Supporting Information for

## Pushing the Electrochemical Performance Limits of Polypyrrole Toward Stable Microelectronic Devices

Muhammad Tahir<sup>1</sup>, Liang He<sup>2, 3, \*</sup>, Lihong Li<sup>1, \*</sup>, Yawei Cao<sup>1, 4</sup>, Xiaoxia Yu<sup>1, 4</sup>, Zehua Lu<sup>1, 4</sup>, Xiaoqiao Liao<sup>2</sup>, Zeyu Ma<sup>2</sup>, Yanlin Song<sup>1, \*</sup>

<sup>1</sup>Key Laboratory of Green Printing, CAS Research/Education Centre for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China

<sup>2</sup>School of Mechanical Engineering, Sichuan University, Chengdu 610065, P. R. China

<sup>3</sup>Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, P. R. China

<sup>4</sup>School of Chemistry and Biological Engineering University of Science and Technology Beijing, Beijing 100083, P. R. China

\*Corresponding authors. E-mail: <u>hel20@scu.edu.cn</u> (Liang He), <u>lilihong1209@iccas.ac.cn</u> (Lihong Li), <u>ylsong@iccas.ac.cn</u> (Yanlin Song)

# **S1** Mathematical Calculations

ESR values are calculated from the discharge plot at a current density of 0.1 mA cm<sup>-2</sup> by Eq. (S1).

Effective series resistance: (ESR) = 
$$\frac{iRdrop}{2I}$$
 (S1)

Where iR is the voltage drop at the starting of the discharge curve and I is the discharge current.

Areal cell capacitance ( $C_{area}$ ) is calculated from charge-discharge curves according to the equations (S2).

Areal capacitance 
$$(C_a) = \frac{I \triangle t}{A \triangle V}$$
 (S2)

Where A is the total area of microelectrodes, I is the applied current,  $\Delta t$  is the discharge time and  $\Delta V$  is the operating voltage window.

Areal energy density  $(E_a)$  and areal power density  $(P_a)$  are calculated by equations (S3) and (S4).

Areal energy density 
$$(E_a) = \frac{Ca(\Delta V)^2}{7200}$$
 (S3)

Areal power density 
$$(P_a) = Ea \times 3600 / \Delta t$$
 (S4)





Fig. S1 The design and dimensions of the interdigitated MSCs/microsensors



**Fig. S2** Electrochemically deposited multilayer rGO on Cr/Au micropatterns. **a**, **b** Optical microscopic images. **c** High-resolution optical microscopic image, and the SEM image (inset) of rGO deposited on Cr/Au fine micropatterns after lift-off. **d** Cross-sectional SEM image of a channel with Au and rGO



**Fig. S3** Optical images of the solutions prepared for electrochemical polymerization. **a** PPy and CNT. **b** PPy (20 minutes after synthesis). **c** Optical microscopic image of rGO@Au micropatterns with one side coated with PPy (deposition time: 60 s) and the other side with PPy-CNT (deposition time: 180 s). **d** Optical microscopic image of PPy-CNT micropatterns (both sides are coated with PPy-CNT)



**Fig. S4** Low- and high- magnification SEM images of **a**, **b** PPy-CNT@rGO microelectrodes by deposition of 20 s, and **c**, **d** deposition of 180 s



**Fig. S5** TEM images of **a** electrodeposited PPy and **b** PPy-CNTs. The embedded CNTs are evenly distributed in the polymer matrix



**Fig. S6 a-c** Optical microscopic images of the PPy deposited on Cr/Au micro current collectors. One-fourth of the interspace is covered with PPy by polymerization (time: 3 minutes). **d** Topview optical microscopic image of the deposited dense PPy film



Fig. S7 Height profiles of the microelectrodes obtained from a step surface profiler



**Fig. S8 a** CV curves of PPy-CNT@rGO MSC at high scan rates (200-500 mV s<sup>-1</sup>). **b** GCD curves of PPy-CNT@rGO MSC at high current densities (2-10 mA cm<sup>-2</sup>)



**Fig. S9 a** CV curves of PPy@Au MSC at different scan rates, and **b** GCD curves of PPy@Au MSC at different current densities



**Fig. S10** Capacitive and diffusion-controlled contribution of PPy-CNT@rGO MSC at scan rates of **a** 5 mV s<sup>-1</sup>, **b** 10 mV s<sup>-1</sup>, **c** 20 mV s<sup>-1</sup> and **d** The normalized capacitance and diffusion controlled contribution at distinct scan rates (5, 10, 20, and 40 mV s<sup>-1</sup>)

Nano-Micro Letters



Fig. S11 The cycling performance of PPy-CNT@rGO and PPy@Au



**Fig. S12** Coulombic efficiency versus current density of the PPy-CNT@rGO and PPy@Au MSCs



**Fig. S13 a** CV curves at a scan rate of 50 mV s<sup>-1</sup> and **b** GCD curves at a current density of 1 mA cm<sup>-2</sup> of single MSC, series, and parallel connected three MSCs



Fig. S14 a, b Optical images of transferred microelectrodes and peeled channels (inset)



**Fig. S15 a** Rate performance, **b** In-situ electrochemical impedance spectroscopy (in-situ EIS) of current collector free flexible PPy-CNT@rGO MSC at different cycles



**Fig. S16 a** CV curves of the PPy-CNT@rGO microelectrodes tested in two electrodes at a scan rate of 40 mV s<sup>-1</sup> under different applied stress. **b** Digital photographs of the pressure gauge displaying different amount of stress applied on MSC

| Sample                          | Electrolyte                         | <i>C<sub>A</sub></i><br>(mF cm <sup>-2</sup> ) | Voltage<br>window (V) | Energy<br>density (µWh<br>cm <sup>-2</sup> ) | Cycling performance   |
|---------------------------------|-------------------------------------|------------------------------------------------|-----------------------|----------------------------------------------|-----------------------|
| PEDOT@rGO//<br>PPy@rGO-AMSC[S1] | 2 M KCl                             | 15.9                                           | 0-1.5                 | 5.2                                          | 79%/5000 cycles       |
| Graphene/PEDOT [S2]             | PVA/H <sub>2</sub> SO <sub>4</sub>  | 19.3                                           | 0-0.8                 | 2.24                                         | 88.6%/5000<br>cycles  |
| MnO <sub>2</sub> /GO/PEDOT [S3] | PVA/H <sub>2</sub> SO <sub>4</sub>  | 23.04                                          | 0-1.2                 | 7.3                                          | 93.1%/5000<br>cycles  |
| PPy-Si nanowire [S4]            | H <sub>2</sub> SO <sub>4</sub> /PVA | 14                                             | 1.5                   | 1.3                                          | 70%/10000 cycle       |
| PANI-rGO/PDMS[S5]               | H <sub>2</sub> SO <sub>4</sub> /PVA | 4.06                                           | 0-0.8                 | 1.8 (vol.)                                   | 68%/10,000<br>cycles  |
| Ag@PPy [S6]                     | H <sub>3</sub> PO <sub>4</sub> /PVA | 47.5                                           | 0-0.8                 | 4.33                                         | 77.6%/10,000<br>cycle |
| MnO <sub>2</sub> @Ppy [S7]      | PVA/LiCl                            | 13                                             | 0-0.8                 | 1.0                                          | 84%/5000 cycles       |
| Graphene/PEDOT [S8]             | PVA/H3PO4                           | 15.3                                           | 0-1.2                 | 1.5                                          | 81%/2500 cycles       |
| PEDOT MSC [S9]                  | PVA/H <sub>2</sub> SO <sub>4</sub>  | 9                                              | 0-0.8                 | 7.7 (vol.)                                   | 80%/1000 cycles       |
| MXene/PEOT [S10]                | LiCl/PVA                            | 2.4                                            | 0-0.6                 | 1.1                                          | 82%/10,000<br>cycles  |
| Polymer-MXene [S11]             | LiCl/PVA                            | 69.5                                           | 0-1.6                 | 250<br>(volumetric)                          | 92%/10,000<br>cycles  |
| PPy-CNT@rGO*                    | PVA/H <sub>3</sub> PO <sub>4</sub>  | 65.9                                           | 0-0.8                 | 5.8                                          | 79%/10,000<br>cycles  |

**Table S1** Comparison of electrochemical characteristics of recently reported CPs electrodes

 and our electrode

**Table S2** Comparison of electromechanochemical characteristics of recently reported capacitive sensors and our integrated microsensor

| Sensor Materials                                     | Configuration  | <b>Response Time (ms)</b> | Cycles | Refs.     |
|------------------------------------------------------|----------------|---------------------------|--------|-----------|
| LMs-TPE                                              | Tubular        | 50                        | 3500   | [S12]     |
| Vertical graphene(VGr)                               | Stacked        | 180                       | 1000   | [S13]     |
| MXene/TiS <sub>2</sub>                               | Interdigitated | 1000 to 5000              | 2500   | [S14]     |
| MWCNTs/PVC                                           | Stacked        | 110                       | 2500   | [S15]     |
| MXene/CF                                             | Interdigitated | 50                        | 1000   | [S16]     |
| PI/CNT aerogel                                       | Stacked        | 50                        | 1000   | [S17]     |
| Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> -MXene | Stacked        | 98                        | 10,000 | [S18]     |
| PEDOT-CNT@rGO                                        | Interdigitated | 0.9                       | 2500   | This work |

## **Supplementary References**

- [S1] M. Tahir, L. He, W. Yang, X. Hong, W.A. Haider et al., Boosting the electrochemical performance and reliability of conducting polymer microelectrode via intermediate graphene for on-chip asymmetric micro-supercapacitor. J. Energy Chem. 49, 224-232 (2020). <u>https://doi.org/10.1016/j.jechem.2020.02.036</u>
- [S2] W. Yan, J. Li, G. Zhang, L. Wang, D. Ho, A synergistic self-assembled 3D PEDOT:PSS/graphene composite sponge for stretchable microsupercapacitors. J. Mater. Chem. A 8(2), 554-564 (2019). <u>https://doi.org/10.1039/C9TA07383C</u>
- [S3] H.U. Lee, C. Park, J.H. Jin, S.W. Kim, A stretchable vertically stacked microsupercapacitor with kirigami-bridged island structure: MnO<sub>2</sub>/graphene/Poly (3, 4ethylenedioxythiophene) nanocomposite electrode through pen lithography. J. Power Sources 453, 227898 (2020). <u>https://doi.org/10.1016/j.jpowsour.2020.227898</u>
- [S4] D. Aradilla, D. Gaboriau, G. Bidan, P. Gentile, M. Boniface et al., An innovative 3-D nanoforest heterostructure made of polypyrrole coated silicon nanotrees for new high performance hybrid micro-supercapacitors. J. Mater. Chem. A 3(26), 13978-13985 (2015). <u>https://doi.org/10.1039/C5TA03435C</u>

- [S5] S. Park, H. Lee, Y.J. Kim, P.S. Lee, Fully laser-patterned stretchable microsupercapacitors integrated with soft electronic circuit components. npj Asia Mater. 10(10), 959-969 (2018). <u>https://doi.org/10.1038/s41427-018-0080-z</u>
- [S6] L. Liu, Q. Lu, S. Yang, J. Guo, Q. Tian et al., All-printed solid-state microsupercapacitors derived from self-template synthesis of Ag@ PPy nanocomposites. Adv. Mater. Technol. 3(1), 1700206 (2018). <u>https://doi.org/10.1002/admt.201700206</u>
- [S7] W.A. Haider, L. He, H.A. Mirza, M. Tahir, A.M. Khan et al., Bilayered microelectrodes based on electrochemically deposited MnO<sub>2</sub>/polypyrrole towards fast charge transport kinetics for micro-supercapacitors. RSC Adv. 10(31), 18245-18251 (2020). <u>https://doi.org/10.1039/D0RA01702G</u>
- [S8] H.U. Lee, S.W. Kim, Pen lithography for flexible microsupercapacitors with layer-bylayer assembled graphene flake/PEDOT nanocomposite electrodes. J. Mater. Chem. A 5 (26), 13581-13590 (2017). <u>https://doi.org/10.1039/C7TA02936E</u>
- [S9] N. Kurra, M.K. Hota, H.N. Alshareef, Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy 13, 500-508 (2015). <u>https://doi.org/10.1016/j.nanoen.2015.03.018</u>
- [S10] J. Li, A. Levitt, N. Kurra, K. Juan, N. Noriega et al., MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Mater. 20, 455-461 (2019). <u>https://doi.org/10.1016/j.ensm.2019.04.028</u>
- [S11] L. Qin, Q. Tao, A.E. Ghazaly, J. Fernandez-Rodriguez, P.O. Persson et al., Highperformance ultrathin flexible solid-state supercapacitors based on solution processable Mo<sub>1.33</sub>C MXene and PEDOT:PSS. Adv. Funct. Mater. 28(2), 1703808 (2018). <u>https://doi.org/10.1002/adfm.201703808</u>
- [S12] P.J. Cao, Y. Liu, W. Asghar, C. Hu, F. Li et al., A stretchable capacitive strain sensor having adjustable elastic modulus capability for wide-range force detection. Adv. Eng. Mater. 22(3), 1901239 (2020). <u>https://doi.org/10.1002/adem.201901239</u>
- [S13] C. Deng, L. Lan, P. He, C. Ding, B. Chen et al., High-performance capacitive strain sensors with highly stretchable vertical graphene electrodes. J. Mater. Chem. C 8(16), 5541-5546 (2020). <u>https://doi.org/10.1039/D0TC00491J</u>
- [S14] L. Wang, Y. Tang, Y. Li, C. Liu, N. Wei et al., Multifunctional integrated interdigital microsupercapacitors and self-powered iontronic tactile pressure sensor for wearable electronics. ACS Appl. Mater. Interfaces 14(41), 47136-47147 (2022). <u>https://doi.org/10.1021/acsami.2c15117</u>
- [S15] T. Dong, Y. Gu, T. Liu, M. Pecht, Resistive and capacitive strain sensors based on customized compliant electrode: comparison and their wearable applications. Sens. Actuator A Phys. 326, 112720 (2021). <u>https://doi.org/10.1016/j.sna.2021.112720</u>
- [S16] Y. Zheng, R. Yin, Y. Zhao, H. Liu, D. Zhang et al., Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and e-skin. Chem. Eng. J. 420, 127720 (2021). https://doi.org/10.1016/j.cej.2020.127720
- [S17] X. Chen, H. Liu, Y. Zheng, Y. Zhai, X. Liu et al., Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. ACS Appl. Mater. Interfaces 11(45), 42594-42606 (2019). <u>https://doi.org/10.1021/acsami.9b14688</u>
- [S18] L. Gao, M. Wang, W. Wang, H. Xu, Y. Wang et al., Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range. Nano-Micro Lett. 13, 140 (2021). <u>https://doi.org/10.1007/s40820-021-00664-w</u>