembly of (a) TCA+MA and (b) TCA+MA+LS 

 

Fig. S11 SEM images of (a, c) NSLPC-550 and (b, d) NSLPC-600 

 

Fig. S12 The differential TGA curves of TCA+MA+LS and TCA+MA 
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Fig. S13 XPS spectra of NSLPC-700, NSLPC-800, NSLPC-900, and NSLPC-1000 

 

Fig. S14 High-resolution (a) C 1s and (b) O 1s XPS spectra of NSLPC-700 

 

Fig. S15 High-resolution (a) C 1s and (d) N 1s XPS spectra of the NSLPC-800. High-resolution 

(b) C 1s and (e) N 1s XPS spectra of the NSLPC-900. High-resolution (c) C 1s, (f) N 1s XPS 

spectra of the NSLPC-1000 
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Fig. S16 High-resolution (a) O 1s and (d) S 2p XPS spectra of the NSLPC-800. High-resolution 

(b) O 1s and (e) S 2p XPS spectra of the NSLPC-900. High-resolution (c) O 1s and (f) S 2p 

XPS spectra of the NSLPC-1000 

 

Fig. S17 Comparison of the GCD curves of different samples at 0.05 A g–1 

 

Fig. S18 (a) CV curves of NSLPC-800 anode at different scan rates. (b) GCD curves of 

NSLPC-800 anode at different current densities. (c) CV curves of NSLPC-800 anode at a scan 

rate of 0.1 mV s–1 
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Fig. S19 (a) GCD curves of NSLPC-800 anode at a current density of 0.05 A g−1. GCD cycling 

performance of the NSLPC-800 anode at current densities of (b) 1 A g−1 and (c) 2 A g−1 

 

Fig. S20 GCD curves of NSLPC-900 anode at different current densities 

 

Fig. S21 (a) CV curves of NSLPC-900 anode at different scan rates. (b) CV curves of NSLPC-

900 at initial cycles at a scan rate of 0.1 mV s–1. (c) Cycling performance of the NSLPC-900 

anode at a current density of 0.05 A g–1. (d) Cycling performance of the NSLPC-900 anode at 

a current density of 1 A g–1 

http://springer.com/40820
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Fig. S22 GCD curves of NSLPC-1000 anode at different current densities 

 

Fig. S23 (a) CV curves of NSLPC-1000 at different scan rates. (b) CV curves at initial cycles 

at a scan rate of 0.1 mV s–1. (c) GCD curves of NSLPC-1000 anode at a current density of 0.05 

A g –1 

 

Fig. S24 SEM images of LPC-700 
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Fig. S25 (a) XRD pattern of LPC-700. (b) Raman spectra of LPC-700 

 

Fig. S26 (a) GCD curves of LPC-700 anode at the different current densities. (b) Rate 

performance of LPC-700 anode 

 

Fig. S27 (a) GCD curves of NSLPC-600 anode at different current densities. (b) Rate 

performance of NSLPC-600 anode 
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Fig. S28 Capacitive charge-storage contribution in (a) NSLPC-800, (b) NSLPC-900 and (c) 

NSLPC-1000 at a specific scan rate of 1.2 mV s–1. Contribution ratios of the capacitive process 

in (d) NSLPC-800, (e) NSLPC-900 and (f) NSLPC-1000 at different scan rates 

 

Fig. S29 GITT profiles of the state of the potassiation and depotassiation processes. Testing 

conditions: this test is tested under the condition of charging or discharging pulses for 5 min 

each at a constant (pulsed) current density of 0.1 A g–1 for 2 hours 

 

Fig. S30 (a) DOS of C and N element. (b) DOS of C, N, and S elements 
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Fig. S31 (a) GCD curves of NSLPC-700 at different charge and discharge stages. (b) XPS 

spectra NSLPC-700 at different charge and discharge states 

 

Fig. S32 High-resolution C 1s XPS spectra of NSLPC-700 during the initial discharge and 

charge cycle 

 

Fig. S33 (a) CV curves of the NSLPC-700 and the AC (YP-50F) electrodes in half cells. (b) 

Rate performance of YP-50F cathode 
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Fig. S34 CV curves of PIHCs assembled by NSLPC-700//YP-50F at a scan rate of 1 mV s–1 

 

Fig. S35 The cycling performance of PIHCs at a current density of 0.2 A g–1 (The specific 

capacity was calculated based on the total mass of the anode and cathode electrodes) 
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