Supporting Information for

Ultrasensitive and Highly Stretchable Multiple-Crosslinked Ionic

Hydrogel Sensors with Long-Term Stability

Jin-Young Yu¹, Seung Eon Moon², Jeong Hun Kim^{2, *}, and Seong Min Kang^{1, *}

¹Department of Mechanical Engineering, Chungnam National University, Daejeon 34134, Korea

²Emerging Nano-Materials Research Section, Electronics and Telecommunications Research Institute, Daejeon 305-700, Republic of Korea

*Corresponding authors. E-mail: <u>smkang@cnu.ac.kr (</u>Seong Min Kang), jeonghun@etri.re.kr (Jeong Hun Kim)

Supplementary Figures and Tables

Recipe	Monomer	SBMA	AAm
#1	g	0.000	1.200
	m	0.000	5.627
#2	g	0.276	1.129
	m	0.329	5.298
#3	g	0.553	1.059
	m	0.660	4.967
#4	g	0.838	0.986
	m	1.000	4.627
#5	g	1.106	0.918
	m	1.320	4.307

Fig. S1 Hydrogel composition

Fig. S2 #4 Stress–strain curve. Reciprocating stress was measured for a strain of up to approximately 600%

Fig. S3 Principle of hydrogel strain sensor

Fig. S5 Conductivity of hydrogel #4 before and after self-healing

Fig. S6 Comparison of GFs of multiple-crosslinked P(SBMA-co-Aam) hydrogel sensors at different strain with those previously reported sensors

Fig. S7 GF of multiple-crosslinked P(SBMA-co-AAm) #1 hydrogel sensors at different strain sections