One-Step Gas-Solid-Phase Diffusion-Induced Elemental Reaction for Bandgap-Tunable Cu_aAg_{m1}Bi_{m2}I_n/CuI Thin Film Solar Cells

Erchuang Fan^{1, 2}, Manying Liu^{1, *}, Kangni Yang¹, Siyu Jiang^{1, 2}, Bingxin Li¹, Dandan Zhao¹, Yanru Guo¹, Yange Zhang¹, Peng Zhang², Chuantian Zuo³, Liming Ding^{3, *} and Zhi Zheng^{1, 2, *}

¹Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China
²School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

³ Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, P. R. China

*Corresponding authors: E-mail: manyingliu988@xcu.edu.cn (M. Y. Liu); ding@nanoctr.cn (L. M. Ding); zzheng@xcu.edu.cn (Z. Zheng)

Supplementary Figures and Tables

Fig. S1 Cross-sectional SEM of sputtered Bi layers of (a)120 nm and (b) 180 nm

Fig. S2 Cross-sectional SEM of sputtered Cu layers of (a) 60 nm and (b) 90 nm

Fig. S3 Cross-sectional SEM of sputtered Ag layers of 60 nm

Fig. S4 Cross-sectional SEM images of the Cu_{0.6}AgBi₂I_{7.6} film (a) before and (b) after etching by HNO₃

Fig. S5 Cross-sectional SEM images of the Cu_{0.7}AgBi₂I_{7.7} film (a) before and (b) after etching by HNO₃

Fig. S6 Cross-sectional SEM images of the CuAgBi₂I₈ film (a) before and (b) after etching by HNO₃

Fig. S7 XRD patterns of (a) CuAgBi₂I₈ and Cu₂AgBiI₆, and (b) Cu_{0.6}AgBi₂I_{7.6}, Cu_{0.7}AgBi₂I_{7.7}, and CuAgBi₂I₈ after etching

Fig. S8 XRD patterns of CuAgBi2I8, AgBiI4, CuBiI4, CuI, BiI3 and AgI

Fig. S9 High resolution XPS spectra of CuAgBi₂I₈

Fig. S10 High resolution XPS spectra of Cu 2p in CuAgBi₂I₈ and CuI

Fig. S11 High resolution XPS spectra of Bi 4f in CuAgBi₂I₈

Fig. S12 High resolution XPS spectra of Ag 3d in CuAgBi2I8

Fig. S13 High resolution XPS spectra of I 3d in CuAgBi₂I₈ and CuI

Fig. S14 Raman spectra of Cu_{0.6}AgBi₂I_{7.6}, Cu_{0.7}AgBi₂I_{7.7} and CuAgBi₂I₈ thin films

Fig. S15 XRD patterns of CuAgBi₂I₈ compounds at different reaction time

Fig. S16 UPS spectra of Cu_{0.6}AgBi₂I_{7.6}

Fig. S17 UPS spectra of Cu_{0.7}AgBi₂I_{7.7}

Fig. S18 UPS spectra of CuAgBi₂I₈

Fig. S19 J-V curve of Cu_{0.6}AgBi_{2.0}I_{7.6}, Cu_{0.7}AgBi₂I_{7.7}, and CuAgBi₂I₈ solar cells

Fig. S20 J–V curves measured using CuAgBi₂I₈ devices under reverse and forward voltage scans at AM 1.5G illumination with a scan rate of $1 \cdot V \cdot s^{-1}$

Fig. S21 The IPCE spectra and integrated photocurrent of CuAgBi₂I₈ device

Fig. S22 (a) The J-V curves of fresh CuAgBi₂I₈ device and CuAgBi₂I₈ devices after 100 days in air.
(b) XRD patterns of fresh CuAgBi₂I₈ and CuAgBi₂I₈ film after 100 days in air

	Region	Cu (At%)	Ag (At%)	Bi (At%)	I (At%)
	1	1.0	0.11	0.00	0.96
The loss	2	1.0	0.17	0.00	1.1
l op layer	3	1.0	0.13	0.00	0.94
	Average	1.0	0.14 ± 0.03	0.00	1.0 ± 0.1
	1	0.66	1.0	2.1	6.0
Dottom lavor	2	0.52	1.0	2.1	5.4
Bottom layer	3	0.55	1.0	1.9	5.4
	Average	0.60 ± 0.08	1.0	2.0 ± 0.1	5.6 ± 0.4

Table S1 The Cross-sectional atomic ratios of Cu_{0.6}AgBi₂I_{7.6}/CuI from EDS analysis

Table S2 The Cross-sectional atomic ratios of Cu_{0.7}Ag_{1.00}Bi_{2.00}I_{7.7}/CuI from EDS analysis

	Region	Cu (At%)	Ag (At%)	Bi (At%)	I (At%)
	1	1.0	0.07	0.00	1.0
Top lover	2	1.0	0.07	0.00	1.0
T op layer	3	1.0	0.09	0.00	1.1
	Average	1.0	0.07 ± 0.02	0.00	1.0 ± 0.1
	1	0.75	1.0	1.9	5.9
Bottom layer	2	0.75	1.0	2.0	5.7
	3	0.68	1.0	2.1	6.1
	Average	0.70 ± 0.08	1.0	2.0 ± 0.1	5.9 ± 0.2

Table S3 The cross-sectional atomic ratios of $CuAgBi_2I_8/CuI$ from EDS analysis

	Region	Cu (At%)	Ag (At%)	Bi (At%)	I (At%)
Top layer	1	1.0	0.06	0.00	1.1
	2	1.0	0.05	0.00	1.1
	3	1.0	0.04	0.00	0.94
	Average	1.0	0.05 ± 0.01	0.00	1.1 ± 0.1

Bottom layer	1	0.97	1.0	2.2	6.0
	2	0.86	1.0	1.8	5.5
	3	1.1	1.0	2.0	6.2
	Average	1.0 ± 0.1	1.0	2.0 ± 0.2	5.9 ± 0.3

Table S4 ICP analysis of $Cu_aAg_{m1}Bi_{m2}I_n$

$Cu_aAg_{m1}Bi_{m2}I_n$	Cu (mol/L)	Cu (At%)	Ag (mol/L)	Ag (At%)	Bi (mol/L)	Bi (At%)	I (mol/L)	I (At%)
Cu _{0.6} AgBi ₂ I _{7.6}	0.70×10^{-4}	5.00	1.2×10^{-4}	8.57	2.4×10^{-4}	17.1	0.97×10^{-3}	69.4
$Cu_{0.7}AgBi_2I_{7.7}$	1.1 × 10 ⁻⁴	5.91	1.6×10^{-4}	8.60	2.9×10^{-4}	15.6	1.3 × 10 ⁻³	69.8
CuAgBi ₂ I ₈	1.5×10^{-4}	9.70	1.3 × 10 ⁻⁴	8.41	2.7×10^{-4}	17.4	1.0×10^{-3}	64.5

Table S5 The atomic ratios of Cu_aAgm1Bim2In from XPS analysis

$Cu_aAg_{m1}Bi_{m2}I_n \\$	Cu (At%)	Ag (At%)	Bi (At%)	I (At%)
$Cu_{0.6}AgBi_2I_{7.6}$	10.52	18.73	34.78	35.98
$Cu_{0.7}AgBi_2I_{7.7}$	8.000	11.83	24.13	56.04
CuAgBi ₂ I ₈	10.08	10.52	24.37	55.03

Table S6 Fitting parameters of the TRPL spectra for $Cu_aAg_{m1}Bi_{m2}I_n$ thin film

$Cu_aAg_{m1}Bi_{m2}I_n$	A_1	τ_{1} (ns)	A_2	$\tau_{2} (ns)$	$\tau_{ave} \left(ns \right)$
Cu _{0.6} AgBi ₂ I _{7.6}	0.430	143	0.500	39.6	81.3
$Cu_{0.7}AgBi_2I_{7.7}$	0.550	162	0.420	46.9	109
CuAgBi ₂ I ₈	0.580	299	0.370	73.2	201

Table S7 The TSPV parameters of $Cu_aAg_{m1}Bi_{m2}I_n$ thin film

$Cu_aAg_{m1}Bi_{m2}I_n$	V _{max} (V)	$T_{t}(s)$	$T_{r}(s)$	T_t/T_r
Cu _{0.6} AgBi ₂ I _{7.6}	1.51	5.23×10^{-7}	3.16×10^{-4}	1.66×10^{-3}

Cu _{0.7} AgBi ₂ I _{7.7}	2.31	1.03×10^{-6}	2.91×10^{-3}	3.54×10^{-4}
CuAgBi ₂ I ₈	7.57	9.59×10^{-7}	5.48×10^{-3}	1.75×10^{-4}

 Table S8 The parameters of CuAgBi2I8 from Hall effect experiment

Sample	Resistivity	Hall coefficient	Carrier concentration	Mobility
	(ohm·cm)	(cm ³ C ⁻¹)	(cm ⁻³)	(cm ² v ⁻¹ s ⁻¹))
CuAgBi ₂ I ₈	1.58×10^4	4.44×10^4	1.41×10^{14}	2.80

 $\textbf{Table S9}\ Photovoltaic\ parameters\ for\ FTO/c-TiO_2/m-TiO_2/Cu_aAg_{m1}Bi_{m2}I_n/CuI/C\ solar\ cells\ under\ AM$

1.5 G irradiation

Sample	V _{oc} (V)	J _{sc} (mA/cm ²)	FF (%)	PCE (%)
Cu _{0.6} AgBi ₂ I _{7.6}	0.571	1.02	63.6	0.371
Cu _{0.7} AgBi ₂ I _{7.7}	0.510	2.62	67.4	0.902
CuAgBi ₂ I ₈	0.582	10.8	43.7	2.76