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HIGHLIGHTS

• This review introduces soft electronics for health monitoring assisted by machine learning, and discusses soft materials, physiological 
signals, and machine learning algorithms in sequence and their relationships.

• The principles of classic machine learning algorithms and neural network algorithms are summarized and explained by representative 
examples combining with soft electronics.

• The potential challenges of soft electronics assisted by machine learning especially in health monitoring field are outlined, and future 
research directions are outlooked.

ABSTRACT Due to the development of the novel materials, the 
past two decades have witnessed the rapid advances of soft elec-
tronics. The soft electronics have huge potential in the physical 
sign monitoring and health care. One of the important advantages 
of soft electronics is forming good interface with skin, which can 
increase the user scale and improve the signal quality. There-
fore, it is easy to build the specific dataset, which is important to 
improve the performance of machine learning algorithm. At the 
same time, with the assistance of machine learning algorithm, 
the soft electronics have become more and more intelligent to 
realize real-time analysis and diagnosis. The soft electronics 
and machining learning algorithms complement each other very 
well. It is indubitable that the soft electronics will bring us to a 
healthier and more intelligent world in the near future. Therefore, 
in this review, we will give a careful introduction about the new 
soft material, physiological signal detected by soft devices, and the soft devices assisted by machine learning algorithm. Some soft materials 
will be discussed such as two-dimensional material, carbon nanotube, nanowire, nanomesh, and hydrogel. Then, soft sensors will be discussed 
according to the physiological signal types (pulse, respiration, human motion, intraocular pressure, phonation, etc.). After that, the soft electronics 
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assisted by various algorithms will be reviewed, including some classical algorithms and powerful neural network algorithms. Especially, the 
soft device assisted by neural network will be introduced carefully. Finally, the outlook, challenge, and conclusion of soft system powered by 
machine learning algorithm will be discussed.

KEYWORDS Soft electronics; Machine learning algorithm; Physiological signal monitoring; Soft materials

1 Introduction

Soft electronics have wide applications in radio frequency 
identification (RFID) [1], soft display [2], organic light emit-
ting diode (OLED) display and lighting [3], chemical and 
biological sensors [4], soft photovoltaic [5], soft logic and 
storage [6], soft battery [7], wearable health monitoring 
devices [8] and other applications. With the rapid develop-
ment of soft material and health care requirement, the soft 
electronic is being paid more and more attentions.

Traditional rigid sensors based on the silicon or other mate-
rial have some disadvantages such as rigid substrate, no strain, 
low biocompatibility, which make it not suitable to be used 
in the large-strain and rough surface conditions [9]. The rigid 
morphology will greatly influence the wearing experience of 
the users, no more than long-time wearing. In addition, due 
to the low Young’s modulus of skin and other organs, the 
rigid electronics device cannot realize a tight interface with 
the skin. The air gap in the interface will greatly decrease 
the signal-to-noise ratio (SNR), introduce motion artifacts, 
and even destroy the original signal. The soft electronics with 
the good interface to skin can optimize the wearing experi-
ence and expand the number of users, which will enlarge the 
database size. Besides, more accurate physiological informa-
tion can be distinguished from the high-quality signal. For the 
machine learning algorithms, the quantity and quality of data 
is important, which can help the algorithm to find the law in 
the data better. Therefore, soft electronics can improve the 
performance of the machine learning algorithms.

The machine learning algorithms can be used in data 
information and mining, pattern recognition, bioinformat-
ics, etc., which can make the soft electronics more intelli-
gent. The soft electronic device can monitor the physiologi-
cal signal in real time and long time. After that, a dataset 
containing a great deal of physiological information with 
high quality to be learned and analyzed by machine learn-
ing algorithm will be built. Like human learning process, 
the more we learned, the more knowledge we will obtain. 
Large-quantity dataset can provide more knowledge to the 
algorithms, and the high-quality signal can provide more 

accurate knowledge for the algorithms to learn. Therefore, 
the interdiscipline containing soft electronics and machine 
learning has been widely studied to realize an intelligent 
system, which can not only detect the physiological signal 
but also diagnose it. Hence, the soft electronics and machine 
learning algorithms complement each other.

To meet the soft requirement, many structures such as 
serpentine [10], nanomesh [11, 12], and wavy [13] have 
been applied. In addition, many nanomaterials have been 
demonstrated to adapt to the complex interface, such as 
the two-dimensional (2D) material [14], carbon nanotube 
(CNT) [15], nanowire, and organic materials. These mate-
rials have been widely applied in soft solar cell [5], light 
emitting diode (LED) [16], sensors [15, 17], transistors [18], 
etc. Thus, the soft material will be discussed in the second 
section, which is the fundamental of soft electronics.

Among the applications of soft electronics, the health monitoring 
is an important function [8, 19]. Human body is full of physiological 
signals, which can reflect the conditions of ourselves. Some signals 
have been widely used in the diagnosis and prevention of diseases 
not only in hospital, but also in our daily life. For example, the pulse 
wave has been widely used in the diagnosis in the traditional Chi-
nese medicine for 1000 years [20]. The respiration is an impor-
tant parameter in health monitoring especially in the respiratory 
disease [21], particularly for the COVID (2019) [22]. Intraocular 
pressure (IOP) is the prime indicator for the diagnosis and treat-
ment of glaucoma [23]. Electrocardiogram (ECG) is an important 
basis for judging cardiovascular diseases [24]. Electroencephalo-
gram (EEG) can be used to diagnose epilepsy and mental diseases 
[25]. However, the transitory physical examination may have large 
uncertainty. The result may depend on the testing time and location. 
It is very meaningful to monitor the physiological signals whenever 
and wherever, which requires the good sensitivity, flexibility, and 
comfort of devices. Besides, the physiological signals provide the 
data for the algorithms to learn, which is the prerequisite of the 
machine learning. Therefore, the physiological signals and related 
soft monitoring devices will be discussed in the third section.

With the tight contact between the soft electronics and 
skin, the continuous and real-time physiological signal 
monitoring can be realized. Some sudden signals unable to 
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be captured in hospital can be detected, which is important 
to the diagnosis. In addition, the good interface between 
skin and soft devices can further improve the SNR. The 
quantity and quality of physiological signal database can be 
optimized based on the soft electronics, which can improve 
the performance of machine learning algorithm, conversely. 
Before the extensive research of neural network algorithm, 
many classic algorithms have been used to classify the sig-
nals detected by the soft devices. Therefore, machine learn-
ing algorithm such as principal component analysis (PCA), 
linear discriminant analysis (LDA), Gaussian naive Bayes 
(GNB), support vector machine (SVM), k-nearest neighbor 
(kNN), K-means, decision tree (DT), etc., will be discussed 
combining with the soft electronics. Recently, due to the 
easy building and powerful characteristic, neural network 
has been investigated extensively. Hence, neural network 
algorithms including fully connected neural network (FNN), 
convolutional neural network (CNN), recurrent neural net-
work (RNN), and spiking neural network (SNN) will be 
reviewed in detail in the fourth section.

Although the soft-electronics concept has been proposed for 
many years, the commercialization of soft devices has not been 
developed as fast as the research. The most notable application 
may be the soft screen, which doesn’t need the close contact with 
human body continuously. This can be attributed to many prob-
lems. First, compared with the silicon process, the production 
and fabrication of soft device are not stable and mature as the 
silicon device, which limits the mass production. In addition, 
the high price of the nanomaterials is also the obstruction of the 
commercialization. Secondly, most of the soft devices are fabri-
cated on the dense polymer substrate such as polyethylene tere-
phthalate (PET), polyimide (PI), polydimethylsiloxane (PDMS). 
With the interface mismatching to skin and low gas permeability, 
the wearing experience will be largely influenced. Therefore, the 
material is the key point of the high-comfort soft devices. Thirdly, 
the human body is a complex system with many kinds of physi-
ological signals, each specific signal has its own characteristic. 
The soft electronics should be designed according to the signal. 
Fourthly, most of the research is still in the single device level, 
it is urged to realize the total soft system containing sensor, cir-
cuit, and intelligent algorithm, whose hardware parts all have the 
tight contact with skin. Finally, the signals obtained by the soft 
devices have the advantage of real-time, consecutive, and long-
term. Large-scale datasets can be easy to build. Therefore, some 
datasets and algorithms for the soft devices need to be built and 
studied to realize the intelligent system, which can diagnose the 

physiological signals autonomously. According to the problems 
above, the challenge and outlook of soft electronics assisted by 
machine learning algorithm will be discussed in the fifth section.

In all, the soft electronics with good interface with skin 
can monitor the physiological signals in real time. Therefore, 
some sudden diseases can be alerted timely and the database 
of specific user can be built and enlarged. By combining 
with the machine learning algorithms, the soft system can 
not only detect the physiological signals but also diagnose 
them, which can reduce the burden on doctors. For exam-
ple, during the popularity of COVID-19, a large number of 
inquiries increased the workload and the risk of infection of 
doctors. In a word, the intelligent soft electronic will lead 
to a healthier life, which is much meaningful to the human 
society. To realize the soft electronics, the materials and 
structures of the device should be designed. In addition, 
due to the variety of physiological signals, the structure of 
specific device should also be optimized. For easy reading, 
before talking about soft electronics assisted by the machine 
learning algorithms, soft materials and physiological sig-
nals will be discussed. In this review, we will first give an 
introduction to the soft material, physiological signals, and 
machine learning algorithms as well as their relationship. 
Then, some soft nanomaterials will be reviewed, respec-
tively. After that, soft electronics based on the nanomate-
rials for physiologic signals monitoring will be discussed 
according to the signal types. The intelligent soft electronics 
assisted by machine learning algorithms will be reviewed. 
Finally, the challenge and outlook about the intelligent soft 
electronics will be given (Fig. 1).

2  Soft Nanomaterials

2.1  CNT

The extraordinary electrical and mechanical properties of 
CNT make it ideally suitable for soft electronics, especially 
high-performance wearable sensors, soft display, thin film 
transistors (TFTs), the implementation of complementary 
metal–oxide–semiconductor (CMOS) circuits, and the real-
ization of medium-to-large-scale integrated circuits (ICs) 
and monolithic three-dimensional (3D) integration [35]. 
As one of promising candidates for next-generation elec-
tronic materials, CNT exhibits excellent properties for con-
structing high-performance soft electronics, including great 
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mechanical flexibility [36], high carrier mobility [37], high 
current-carrying capacities [38], ultrathin body for effec-
tive electrostatic control, and the solution-processability 
for low-cost production [39]. Although there is still large 
room to improve the purity and density of the CNT for bet-
ter performance, the currently available CNTs are adequate 
for the application in soft electronics with the large critical 
device dimensions. Many explorations have been carried out 
using CNT, and tremendous developments have revealed the 
superiority of the implementation of CNT in soft electronics 
[40, 41].

CNT has great potentials in soft displays (Fig. 2a) [42], 
wearable health (Fig. 2b) [43], sport monitors (Fig. 2c, d) 
[44–46], implantable medical devices (Fig. 2e) [47], etc. 
Electronic skin (e-skin) as a representative soft integrated 
sensor system usually consists of variable sensors on a 
soft platform that can spatially map or quantify certain 
stimuli, such as pressure [48], temperature [37], electro-
myograms (EMG) signals [49], ECG signals [50]. These 
platforms have drawn great attention for potential applica-
tions in wearable electronics, robotics, health monitoring, 
and medical prostheses. By closely integrating interface 
circuits with sensors, the SNR can be greatly enhanced by 

the in situ signal processing capability. For this purpose, 
the interface of circuits should also be mechanically soft 
with appropriate performance.

CNTs are usually produced as a mixture of semiconduct-
ing and metallic nanotubes. Since only semiconducting 
nanotubes can be applied as the channel of transistors, the 
metallic nanotubes are typically not utilized, though it can 
be used as resistive load devices [51]. The purity of CNTs 
mainly depends on the preparing strategies, which will be 
discussed later.

Several strategies are currently available to prepare CNT 
networks and thin films, which can generally be classified 
in two categories: dry processes and solution processes. Dry 
processes are mainly chemical vapor deposition (CVD) and 
dry drawing from vertically aligned CNT arrays [52, 53]. 
As shown in Fig. 2f–h, CVD-grown single-walled CNT 
(SWCNT) films comprise ultralong nanotubes bonded by 
strong connections and thereby possess excellent conduc-
tivity, making them suitable for the electrode materials 
of many functional devices like super-fast actuators [54], 
stretchable supercapacitors [55], and strain sensors [56]. 
As for the solution-based process, where several methods 
have been reported including vacuum filtration [57], rod 

Fig. 1  Many new soft materials (2D material, CNT, nanowires, polymer nanomesh, hydrogel, etc.) have been applied to monitor physiologi-
cal signals, such as EEG, EOG, IOP, breath, ECG, joint movement, blood pressure, pulse, photoplethysmography (PPG), EMG, and gait. The 
soft physiological monitoring system can be more and more intelligent assisted by algorithms such as SVM, DT, GNB, K-means, and neu-
ral network. Reproduced with permission [26–29]. Copyright (2016), (2020), (2022), American Association for the Advancement of Science. 
Reproduced with permission [30–33]. Copyright (2019), (2020), (2021), Nature Publishing Group. Reproduced with permission [34]. Copyright 
(2020), Wiley–VCH
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coating, drop coating, and printing [58, 59]. The solution 
process of CNTs can be achieved by successfully dissolv-
ing them in suitable organic solvents or in aqueous solu-
tion with the assistance of certain type of surfactants [36]. 
One disadvantage of CVD-grown SWCNT is purity. About 
one-third of the grown SWCNTs are metallic and two-thirds 
semiconducting SWCNTs (s-SWCNTs). Metallic-SWCNTs 
(m-SWCNTs) generally increase the current density of the 
film due to the higher current-carrying capacity, and can 

be used as the electrodes in various devices. However, the 
percolation path of m-SWCNTs connecting source to drain 
electrodes will lead to the short-circuit of the field effect 
transistor (FET) and the decreasing of the on/off ratio [60, 
61]. The presence of m-SWCNTs also limits the channel 
length of the FET because shorter channels increase the 
probability of generating a percolating path of m-SWCNTs 
between the source/drain contacts. One of the common 
methods to remove m-SWCNTs in thin films of random 

Fig. 2  Microstructure and fabrication process of CNTs-based devices. a SEM image shows the SWCNT network between the printed Ag elec-
trodes. The inset shows the incubated SWCNT network on the PET substrate as the channel region. Reproduced with permission [42]. Copy-
right (2016), American Chemical Society. b SEM image of the fractural structure of the SWCNT film grown from patterned catalysts using 
water-assisted CVD. Scale bar represents 5 µm. Inset: 3D image at 100% strain. Reproduced with permission [44]. Copyright (2011), Nature 
Publishing Group. c Top-view FE-SEM image of the PU-Poly(3,4-ethylenedioxythiophene)/Poly(styrenesulfonate) (PEDOT:PSS)-PDMS hybrid 
structure with SWCNT solution drop coated on it. Reproduced with permission [45]. Copyright (2015), American Chemical Society. d Implant-
able CNTs-based hybrid microfiber with tissues on it and e Schematic illustration of the wet-spinning setup for the fabrication of SWCNT hybrid 
microfibers with SWCNT concentration of 4 mg  mL−1. Reproduced with permission [47]. Copyright (2019), American Chemical Society. f Fab-
rication process of the 3D patterned CNT array on aluminum substrate, and SEM micrographs of the vertically aligned CNTs on the aluminum 
substrate at different magnifications: g 200 × ; h 1 k × . Reproduced with permission [52]. Copyright (2017), Elsevier. i TEM image of a normal 
Pd-contacted CNT FET with gate length of 5 nm, the CNT FET synthesized by CVD. Reproduced with permission [65]. Copyright (2017), 
American Association for the Advancement of Science. j Removal of the aggregates CNTs on the wafer and the SEM image of it (the top-
view CNT incubation pre-removed, and the bottom shows CNTs left on the wafer post-removed). Reproduced with permission [66]. Copyright 
(2019), Nature Publishing Group
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networks or aligned SWCNTs is the selective electrical 
burning of m-SWCNTs [62]. Another method, particularly 
for random network of SWCNTs, is the strip method [63]. 
The SWCNT film is simply fabricated into narrow strips 
using conventional lithography and reactive-ion etching. 
Other than the methods mentioned above, selective plasma/
gas etching, light irradiation, chemical surface reaction, and 
selective chiral growth have also been developed to selec-
tively remove m-SWCNTs. These techniques have exhibited 
some success by fully or partially removing m-SWCNTs.

s-SWCNTs typically exhibit unipolar p-type behavior, 
which has been attributed to the doping of SWCNTs by 
oxygen in air or oxidizing acids during solution processing. 
To enable various applications such as diodes and comple-
mentary logic circuits, it is important to be able to fabricate 
n-type SWCNT transistors. Many techniques have been used 
to convert SWCNT FETs from p-type to n-type. One way is 
to change the contact metals from high work function metals 
to low work function metals, such as Al, Ca, and Sc, which 
aligns the metal Fermi level closer to the conductance band 
and reduces the barrier for electrons at the contacts [51]. 
Other techniques include electrostatic doping, annealing in 
hydrogen or in vacuum, passivation with inorganic oxides, 
and chemical doping with potassium, polyethyleneimine 
(PEI), hydrazine, polymer, electrolyte, viologen, and nico-
tinamide adenine dinucleotide [64].

ICs, being the core unit of electronic systems for infor-
mation processing, are required to have decent electrical 
performance and mechanical flexibility and the ability to 
be integrated with other components. CMOS technology is 
the fundament of modern ICs and is also essential to push-
ing CNT-based soft electronics toward the next stage. Qiu 
et al. realized a 5 nm CNT FETs approached the quantum 
limit of FETs by using one electron per switching operation 
(Fig. 2i) [65]. Hills et al. have fabricated a 16-bit micro-
processor based on the RISC-V instruction set, comprises 
more than 14,000 complementary metal–oxide–semicon-
ductor CNT FETs (Fig. 2j) and is designed and fabricated 
using industry-standard design flows and process [66]. These 
works experimentally validate a promising path toward prac-
tical beyond-silicon electronic systems.

CNTs have been proven to be the material for high-per-
formance soft electronics owing to the intrinsically great 
electric/mechanical properties and the low-temperature 
fabrication processes. The performance of CNT TFTs is 
much better than those using organic materials and metal 

oxide semiconductors, and surpassing those of silicon-based 
devices with similar channel lengths. In addition, CNTs are 
solution-processable, which can be deposited onto a large 
area of glass and soft substrates in a suspension at low tem-
perature and cost. In one of the demonstrated works, inte-
grating screen-printed active matrix CNT-based TFTs and 
electrochromic pixels showed a very good example of a cost-
effective platform for large size soft displays [67].

2.2  Graphene

Graphene was discovered by Andre Geim and Konstantin 
Novoselov, who brought the monolayer graphene from the 
previous scientific hypothesis to the reality [68]. From 
then on, especially during the last decade, graphene has 
showed its revolutionary application potentials in wear-
able electronics and materials field, due to its excellent 
characteristics such as high electron mobility (350,000 
 cm2  V−1  s−1) [69], Young’s modulus (1 TPa) [70], thermal 
conductivity (5300 W  m−1  K−1) [71], large specific sur-
face area (2600  m2  g−1), and limited thickness (0.34 nm) 
[68].

Graphene is commonly referred as a 2D atomically thin 
sheet made of carbon atoms with a honeycomb lattice, 
densely packed by sp2 carbon atoms and can be rolled up 
to form zerodimensional (0D) fullerene and one dimen-
sional (1D) CNT. Each carbon atom in the lattice has a π 
orbital that contributes to a delocalized network of elec-
tronics [72] and has three C–C bonds instead of four bonds 
like the diamond. These structures are the fundamental of 
the physical properties shown above. During the last dec-
ade, top-down and bottom-up methods have been devel-
oped to prepare graphene. The former is mainly based on 
bulk graphite [73]. External force could be used to peel 
out graphene, and this category of process can be divided 
into physical exfoliation and chemical exfoliation. Among 
them, physical exfoliation mainly refers to the exfoliation 
using a tape [68]. Meanwhile, chemical exfoliation includ-
ing intercalation peeling [74], ultrasonic exfoliation [75], 
electrochemical exfoliation [76], and redox exfoliation 
[77]. The bottom-up method contains a series of complex 
reaction processes of carbon-containing precursor, such 
as CVD [69, 78], and chemical synthesis [79]. Among 
these methods, three classical methods are usually used: 
mechanical exfoliation, reduction of graphene oxide (GO), 
CVD (Fig. 3a–c) [69], etc. Meanwhile, 3D graphene films 
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built by the 2D graphene flakes has potential in gas sensors 
and sound sources. The choice of graphene morphology 
should consider many factors, such as application, cost, 
and process [14]. Recently, the laser-scribed graphene 
(LSG) and laser-induced graphene (LIG) have drown 
much attention due to its low cost and fast fabrication of 
graphene (Fig. 3d). As shown in Fig. 3e, f, the LIG shows 
porous morphology on soft films, suitable for wearable 
application. LIG can also be prepared based on many dif-
ferent substrates, greatly enriched the raw materials to 
produce graphene [80].

Graphene can be fabricated into various forms 
(Fig. 3g–k). Based on the unique characteristics of graphene, 

more and more devices have been demonstrated. The high 
electron mobility and conical bandgap structure are suit-
able for high-performance photodetectors [81], and TFTs 
[82]. The ultrasmall thickness allows the bandgap of gra-
phene to be easily tuned by applying a voltage. Therefore, 
spectrum-tunable LED [83] and window-tunable resistive 
random-access memory (RRAM) and synapses have been 
developed. Moreover, the high thermal conductivity is ideal 
for applications such as the heater [84], actuator [85], and 
thermoacoustic sources [86].

Among these applications, wearable graphene sensors 
applied for physiological signals monitoring show great 
potential. Physiological signals are highly complex, which 

Fig. 3  Microstructure and fabrication process of graphene-based devices. a Illustration of the CVD furnace with a Cu enclosure inside. b Pro-
cess schematic of the contamination-free transfer of CVD graphene from Cu onto hBN. c Optical microscopy image of grown graphene crystals 
on Cu foil. Reproduced with permission [69]. Copyright (2015), American Association for the Advancement of Science. d Schematic illustration 
of the fabrication process of LSG, and e the morphology of LIG sample produced at 290 mW under SEM. Scale bar represents 150 μm. f Cross-
sectional view of LIG sample produced at 290 mW. Scale bar represents 12.5 μm. Reproduced with permission [101]. Copyright (2017), Nature 
Publishing Group. g SEM images of the tissue paper with rGO. Reproduced with permission [102]. Copyright (2017), American Chemical 
Society. h SEM image of the graphene textile. Reproduced with permission [103]. Copyright (2018), American Chemical Society. i Bioinspired 
graphene pressure sensor with a random distribution spinosum microstructure. Reproduced with permission [104]. Copyright (2018), Ameri-
can Chemical Society. j Self-overlapping graphene sheets and stacked structure with numerous interlayer gaps. Reproduced with permission 
[105]. Copyright (2018), American Chemical Society. k SEM images of porous graphene network. Reproduced with permission [21]. Copyright 
(2018), Elsevier. l Schematic illustration of the GO in PBS, and m Typical SEM images of rGO/Au nanoparticles (AuNPs) composite (Insert is 
the corresponding Energy dispersive X-ray spectrometry (EDS)) which can be used for electrocatalytic oxidation of nitrite at the electrode sur-
face. Reproduced with permission [92]. Copyright (2018), Elsevier
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are influenced by various factors of anatomical, psycho-
logical, physiological, social, environmental effects, etc. 
Wearable sensors should avoid rigid substrate, and have 
flexibility, biocompatibility, simple fabrication process, 
low cost. However, there are still many problems related 
to physiological sensors, the incompact interface and large 
impedance between human body and sensors will decrease 
the signal quality. Many physiological signals have been 
detected using graphene sensors such as mechanical signals 
like pulse [87], respiration [78], and human motions [88, 
89], IOP [90], electrophysiological signals like ECG, EEG, 
EMG, and electrooculography (EOG) [88, 91]; electrochem-
ical signals like ion and glucose concentration in fluids [92]. 
With the ultrahigh specific surface area, graphene is a suit-
able carrier (Fig. 3l, m) that can be modified as a chemical 
sensor to detect fluid [92] and gas [21].

Up to now, the 2D material has been developed into a 
system consisting of conductor (graphene [93] and MXene 
[94]), semiconductor  (MoS2 [95] and other transition metal 
dichalcogenides (TMD) [96] and black phosphorus [97]), 
and insulator (hexagonal boron nitride [98]). The 2D system 
has potential in the soft electronics [99, 100].

2.3  MXene

In 2011, a new family of 2D carbides, carbonitrides, and 
nitrides labeled MXene was discovered. Their formula of 
MXene can be  M1.33XTz or  Mn+1XnTz (n = 1, 2 or 3), where 
M is an early transition metal, X is C and/or N and T repre-
sents various possible terminations (mainly hydroxyl, -OH, 
oxygen, -O and/or fluorine, -F) [106]. All known MAX 
phases (the abbreviation of  Mn+1AXn phases, A is mainly a 
group IIIA or IVA element) are a group of layered hexagonal 
materials with P63/mmc symmetry, where the M layers are 
nearly closed packed, and the X atoms fill the octahedral 
sites. The  Mn+1Xn layers are, in turn, interleaved with layers 
of A atoms. In other words, the MAX phase structure can 
be described as 2D layers of early transition metal carbides 
and /or nitrides ‘glued’ together with an A element [107]. 
The strong M–X bond has a mixed covalent/metallic/ionic 
character, whereas the M–A bond is metallic. Therefore, 
in contrast to other layered materials, such as graphite and 
transition metal chalcogenides, where weak van der Waals 
interactions hold the structure together, the bonds between 
the layers in the MAX phases are too strong to be broken by 

shear or any similar mechanical means. However, by tak-
ing advantage of the differences in character and relative 
strengths of the M–A compared with the M–X bonds, the A 
layers can be selectively etched by chemical method without 
disrupting the M–X bonds [108].

Due to the M–A bonds are weaker than the M–X bonds, 
MXene synthesis can be achieved by selective etching of the 
A element layers from the MAX phases at room tempera-
ture. The vast majority of MXene are obtained by etching 
the A layer from layered ternary MAX phases and their 2D 
nature [109], using concentrated hydrofluoric acid (HF) or 
a solution of lithium fluoride and HF.

Depending on the synthetic methods, the lattice parameter 
c (a parameter which indicates the interplanar spacing of 
MXene) of MXenes is different [109]. By using this param-
eter, the hydrated cations enter the space of MXene layers. 
For example, the lattice parameter c of  Ti3C2 synthetic by 
etching  Ti3AlC2 with 50% HF is 20.3 Å [110], but when 
etching with 40% HF, the lattice parameter c is about 20 Å 
[111], and the  V2CTx with 50% HF is 23.96 Å [112]. In 
general, there are two methods of synthesizing MXene. The 
first is a bottom-up approach, such as CVD, which can pro-
duce high-quality films on various substrates. However, this 
approach is not generally used to fabricate MXene, because 
the films obtained are not single layer, but few-layer thin 
films [113]. The second approach is a top-down approach, 
involving the exfoliation of layered bulk. This approach can 
be further divided into mechanical and chemical exfoliation. 
The way to separate the graphene layers by adhesive tape is 
unsuitable for the MAX phases, because in contrast to most 
other 3D solids used as precursors to their 2D counterparts, 
the bonds between the M elements and A are strong cova-
lent/metallic for the most part. Therefore, neither mechanical 
nor classical chemical exfoliation is possible. The first selec-
tively etching the A layers is required. Recently, approaches 
to synthesizing MXene by top-down approaches including 
etching the MAX precursors for multilayers [114], and exfo-
liation for MXene [115] have been realized. Currently, about 
30 different MXene compositions have been synthesized by 
top-down approaches. More compositions have been pre-
dicted by theoretical studies with stability.

For the combination of good properties and easy pro-
cessing, MXene has various application potential, such 
as energy storage [116], electromagnetic shielding [117], 
electrodes [111, 118], electrocatalysis [119], and biosensors 
[120, 121]. In addition, MXene is easy to be combined with 
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other nanomaterials as a nanosubstrate, which can greatly 
improve the malleability. When combined with 0D silver 
nanoparticles (AgNPs) and 1D silver nanowires (AgNWs) 
(Fig. 4a–c) [122], the elasticity and conductivity of tradi-
tional 1D materials can be improved, which ensures conti-
nuity and high gauge factor for soft fabric strain sensors for 
monitoring human motions. For wearable electrochemical 
biosensors, a MXene-based biosensor system has been pro-
posed for in vitro perspiration analysis by simultaneously 
measuring physiochemistry signals (glucose and lactate 
level) using solid–liquid–air three-phase interface designed 
electrode [123]. As shown in Fig. 4d, the electrochemi-
cal detection platform is based on the  Ti3C2Tx MXene, 
which consists of  Ti3C2Tx/Prussian blue (PB) and CNTs 
porous film. The MXene thin film with low heat capacity 
and special layered structure is emerging as a promising 
candidate to build sound source [124]. Based on MXene’s 

thermoacoustic effect (Fig. 4e, f), the MXene earphone has 
a higher sound pressure level than that of graphene with 
the same thickness due to the better heat dissipation per-
formance. After packed into a commercial earphone mold, 
MXene earphone has excellent performance especially at 
high frequencies, which is suitable for human audio equip-
ment. Inspired by the human skin, a MXene-based piezore-
sistive sensor with randomly distributed spinous micro-
structures is designed (Fig. 4g) [120], and it can effectively 
promote the contact area of the conductive channels and 
improve performance. Sudeep et al. reported a facile fabri-
cation of highly sensitive and reliable capacitive pressure 
sensor for ultralow pressure measurement by sandwiching 
MXene/PVDF-TrFE composite nanofibrous scaffolds (CNS) 
as a dielectric layer, as shown in Fig. 4h [125]. The pro-
posed sensor can be used to determine the health condition 
of patients by monitoring physiological signals. Based on 

Fig. 4  The structure and fabrication process of MXene. a Scheme of HF etching Al directly, by adding proportion of the DMSO solution, the 
MXene nanoblocks were delaminated into nanosheets. b AgNPs reduced by  Ti3C2Tx mixed with AgNWs dipped into the surface of wrapped 
yarn modified by PDA, and c SEM image of yarns coated with MXene. Reproduced with permission [122]. Copyright (2019), American Chemi-
cal Society. d SEM image of porous and ultrathin  Ti3C2Tx/PB and CNTs ternary film, with the inset (white box) displaying a zoomed‐in SEM 
image of the holes in the film. Reproduced with permission [123]. Copyright (2019), Wiley–VCH. e Schematic illustration of the  Ti3C2 crystal 
structure and f TEM image of MXene nanoflakes, which has thermoacoustic effect for soft MXene earphone. Reproduced with permission [124]. 
Copyright (2019), American Chemical Society. g SEM images showing the rough surface and side of the randomly distributed microspinous 
MXene-based PDMS obtained using abrasive paper. Reproduced with permission [120]. Copyright (2020), American Chemical Society. h SEM 
image of the MXene composite nanofibrous scaffolds for wearable pressure sensor and the inset showing the morphology at a higher magni-
fication. Reproduced with permission [125]. Copyright (2020), American Chemical Society. i Atomic resolution TEM image of a suspended 
 Ti3C2Tx nanosheet from top view [121]. Copyright (2020), Nature Publishing Group
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the  Ti3C2Tx nanosheet, the proposed sensor can be used to 
determine the health condition of patients by monitoring 
physiological signals and represents a good candidate for 
the human–machine interfacing device. Tan et al. reported 
an optoelectronic spiking afferent nerve with neural cod-
ing, perceptual learning, and memorizing capabilities to 
mimic tactile sensing and processing, based on the  Ti3C2Tx 
nanosheet (Fig. 4i). The system can detect the pressure by 
MXene-based sensors, and convert the pressure informa-
tion to light pulses, and integrate light pulses using a syn-
aptic photomemristor. With the dimensionality-reduced 
feature extraction and learning, the system can recognize 
and memorize handwritten alphabets and words, which pro-
vides a promising approach toward e-skin, neurorobotics 
and human–machine interaction technologies [121].

MXene occupies great potential in soft sensors because 
of its excellent conductivity, mechanical properties, hydro-
philicity, and ease to control the morphology [126, 127]. By 
fully considering the advantages of MXene and the target 
requirements of devices, a new sensing system is formed 
by combining MXene materials with other suitable materi-
als [125, 128], which can maximize the synergistic effect 
between MXene and other phase materials, and thus obtain 
a high-performance sensor with high sensitivity and wide 
response range.

2.4  AgNWs

With increasing demand for electronic and photovoltaic 
devices, it has become critical to ensure the electrical and 
mechanoelectric reliability of electrodes. Among various 
alternative materials for soft electrodes, such as metallic/
carbon nanowires or meshes, AgNWs networks are regarded 
as promising candidate [129, 130]. Due to the high con-
ductivity, high transparency, good thermal, chemical, and 
mechanical properties, more and more applications based 
on AgNWs have been discussed [131, 132].

Up to now, various methods for the synthesis of AgNWs 
have been proposed which can be originally derived from 
the metal nanoparticle preparation [133]. At early stages, 
AgNWs were mainly prepared via electrochemical meth-
ods with low yield and non-uniform size. Later, other 
methods including photochemical reduction [134], hydro-
thermal methods (Fig. 5a–d) [135, 136], and template tech-
niques [137] were developed. Despite getting considerable 

progress, it remains a challenge to produce high-aspect 
ratio AgNWs via a facile and rapid process. More specifi-
cally, AgNWs networks are considered as promising alter-
native transparent conductive electrode materials because 
of network geometry, no dislocation activity, and high 
strength [138]. Transparent electrodes (TEs) are crucial 
for various optoelectronic devices including liquid–crystal 
displays (LCDs) [139], OLEDs [139], organic solar cells 
(OSCs) [140], touch screens [141], wearable electronics 
[142, 143], etc. Their performance highly depends on the 
fabrication method and the characteristics of AgNWs 
networks.

Currently, the mainstream of TEs relies on the technique 
of high vacuum processes [131]. With the low-temperature 
processes and low cost, many solution coating processes have 
been studied to produce AgNWs electrodes through simple, 
reliable, and cost-efficient deposition techniques, such as spray 
coating, drop casting, spin coating, rod coating, dip coating, 
vacuum filtration, slot-die coating, and R2R coating [144]. 
Based on the fabrications and applications, the properties of 
AgNWs networks strongly depend on the following features: 
(i) individual nanowire properties, (ii) the interconnection 
(junctions) between them [132], and finally (iii) network den-
sity. Many works have been done to enhance these features, 
most of them are focused on the post treatment of the AgNWs 
network, including thermal annealing [145], mechanical press-
ing [132], light-induced plasmonic nanowelding [146].

Currently, the most efficient and widely used transpar-
ent conducting material is indium tin oxide (ITO). How-
ever, when compared with AgNWs, it shows less flexibil-
ity, and relatively high manufacturing costs [147]. AgNWs 
are suitable for preparing transparent soft electrode for its 
high conductivity, transparency, and mechanical flexibility. 
For soft OLED, high-efficiency white OLEDs fabricated 
using AgNWs-based composite TEs show almost perfectly 
Lambertian emission and superior angular color stabil-
ity, imparted by electrode light scattering (Fig. 5e) [148]. 
Besides, 1D AgNWs and 2D graphene can be integrated for 
transparent OLEDs with similar behavior to the commercial 
ITO-based counterparts [149]. When used in photovoltaic 
(PV) modulus [144, 150], the AgNWs increased stability of 
the OSCs, suited for affordable PV modules. E-skin made 
by AgNWs electrodes (Fig. 5f) enables real-time super-
resolution imaging of pressure distribution, which may 
have large impact on health care and security affairs [151]. 
Recently, with the rapid growth of soft electronics, carbon 
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nanomaterial-based sensors have shown outstanding perfor-
mance due to their superior mechanical and electrical prop-
erties. Highly sensitive strain sensors have been reported 
by using graphene sheets on the soft substrates [152]; with 
1D structure and high transparency, AgNWs-based devices 
can gain higher stretchability and optical advantages than 
traditional carbon-based devices [142, 153]. It is easy to 
integrated with fibers for clothing-integrated sensors [142, 
154]. Kim et al. proposed a soft smart sensor system inte-
grated on soft contact lenses that achieved wireless ocular 
diagnostics [155], the AgNWs-graphene hybrid material was 
used to make field effect sensor and antenna, which is suit-
able for using in eyes. Since AgNWs can disperse homoge-
neously in water, Liang et al. fabricated a stretchable TFT 
array by screen-printed AgNWs (Fig. 5g, h), which revealed 
a low cost way for printed electronics [156]. Clothe can heat 
themselves spontaneously, based on the conductivity and 
thermal effect of AgNWs, Hwang et al., realized a soft heat-
ers using AgNWs/PEDOT:PSS composition (Fig. 5i), which 
is machine-washable [157]. For electromagnetic interfer-
ence (EMI) shielding, a soft device was demonstrated with 

AgNWs network on a PDMS substrate. Considering the 
increase in the EMI shielding effectiveness at low AgNWs 
density, this unique phenomenon is attributable to the effec-
tive shielding of the incoming EV wave [158].

AgNWs assembled into random networks have problems 
such as rough surface roughness, non-uniform networks, 
and high nanowires–nanowires junction resistance [141]. 
Recently, many studies have been carried out on techniques 
for the alignment of AgNWs, such as external magnetic or 
electric fields-based assembly [159], flow-enabled technique 
[160, 161], rod coating technique [141], and capillary printing 
technique [162]. Jung et al. fabricated a conductive nanomem-
brane with 540% elongation by float assembly method 
[163]. This method enabled monolayer compact packing of 
nanomaterials at the water–oil interface and fabrication of 
a nanomembrane with a cross-sectional structure in which 
metal nanomaterials are partially embedded in an ultrathin 
elastomeric membrane. The teeth-like nanowire structure 
allows high-resolution patterning of nanowires using photo-
lithography without damaging elongation because nanowires 
are partially exposed from the elastomer. Moreover, contacts 

Fig. 5  Fabrication process and structures for AgNWs in different fields. a Schematic diagram of synthesis and purification of AgNWs with 
hydrothermal method. b Schematic diagram of spin-coated AgNWs network on a glass substrate. c SEM image of the spin-coated AgNWs net-
work on a glass substrate. d TEM image of the spin-coated AgNWs network on a lacey carbon-coated copper grid. Reproduced with permission 
[135]. Copyright (2017), Royal Society of Chemistry. e Close‐up of fused AgNWs junctions embedded into polymethyl-methacrylate (PMMA). 
Reproduced with permission [148]. Copyright (2013), Wiley–VCH. f SEM image of the interconnection with enlarged interconnection region. 
Inset showing the contact between AgNWs and ITO. Reproduced with permission [151]. Copyright (2015), Wiley–VCH. g Cross-sectional illus-
tration of the screen‐printing process, and h SEM image of the dense AgNWs network structure in the screen‐printed AgNWs line for intrinsi-
cally stretchable AgNWs TFT array. Reproduced with permission [156]. Copyright (2016), Wiley–VCH. i SEM images of individual filaments, 
which used as a Joule heating element for woven heating fabric. Reproduced with permission [157]. Copyright (2020), American Chemical 
Society
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between nanowires can be consolidated further by cold weld-
ing of the partially exposed nanowires firming connections 
across nanowires. The conductivity of monolayer can differ 
depending on measurement directions, 103,100 S  cm−1 in the 
parallel direction or 32,900 S  cm−1 in the vertical direction. 
When two nanomembranes are stacked with the nanowires 
aligned to each other, a maximum conductivity of 165,700 
S  cm−1 was achieved. The stacked nanomembrane remained 
conductive up to ~ 400 or > 1,000% strain, parallel or vertical 
to the direction of nanowires, respectively.

AgNWs network offer opportunities for fundamental and 
applied research. Thanks to the easy fabrication, and the 
excellent electrical, optical, and thermal properties, AgNWs 
networks exhibit great potential for applying in various 
fields [164, 165]. Recently, investigations on enhancing the 
nanostructure for soft applications are increasing, such as 
nanomesh, nanofibers, and core-sheath structure to fulfill 
requirements in soft and implantable application [163, 166, 
167]. Also, there are other kinds of metallic or nonmetallic 
nanowires (copper, gold, core–shell, organic nanofiber, etc.), 
which are suitable for a large variety of applications, which 
will not be discussed in this article.

2.5  Hydrogel

Hydrogel is a kind of extremely hydrophilic 3D polymer 
network, which can swell rapidly in water and hold a large 
volume of water without completely dissolving. Hydro-
gels exhibit many characteristics similar to natural soft 
tissues, such as good biocompatibility, adjustable physical 
and chemical properties, and high water content, and have 
always been one of the most widely used biological materi-
als [168–170]. Furthermore, since the first report in 1994 of 
introducing conductive components into conventional hydro-
gels to obtain electroconductive hydrogels (CHs), the mul-
tifunctional CHs have been garnering tremendous interests 
in soft electronics, sensors and actuators, human–computer 
interfaces, as well as soft energy storage [171, 172]. Gener-
ally, CHs are composed of conductive components and soft 
hydrogel substrates. Considering the different conductive 
components, CHs can be divided into ionically conductive 
hydrogels (ICHs) and electronically conductive hydrogels 
(ECHs) (Fig. 6a) [173, 174]. ICHs are generally prepared 
by dissolving ionic salts (e.g., NaCl, LiCl) into hydrogels. 

As for the ECHs, the conductive components mainly include 
noble metal NPs and nanowires, carbon nanomaterials 
(CNTs, graphene, etc.) and other novel 2D materials (e.g., 
MXene), as well as several intrinsically conductive poly-
mers with various ionic dopants, such as polypyrrole (PPy), 
polyaniline (PAni) and PEDOT [168, 175]. By integrating 
these conductive nanomaterials into the hydrogel matrix, the 
composite CHs can possess the ideal electronic conductivity, 
while retaining the reinforced biomechanical advantages of 
hydrogels. In addition, a wide range of natural polymers and 
synthetic polymers have also created infinite possibilities for 
the design and synthesis of CHs.

Currently, multifunctional CHs have been broadly used 
in wearable and implantable soft bioelectronics due to their 
intrinsic skin-like and tissue-like properties [173, 176]. 
Overall, the advantages of CHs as soft bioelectronics are: 
(i) the adjustable conductivity over a wide range, (ii) the 
excellent biocompatibility (antibacterial, etc.), (iii) the ideal 
flexibility and elasticity, as well as favorable biomechanical 
interactions with biological tissues, (iv) the available bio 
adhesive properties at highly conformal electrode–tissue 
interfaces, even in humid environments, (v) the abundant 
and wide range of hydrogel materials for the “green” elec-
tronics. Briefly, for the design and synthesis of CHs in differ-
ent applications, it is necessary to take into consideration the 
conductivity and mechanical properties of CHs, as well as 
the interaction between CHs and biological tissues. Yunsik 
et al. embedded Ag flakes into polyacrylamide (PAAm)–alg-
inate hydrogel matrix [172], followed by the partial dehydra-
tion process, to obtain an electrically conductive hydrogel 
with high electrical conductivity (374  S  cm−1), low Young’s 
modulus (< 10 kPa) matching several biological tissues, and 
high stretchability (250% strain). Apart from a variety of 
conductive fillers, the intrinsic hydrogel substrate materials 
have endowed the CHs with ideal biomechanical properties 
and adhesive properties. Conventional electronic materials 
are much stiffer than biological tissue, which may induce 
adverse biomechanical interactions at the electrode–tis-
sue interface. Differently, in terms of Young’s modulus, 
the mechanical properties of CHs are similar to those of 
skin and other biological tissues, probably minimizing the 
mechanical mismatch with tissues (Fig. 6b). Besides, CHs 
with favorable bio adhesive properties are more likely to 
establish highly conformal and stable bioelectronic inter-
faces on the biological surfaces, which is beneficial to reduce 
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Fig. 6  Hydrogel-based soft devices. a Material design of ICHs and ECHs. b Young’s moduli of common electrode materials and cell/tissue. c 
Schematic illustration of the preparation and internal structure of conductive gelatin/nanofibrillated cellulose/Fe3+ hydrogels, and the relative 
resistance changes and GF with the increase of tensile strain (d), as well as their applications in monitoring elbow flexion, index finger flexion, 
throat vibration (e). Reproduced with permission [179]. Copyright (2022), Royal Society of Chemistry. f Principle and fabrication process of the 
PEDOT:PSS-PVA conducting polymer hydrogel, and the loading and unloading resistance responses of the PEDOT:PSS-PVA hydrogel strain 
sensor with a strain of 300% (g), as well as its application as robotic skins for sensory grasping (h). Reproduced with permission [178]. Copy-
right (2022), Wiley–VCH. i Schematic of the electrode and skin for sEMG and coupling process of the ionic fluxes in electrolytic tissue media 
and electronic current in the recording electrode. j 90° peel-off test of electrode based on Alg-PAAm gel and commercial gel. k Contact imped-
ance verse frequency of the Alg-PAAm electrode and commercial electrode. l Needle grasping driven by sEMG signals obtained by as-prepared 
Alg-PAAm electrodes. Reproduced with permission [181]. Copyright (2020), Wiley–VCH. m Composition and synthesis of the conductive 
hydrogel composite composed of micrometer-scale Ag flakes and PAAm-alginate hydrogel (Ag-hydrogel composite). n Neuromuscular electri-
cal stimulation electrodes made of the Ag-hydrogel composite with a commercial electrical muscle stimulator, and the relative changes in dorsi-
flexion angle as a function of stimulation time. Reproduced with permission [172]. Copyright (2021), Nature Publishing Group
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interfacial impedance and promote bioelectrical signal trans-
mission [177].

CHs-based stress/strain sensors have been widely used in 
human motion monitoring, prosthetic control, human–com-
puter interaction (HMI), and touch panels [178, 179]. Differ-
ent from traditional elastomer materials with brittle mechan-
ical properties and insufficient biocompatibility, the 
comprehensive properties of CHs are expediently adjusted in 
terms of ionic and electronic conductivity, biocompatibility, 
antibacterial property, self-adhesion, elasticity, and flexibil-
ity, by means of reasonable material and structural design. 
Therefore, the CHs-based stress/strain sensors will exhibit 
excellent performance in mechanical stability, high strain 
sensitivity, wide linear range, fast response and recovery, 
low hysteresis, and fatigue resistance. As shown in Fig. 6c, 
Fu et al. constructed environmentally friendly, fully recy-
clable strain sensors based on self-healing, recyclable and 
conductive gelatin/nanofibrillated cellulose/Fe3+ hydrogels 
[179]. The multifunctional strain sensor possessed favorable 
strain sensitivity (Gauge factor (GF) = 2.24 under 6% strain) 
and compressive sensitivity (Sensitivity = 1.14  kPa−1 under 
15 kPa) (Fig. 6d), and thus could accurately monitor and 
discern subtle bodily motions, handwriting, and personal 
signatures (Fig. 6e). Besides, Shen et al. developed a facile 
one-step compositing methodology combining PEDOT:PSS 
nanofibers with poly (vinyl alcohol) (PVA) [178], to create a 
unique microphase semi-separated network of CHs (Fig. 6f). 
The as-prepared PEDOT:PSS-PVA hydrogel strain sensor 
could exhibit high stretchability (300%) and ultralow hys-
teresis (< 1.5%) (Fig. 6g). The strain sensor with stable per-
formance and high robustness could reliably enable precise, 
real-time remote control of industrial robots (Fig. 6h).

As a new generation of bioelectronic materials, the CHs 
have enabled the successful construction of highly confor-
mal electrode–tissue interfaces, for high-quality bioelec-
tronic stimulation and recording [30, 180]. Benefiting from 
the CHs with ideal stretchability and stiffness matching 
the biological tissue, the CHs-based patch electrode can 
closely fit on the uneven biological surface, even under the 
disturbance of dynamic mechanical deformation [181]. In 
addition, the CHs with intrinsic self-adhesive properties 
also ensure the high conformality and long-term stabil-
ity of the hydrogel electrode–tissue interface. Pan et al. 
designed and fabricated compliant ionic electrodes based 
on highly self-adhesive Alg-PAAm/LiCl hydrogels, which 
were able to enhance the intermolecular interaction with 

the biological surface and eliminate the microgaps at the 
electrode–tissue interface (Fig. 6i) [181]. Therefore, the 
Alg-PAAm compliant electrode exhibited bioadhesive 
properties far superior to commercial electrodes (Fig. 6j), 
and had an ultralow interfacial impedance (20 kΩ) with 
skin (Fig. 6k). As shown in Fig. 6l, this electrode could 
record dynamically weak sEMG signals with high SNR 
and low crosstalk, for the successful and precise con-
trol of the prosthesis to perform fine and sophisticated 
motions. Yunsik et al. fabricated neuromuscular electrical 
stimulation electrodes based on Ag/Alg-PAAm hydrogels 
with high electrical conductivity and soft conformability 
(Fig. 5m) [172]. The Ag-hydrogel electrode could deliver 
high-frequency electrical signals with sufficient current 
to induce dorsiflexion in the foot, and drive more angular 
movements of the fingers compared with the normal ionic 
hydrogel electrodes (Fig. 5n).

2.6  Polymer Nanomesh

Recently, soft electronics have been widely used in the 
field of health care, playing a great role in monitoring bio-
physical signals, such as physiological electrical signals 
(ECG, EMG, etc.) and mechanical signals (pulse, respira-
tion, joint bending, etc.) generated by vascular dynamics 
and human motions [8]. The monitoring of these signals 
is of great significance to the prevention and diagnosis 
of diseases and the recovery and reconstruction of motor 
function. Among the materials used to prepare sensors, 
polymer nanomesh with porous structure has shown great 
potential in the field of soft electronics due to its advan-
tages, such as ultrasmall weight, high water vapor perme-
ability, good skin compatibility, and good stability [11, 
182, 183]. For example, Miyamoto et al. prepared an elec-
trode based on the Au/PVA nanomesh as shown in Fig. 7a, 
which is inflammation-free, gas-permeable, lightweight, 
and stretchable [11]. After spraying water, PVA nanomesh 
can be dissolved so that nanomesh conductors can adhere 
to the skin closely (Fig. 7a, b). This electrode can not 
only be used as a pressure sensor to realize touch sensing 
(Fig. 7c), but also to monitor EMG, and the test results 
are almost the same as those of Ag–AgCl gel electrodes 
(Fig. 7d, e). The nanomesh can also be used to measure the 
skin impedance [184, 185]. Wang et al. realized a durable 
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Fig. 7  Application of polymer nanomesh in soft sensors. a Preparation process of the on-skin nanomesh electronics: first, Au is evaporated onto 
PVA nanomesh obtained by electrospinning; then, PVA meshes are dissolved by spraying water so that nanomesh conductors can adhere to the 
skin. b Picture of nanomesh conductor attached to the fingertip (Scale bar represents 1 mm) and the SEM image of the nanomesh conductor 
after dissolving PVA nanomesh (Scale bar represents 5 µm). c On-skin wireless sensor system based on the on-skin nanomesh electronics for 
touch sensing (Scale bar represents 3 mm). d Measuring the impedance of the skin/electrode interface by using nanomesh electrodes compared 
with Ag–AgCl gel electrodes. e EMG signals were measured on the forearm, while the wrist was flexed at 90° (two times) and at rest by both 
nanomesh and gel electrodes. Reproduced with permission [11]. Copyright (2017), Springer Nature. f Preparation of the PU/CNT/AgNWs strain 
sensor, and the SEM images of PU nanomesh, PU/CNT nanomesh and PU/CNT/AgNWs nanomesh. g Design concept of the double-layered 
conductive network for the PU/CNT/AgNWs strain sensor. h Applications of the PU/CNT/AgNWs strain sensor for monitoring different motion 
signals. Reproduced with permission [204]. Copyright (2020), American Chemical Society
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strain sensor based on the Au/PDMS/polyurethane (PU) 
nanomesh to monitor the facial tissue movements [186].

Nanomesh can be prepared by many methods such as pho-
tolithography [187], natural fiber [188], and electrospinning 
[11]. In this review, the electrospinning polymer nanomesh 
was mainly discussed. The polymer nanomesh is manufac-
tured by electrospinning technique as the matrix, and then 
functionalized by other materials to realize the construction 
of the sensing function. Therefore, the sensors are generally 
composed of nanomesh and functional modified materials. 
The former plays a role of structural support, and the latter 
acts as the signal response element of the sensor.

The polymer materials commonly be used to prepare 
nanomesh including PU [183, 189–192], PVA [11, 184, 185, 
193], styrene butadiene styrene (SBS) [194], styrene ethyl-
ene butene styrene block copolymer (SEBS) [195], polyvi-
nylpyrolidone (PVP) [196], etc. Under the electrostatic field, 
the viscous polymer solution in the syringe forms the Taylor 
cone at the needle tip due to the combined action of the 
electric field force, the surface tension and the viscoelastic 
stress of the solution, and extends into the uniform filament 
to deposit on the collector. The polymer can be changed into 
a 2D network film composed of micro- and nano-fibers by 
electrospinning, which leads to a large specific surface area 
for the next functional modification.

Functionalized modified materials are generally conduc-
tive materials, which can form conductive pathways in nano-
mesh to respond to external physical stimuli. Commonly 
used modified materials including CNTs [192, 195], reduced 
graphene oxide (rGO) [197, 198], MXene [191, 194], metal 
nanowires or NPs (Au [11, 184–186], Ag [192, 199], Pt 
[200], etc.). Functional modification methods can generally 
be divided into two types. One is to add functional materials 
to the electrospinning solution, forming nanomesh with pol-
ymer after electrospinning, and finally complete functional 
modification through subsequent treatment [196]. The other 
is to functionalize the surface of polymer nanomesh obtained 
by electrospinning. Here, due to the simplicity and conveni-
ence of preparation, the latter will be discussed. There are 
many methods of surface modification, the most common 
one is direct spraying, which is achieved by preparing func-
tional substances into solutions and then coating them on the 
surface of polymer nanomesh by drop coating [201] or spray-
ing [202, 203]. This modification method can only modify 
the surface layer of nanomesh. Functional materials can also 

be modified inside the nanomesh by soaking the nanomesh 
in the solution supplemented by ultrasound [197], so as to 
make the modification more solid. The above modification 
methods are mostly applicable to carbon nanomaterials, 
MXene, etc. For metal functional modifiers, the commonly 
used modification materials are generally NPs or nanowires. 
In addition to modifying the prepared metal nanowires by 
the above methods [202], the polymer nanomesh can also be 
soaked in the precursor solution and modified by in situ syn-
thesis of metal NPs on the surface of the nanomesh through 
chemical reaction [204, 205], or the metal can be deposited 
on the surface of the nanomesh by sputtering [200]. In addi-
tion, in order to improve the stability, strain range, sensitiv-
ity, and other properties of the sensor, the nanomesh can be 
pre-modified before the modification of functional materials 
to improve the firmness of the modifier. For example, the 
nanomesh can be pre-modified with polydopamine (PDA) 
[195, 199] and other functional modifiers [190, 199]. Wang 
et al. used CNT and AgNWs to modify PU Nanomesh suc-
cessively as shown in Fig. 7f [190]. The design principle of 
this sensor is to take advantage of different conductivities of 
the two conductive layers (Fig. 7g). The high-stretchability 
PU/CNT substrate layer acts as a structural support, which 
can realize the integrity of the conductive path even under 
a large strain. And the AgNWs layer offer a very low initial 
resistance. The combination of the two gives the strain sen-
sor a wide working range (up to 150%) and a high sensitivity 
(up to 1477.7); therefore, this sensor can accurately detect 
the omnidirectional human motions, including subtle and 
large human motions (Fig. 7h).

2.7  Liquid Metal

Liquid metal and its alloys have become non-negligible 
materials for soft electronics due to their excellent thermal 
and electrical conductivity and rheological properties. Due 
to low vapor pressure, safety, and no pollution, gallium 
and its eutectic alloys formed with indium and tin are more 
widely used than highly toxic mercury, such as scalable RF 
electronics [206], strain sensor [207], thermal elastomer 
composite [208], microheater [209], epidermal strain sen-
sors [210], electrically self-healing composite [211], and 
battery for stretchable electronics [212]. Liquid alloys have 
unique advantages in soft electronics with complex surface 
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structures that require sufficient softness and deformation, 
including high resolution [213], conformal, stretchability, 
and self-healing to avoid failure or circuit breaking under 
cyclic deformation [211]. In an aerobic environment, the 
liquid alloys surface will form amphoterics solid oxide 
skin of nanometer thickness [214], which will affect the 
shape and adhesion of the liquid metal to various surfaces. 
A variety of technologies for liquid metal patterning have 
been implemented, such as atomized spraying [215], micro-
channel injection [216], inkjet printing [217], 3D printing 
[218], masked deposition [219], and transfer writing [220]. 
Among them, stencil print technology is undoubtedly the 
most attractive, because it can achieve economic, fast, mask 
free, automated, and mass production [221]. However, the 
high surface tension of liquid alloy and the existence of sur-
face oxide make it difficult to print directly on the flexible 
substrate, and easy to fracture. Therefore, it is necessary to 
select a suitable transfer template and modify it, so that it 
cannot only selectively adsorb liquid metal, but also transfer 
completely on a variety of substrates [221, 222]. Recently, 
electron-beam lithography and soft lithography techniques 
can achieve high resolution at the sub-micron level [213]. 
In short, how to realize the patterning of liquid alloys in 
batch, high fidelity, high resolution, and low cost is still a 
hot research topic.

2.8  Brief Summary

As discussed above, to realize the soft electronics, the kinds 
and structures of material should be designed. Many novel 
nanomaterials (such as CNT, graphene, MXene, AgNWs, 
hydrogel, nanomesh, and liquid metal) have been prepared 
by well-designed methods (such as CVD, laser inducing, 
electrospinning, chemical synthesis, and solution-based 
method), which have great advantage to traditional materi-
als in soft electronics. During the bending and stretching 
process, the materials must withstand large deformation 
without damage. Therefore, the breaking elongation of mate-
rials should be large enough. For example, the single-layer 
graphene can be used in the flexible devices. However, due 
to the fragility of single-layer structure, the materials will 
be damaged during the stretching process. The structure of 
materials should also be designed like the porous 3D struc-
ture. To some extent, not the thinner the better. In addition, 
for the large-scale commercial application, how to prepare 

the soft material in high efficiency and low cost is also cru-
cial. Solution-based methods cooperated with pattern pro-
cess may be a good choice.

3  Wearable Devices for Different 
Physiological Signals

3.1  Pulse

The pulse is driven by the heart and usually measured at 
the wrist (radial artery). It is affected by many factors, such 
as the conditions of blood, and muscle, skin. Therefore, it 
can reflect some physical conditions of human body. The 
pulse has been used in traditional Chinese medical science 
for more than 2000 years [223], where the pulse signals are 
picked at three acupoints (called ‘chi’, ‘guan’, ‘cun’) [20] 
with different applied force (small force call ‘fu’, middle 
force called ‘zhong’, large force called ‘chen’). This pulse 
condition of three acupoints under three pressure levels con-
stitutes nine indexes.

The pulse rate of human is about 30–200 beats  min−1. In 
the frequency domain, the pulse spectrum range is 0–20 Hz, 
and most of the energy is concentrated within 10 Hz. There 
are usually 3 peaks in a typical pulse wave (the percussion 
(P), tidal (T), and dicrotic (D) wave). The relative position 
and amplitude ratio of these peaks can be used to analyze 
cardiovascular status [20]. To detect the pulse signal, pres-
sure/strain sensors are widely used, which be divided into 
three types: piezoresistive [224], piezoelectric [225], and 
piezocapacitive. Under the pressure, the resistance, volt-
age, and capacitance would be changed based on these three 
effects, respectively. Some typical pulse sensors are listed 
in Table 1.

Wu et al. demonstrated a soft pressure sensor with LSG 
based on the piezoresistive effect [226]. Different with 
common pressure sensor, this device has a positive resist-
ance —pressure response. After optimizing the graphene 
pattern, the relative resistance variation of the sensor can 
be over 360,000% with good repeatability, and the sensi-
tivity can be up to 434  kPa−1. In addition, the mechanical 
signal can be amplified like a mechanical triode under 
the external pressure bias. The pulse waves can be col-
lected at the carotid artery (CA), brachial artery (BA), 
radial artery (RA), and dorsalis pedis artery (DPA), as 
shown in Fig. 8a. The systolic blood pressure (SBP) and 
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diastolic blood pressure (DBP) can also be deduced from 
the pulse signals.

Piezoelectric effect is another way to detect the pulse sig-
nals. An important advantage of the piezoelectric sensor is 
the self-power. Chen et al. developed a soft piezoelectric 
pulse sensor (PPS) based on the single-crystalline group III-
nitride thin film, which can be easily transferred and pack-
aged by PDMS [227]. The piezoelectric sensor has good 
sensitivity. When dropped on a single drop of water with a 
mass of 38 ± 4 mg, the sensor can generate a voltage of about 
20 mV. With the piezoelectric sensor, pulse waveform was 
measured at the carotid, brachial, radial, femoral, posterior 
tibial, dorsalis pedis, femoral, popliteal, fingertip, facial, and 
temporal artery.

Piezocapacitive effect is also a significate method of fabri-
cating pressure sensors. Boutry et al. reported a piezocapaci-
tive pressure sensor with biodegradable materials (Fig. 7b) 
[228]. The arterial blood flow can be detected in both contact 
and non-contact modes. Poly (glycerol sebacate) (PGS) with 
pyramidal patterns was applied as the dielectric layer. After 
the pressure loaded, the capacitance would be changed, 
leading to the shift of resonance frequency of the system 

consisting of the inductance and the piezocapacitive pressure 
sensor. More importantly, the sensor can realize the in vivo 
arterial pulse monitoring of the rat femoral artery.

3.2  Respiration

The total process of gas exchange between human body 
and external environment is called respiration. In the calm 
state, the normal respiratory rate of adults is about 16–20 
times  min−1. The monitoring and detection of human respi-
ration is an important part of modern medical monitoring 
technology, especially in the treating of the COVID-2019 
[22]. There are three typical sensors to detect the respiration 
signal, mechanical sensor [102], humidity sensor [21], and 
temperature sensor [237]. Some parameters of respiratory 
are shown in Table 2.

During the respiration process, the thorax expands when 
inhaling and shrinks when exhaling driven by the intercostal 
and diaphragmatic muscles. In addition, there will be pres-
sure changes around the mouth or nose due to the flow of air. 
Therefore, the mechanical sensor can also be used to monitor 

Table 1  Typical soft pulse sensor

Physi-
ological 
signal

Device type Active material Signal type Mechanism Detecting source References

Pulse Pressure sensor PZT Voltage Piezoelectric Wrist and carotid artery [229]
Pulse Pressure sensor Nylon netting Capacitance Piezocapacitive Wrist [230]
Pulse Pressure sensor SiO2 NP/PDMS Capacitance Piezocapacitive Artificial blood vessel [231]
Pulse Pressure sensor POMaC/PLLA/PHB/PHV Capacitance Piezocapacitive Artery [228]
Pulse Pressure sensor Group III-nitride materials Voltage Piezoelectric Carotid, temporal, brachial, 

facial, radial, fingertip, 
femoral, popliteal, poste-
rior tibial, dorsalis pedis

[227]

Pulse Pressure sensor Ionic polymer metal com-
posite

Voltage Piezoelectric Wrist (Chi, Guan, Cun) [232]

Pulse Strain sensor Graphene Resistance Piezoresistive Wrist [233]
Pulse Strain sensor Nickel-Chrome Resistance Piezoresistive Wrist [234]
Pulse Strain sensor Graphene foam Resistance Piezoresistive Wrist [235]
Pulse Strain and pressure sensor Graphene foam Resistance Piezoresistive Neck artery,

Wrist artery, and Fingertip
[236]

Pulse Pressure sensor Graphene Resistance Piezoresistive Wrist [104]
Pulse Strain sensor Graphene Resistance Piezoresistive Neck artery,

Wrist artery, and Fingertip
[103]

Pulse Pressure sensor Graphene Resistance Piezoresistive Carotid artery, Brachial 
artery, Radial artery, and 
Dorsalis pedis artery

[226]
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the respiration signal, which is similar to the pulse sensor. 
Triboelectric nanogenerator (TENG) is another self-power 
device which can be utilized as not only energy harvester 
but also mechanical sensor. It relies on static electricity gen-
erated by friction between two materials to drive the flow 
of electrons and generate electricity. Wang et al. realized 
an integrated triboelectric respiration sensor for monitor-
ing human respiration and  NH3 concentration in exhaled 
gases [238]. Ce-doped ZnO and PDMS were used as the 

triboelectric layer and Au were coated as electrodes. The 
dissolution of water molecules into Ce-doped ZnO would 
enhance the relative permittivity of sensitive material and 
decrease the output voltage. Some gases such as  NH3,  CH4, 
 CH2O,  C2H5OH, and CO can also be detected.

Humidity sensor based on the electron transferring rather 
than mechanical interaction can also be used as the respi-
ration sensor. Pang et al. fabricated the graphene on the 
nickel foam by CVD [21]. After etching the nickel, porous 

Fig. 8  Soft sensors for pulse and respiration. a Blood pressure waveforms and values collected at the CA, BA, RA, and DPA. Gray areas indi-
cate the BP range between the SBP and DBP values detected by a commercial sphygmomanometer. Reproduced with permission [226]. Copy-
right (2020), American Chemical Society. b Illustration of the pulse sensor with an exposed view of the bilayer coil structure for wireless data 
transmission and the cuff-type pulse sensor wrapped around the artery. Inset: Close-up view of the pressure-sensitive region of the sensor with 
the two variable capacitors  C1 and  C2. The two variable capacitors correspond to  C1 and  C2. The two inductors are in series with a fixed capaci-
tor. Reproduced with permission [228]. Copyright (2019), Nature Publishing Group. c Photograph of a volunteer wearing the medical breath-
ing mask with the humidity sensor fixed inside it. d Resistance variation response to fast, normal, and deep breathing. e Resistance variation 
response to mouth and nose breathing. Reproduced with permission [21]. Copyright (2018), Elsevier. f Photograph of the respiration sensor on 
the top of the upper lip with two motions, including pouting (left) and compressing lips (right). Reproduced with permission [237]. Copyright 
(2020), Elsevier
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graphene networks were obtained. To enhance the sens-
ing performance, the porous graphene was modified by 
the GO, PEDOT:PSS, and Ag colloids. The air flow force 
has no effect to the humidity sensor. Different breathing 
modes, such as slow, fast, deep, and normal, can be dis-
tinguished. The device can also be fixed inside the medi-
cal breathing mask to detect the respiration in real time 
(Fig. 8c, d). Huang et al. realized a soft, stretchable, and 
conductive nanofiber composite with acidified CNT deco-
rated PU nanofiber [239]. As mentioned above, CNT is a 
typical p-type semiconductor. Electrons transferred from 
 H2O molecules would reduce the density of holes in CNT 
and lead to the increase of the resistance. In addition, during 
a sensing test cycle, swelling and de-swelling caused by the 
 H2O molecules would damage and recover the conductive 
network, also lead to the increase and decrease of the resist-
ance. Other gas such as methanol, heptane, and acetone can 
also be detected.

During inhalation and exhalation, the temperature in the 
nasal cavity will change accordingly. Therefore, the tem-
perature sensor can also be applied to detect the respiration 
signal. Liu et al. developed a respiration sensor based on 
metallic heating electrode (Cr/Au), thermistor, and PDMS 
package, as shown in Fig. 8e [237]. By adjusting the input 

power of heating electrode and increasing the temperature 
difference between the respiration sensor and environment, 
the sensitivity of the respiration sensor can be improved. 
In addition, various breathing patterns can be distinguished 
with the breath rate/depth of subjects, such as sitting, fright-
ening, sleeping, meditating, and gasping.

3.3  Human Motion

Human motion signals including motions of the arm, hand, 
foot, knee, etc. Normally, the limbs would have large-strain 
changes during human activities. For example, walking is 
accompanied by the knee bending, arm swing, and foot com-
pressing. More importantly, the detection of those motion 
signals can not only provide health care evaluation on our 
daily life, but also useful for posture correction in the reha-
bilitation treatment [244]. According to the position of limbs 
deformation, it can be classified into two major categories: 
(i) bending or stretching of arm or hand on the upper limb; 
(ii) bending and compressing of the knee or under the 
foot. The limbs bending and foot walking usually display 
large-strain variation and high-pressure impact, respec-
tively. The strain and pressure sensors with large measuring 

Table 2  Typical respiration pulse sensor

Physiological signal Device type Active material Signal type Mechanism Detecting source References

Respiration Strain sensor Metal cotton fibers Capacitance Piezocapacitive Belly [240]
Respiration Humidity and gas 

sensor
Acidified carbon 

nanotube/PU 
nanofibers

Resistance Electron transfer Mask [239]

Respiration Humidity sensor Graphene/GO 
Graphene/Ag col-
loids Graphene/
PEDOT:PSS

Resistance Molecular adsorption 
and desorption

Mask [21]

Respiration Pressure sensor Graphene Resistance Piezoresistive Mask [102]
Respiration Strain sensor Graphene Resistance Piezoresistive Mask, Throat, Top of 

the upper lip
[233]

Respiration Strain and pressure 
sensor

Graphene foam Resistance Piezoresistive Mask, Heart area, and 
Lung cavity

[236]

Respiration Pressure sensor Graphene Resistance Piezoresistive Chest [104]
Respiration Humidity sensor GO coated silk fibers Current Proton transfer Mask [241]
Respiration Nanogenerators PVDF Voltage Pyroelectric N95 respirator [242]
Respiration Thermistor N.A Resistance Thermal convection 

effect
Top of the upper lip [237]

Respiration Humidity and gas 
sensor

Ce-doped ZnO Voltage Triboelectric Mask [238]

Respiration TENG Ce-doped ZnO-PANI Voltage Triboelectric Elastic balloon [243]
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range should be developed. To date, the strain sensors were 
widely used to monitor the large bending of elbow [245], 
wrist [246], finger [247], and knee [44, 103, 105, 224], while 
the pressure sensor with high measuring range were used to 
detect the different walking states [102, 248, 249].

The most frequently used limbs on the human body are 
supposed to be the arms and hands during the whole life. 
Almost all the actives involve the arm bending, and hand 
holding or releasing. Thus, it is necessary to develop highly 
sensitive, stable, reproducible, and durable strain sensors for 
this specific application. Yamada et al. reported a class of 
wearable and stretchable devices fabricated using thin films 
of aligned CNTs [44]. When stretched, the CNTs films were 
fractured into gaps, islands, and bundles bridging the gaps. 
This mechanism allows the films to be strain sensors with 
the measuring strains up to 280%, with high durability, fast 
response, and low creep. The CNTs sensors were assembled 
on stockings, bandages, and gloves to detect the movement. 
Yang et al. proposed a AgNPs bridged graphene strain sen-
sor for simultaneously detecting subtle and intensive human 
motions [105]. AgNPs serve as the bridges to connect the 
self-overlapping graphene sheets, which endows the strain 
sensor with many excellent performances. With high GF of 
475, it is suitable to be applied in human motion detection. 
Then, they fabricated a close-fitting and wearable graphene 
textile strain sensor based on a graphene textile without 
polymer encapsulation [103]. GO acts as a colorant to deco-
rate the polyester fabric and is reduced by high temperature, 
which endows the graphene textile strain sensor with excel-
lent performance. Compared with other strain sensors, the 
textile strain sensor exhibits a distinctive negative resistance 
variation with increasing strain. The graphene textile strain 
sensor can be knitted on clothing for detecting both subtle 
and large human motions, as shown in Fig. 9a, b. The wrist 
guard integrated with the graphene textile strain sensor can 
monitor wrist movement, including the resistance change 
with different English letters, such as “A”, “S”, and “V”. It 
can also be knitted on a single glove to monitor the response 
toward the bending of a finger.

Walking is a basic capability that allows the human to 
carry out daily activities. When someone suffers the patho-
logical gait disease, the motion capture technology can 
provide quantitative features for its analysis and diagnosis 
[250]. Generally, the walking states could be monitored by 
the pressure sensor under the foot or strain sensor on the 
knee. For the pressure sensor, it measures the force directly 

caused by the periodic foot stepping. Due to the body weight, 
pressure sensors with proper sensitivity in a wide pressure 
range are desirable. Besides, high flexibility and low thick-
ness would bring a comfortable experience for long-term 
monitoring. Tian et al. fabricated a soft pressure sensor 
based on the honeycomb-like graphene network (HGN) by 
mixing cube sugar, graphene oxide solution, and PDMS 
(Fig. 9c, d) [248]. Attributing to the structure, the pressure 
working range can cover from 0 to 150 kPa. Benefiting from 
its advantages in pressure range, it shows good performance 
when monitoring working or running form (Fig. 9e). Based 
on the paper tissue, Tao et al. fabricated a graphene/paper 
pressure sensor (Fig. 9f), which can be applied in intense 
motion detections [102]. As shown in Fig. 9g, the sensor 
shows the difference between jumping and push-ups. For 
the systematic approach to detection and analysis gait, Tahir 
et al. provided a systematic design and characterization pro-
cedure for three different pressure sensors including a soft 
piezoelectric sensor, which can be used for detecting vertical 
ground reaction forces using a smart insole [249]. The pres-
sure sensor array was placed in a customized shoe above the 
control circuit. Pressure data were digitized through a micro-
controller before sent wirelessly to a host computer for post 
processing and analysis. The subsystem was powered by a 
battery with the help of a power management unit. Pressure 
data were analyzed to extract various gait characteristics for 
different gait applications. As shown in Fig. 9h, i, sixteen 
sensors were placed on each insole to record pressure values 
in these areas, the inputs were multiplexed to one output 
through a 16-to-1 multiplexer and applied to an analog-to-
digital (ADC) conversion input of the microcontroller then 
sent to host computer. The gait cycle of 12 subjects were 
recorded while walking on a 10 m walkway in self-selected 
walking manner. In Fig. 9j, the gait cycles readings for left 
and right foot were clearly recorded by the system, and can 
be further analyzed for assessing walking behaviors.

3.4  Intraocular Pressure

IOP is the prime indicator for the diagnosis and treatment of 
glaucoma, which has circadian rhythm changes and depends 
on body gestures. Therefore, a single measurement in the 
clinic can be misleading for diagnosis. Contact lenses as a 
minimally invasive platform for diagnostics and drug deliv-
ery have emerged in recent years [251, 252]. Contact lens 
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sensors have been developed for analyzing the glucose com-
position of tears as a surrogate for blood glucose monitoring 
and for the diagnosis of glaucoma by measuring intraocular 
pressure [253].

Recently, Xu et al. realized a noninvasive sensor with 
few-layer graphene (Fig. 10a) [90], and it shows high trans-
parency, sensitivity, linearity, and biocompatibility for 24 h 
continuous IOP monitoring. The graphene Wheatstone 
bridge consisting of two strain gauges and two compensating 

Fig. 9  Soft sensors for human motion. a Detection of various human motions using the wearable graphene textile strain sensor. b Detection of 
writing English letters. Reproduced with permission [103]. Copyright (2018), American Chemical Society. c Photograph of the honeycomb-like 
graphene composite structure. d Photograph of the foot with the HGN pressure sensor. e Response of the HGN pressure sensor under walking 
and running. Reproduced with permission [248]. Copyright (2020), Institute of Electrical and Electronics Engineers. f Tissue paper with rGO. g 
Response curves for the tester’s movements of jumping and push-ups. Reproduced with permission [102]. Copyright (2017), American Chemi-
cal Society. h Area of foot selected for sensors and i array of pressure sensor. j Gait cycles readings for left and right foot with FSR smart insole. 
Reproduced with permission [249]. Copyright (2020), MDPI
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resistors is designed to improve the sensitivity and accuracy 
of IOP measurement. Testing results on a silicone eyeball 
model indicate that the output voltage of the sensor is pro-
portional to the IOP fluctuation. Under the various ranges 
and speeds of IOP fluctuation, the sensor exhibits excellent 
performance of dynamic cycles and step responses with an 
average sensitivity of 150 μV  mmHg−1 (Fig. 10b). With the 
linear relationship, the average relative error between the 
calibrated IOP and the standard pressure in maintained at 
about 5%. Furthermore, a wireless system is designed for 
the sensor to realize IOP monitoring using a mobile phone 
(Fig. 10c). This sensor, with the average transparency of 
85% and its ease of fabrication, as well as its portability of 
continuous IOP monitoring, brings new promise to the diag-
nosis and treatment of glaucoma. Intraocular islet transplan-
tation was investigated as a new procedure to treat diabetes, 
the development of this procedure requires close monitoring 
of the function of both eye and islet graft. Based on this, 

Kim et al. developed a soft, smart contact lens to monitor the 
intraocular pressure and applied this for noninvasive moni-
toring (Fig. 10d) [254]. A strain sensor inside the lens can 
detect detailed changes in IOP by focusing the strain only in 
the selective area of the contact lens. In addition, this smart 
contact lens can transmit the real-time value of the IOP wire-
lessly using an antenna. The wireless measurement of IOP 
obtained using the contact lens has a high correlation with 
the IOP measured by a rebound tonometer, which proving 
the good accuracy of the contact lens sensor. The feasibility 
of the contact lens platform was tested in a rat animal model 
(Fig. 10e). After the transplantation, a marginal increase in 
IOP could be detected, and it returned to normal within a few 
weeks (Fig. 10f). Pang et al. fabricated a contact lens with 
metal electrode Wheatstone bridge circuit for noninvasive 
monitoring of IOP [23]. With the excellent dynamic cycling 
performance at different speeds of IOP variation, the contact 
lens sensor is promising for continuous IOP monitoring of 

Fig. 10  Soft sensors for IOP. a Schematic diagram of the change of the IOP sensor’s radius of curvature caused by the increase of IOP. b Com-
parison of calibrated IOP with the standard values at the speed of 0.53, 0.67, and 0.8 mmHg  s−1, respectively. c Measurements of graphene IOP 
sensor with portable wireless system. Reproduced with permission [90]. Copyright (2020), American Chemical Society. d Schematic of the 
strain sensor-based contact lens. e Wireless real-time measurement of IOP in live rat. f Measurements of the IOP of normoglycemic Lewis rats. 
Reproduced with permission [254]. Copyright (2020), American Chemical Society. g Schematic of the wearable contact lens sensor, integrating 
the glucose sensor and IOP sensor. h Frequency response of the IOP sensor on the bovine eye from 5 to 50 mmHg. Reproduced with permission 
[155]. Copyright (2017), Nature Publishing Group. i Photograph of actual fabricated microfluidic contact lenses. j Photograph of the microflu-
idic contact lens wearing on the porcine eye ex vivo. k Displacement response of the devices on porcine eye. Reproduced with permission [255]. 
Copyright (2019), Elsevier
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glaucoma disease, regardless of the posture and activities 
of the patient. Kim et al. developed a contact lens sensor 
which can measure the glucose level in tear fluid and IOP 
simultaneously (Fig. 10g) [155]. They fabricated the strain 
sensor and glucose field effect sensor on the contact lens. 
Utilizing the two strain gauges and dielectric silicone to 
form sandwich structure, the inductance and capacitance 
circuit can transmit the IOP into variation of resonance fre-
quency. On the bovine eyeball testing (Fig. 10h), it exhib-
its decreased linearity with pressure increasing and slope 
of 2.64 MHz  mmHg−1. This wearable contact lens would 
be promising technique to monitor the IOP in wireless and 
real time. An et al. designed a microfluidic contact lens for 
unpowered continuous and noninvasive IOP monitoring 
(Fig. 10i) [255]. The microfluidic contact lens is comprised 
of a sensing layer of the micropatterned soft-elastomer and 
a hard-plastic reference layer. The device uses the annular 
sensing chamber filled with the dyed liquid and a sensing 
microchannel as the IOP transducer (Fig. 10j). The maxi-
mum sensitivity of the device (with the sensing chamber 
of 8.5 mm in diameter and the sensing channel of 100 × 40 
μm2 in size) can achieve 0.708 mm  mmHg−1 in the work-
ing range of 0–40 mmHg (Fig. 10k). By using theoretical 
analyses and experimental investigations, the IOP sensing 
mechanism on curved surface of the devices with different 
dimension parameters are explored, the test on enucleated 
porcine eyes show that the devices have a linear response 
and can track the IOP changes.

3.5  Phonation

Phonation is the process by which the vocal folds produce 
certain sounds through quasi-periodic vibration, which is 
the most direct way to communicate with each other. Dur-
ing the voicing process, the pressure drop across the lar-
ynx can induce oscillation of vocal folds. The slight throat 
motion would be accompanied by the phonation. In gen-
eral, it shows the characteristic signals for different throat 
motions, which can be used to record the word or speech 
[101, 256]. The features of vocalization signals include loud-
ness, jitter, fundamental frequency, zero-crossing rate, and 
energy frequency ratios. For the throat motion detection, a 
high-sensitive, microscale, and soft strain or pressure sensor 
is an ideal candidate due to the small strain change for the 
thousands of vocabularies. Tao et al. proposed an intelligent 

artificial throat based on LIG [101], which can not only gen-
erate but also detect sound in a single device (Fig. 11a, b). 
The LIG’s resistance changes toward the throat vibrations of 
the tester who makes two successive coughs, hums, screams, 
swallowing, and nods (Fig. 11c). Wei et al. further devel-
oped a wearable skin-like ultrasensitive artificial graphene 
throat (WAGT) system integrated both sound/motion detec-
tion and sound emission in single device (Fig. 11d) [256]. 
The WAGT has a high detection sensitivity and an excellent 
sound-emitting ability. For sound detection, both the motion 
of larynx and vibration of vocal cord contribute to throat 
movements. Meanwhile, different human motions, such 
as strong and small throat movements, were also detected 
and transformed into different sounds like “OK” and “NO”. 
Therefore, the implementation of these sound/motion detec-
tion acoustic systems enables graphene to achieve device-
level applications to system-level applications (Fig. 11e, 
f), and the graphene acoustic systems are wearable for its 
miniaturization and small weight. Qiao et al. demonstrated 
a multilayer graphene epidermal e-skin (Fig. 11g) [233]. 
When packed in Ecoflex, e-skin exhibits excellent perfor-
mance, including ultrahigh sensitivity, large strain range, 
and long-term stability. Therefore, the physiological signals 
like phonation can be detected based on epidermal e-skin 
with a single graphene line pattern. Qiang et al. reported a 
high-performance strain sensor with a fish-scale-like gra-
phene-sensing layer (Fig. 11h) [257]. This strain sensor can 
be fabricated via stretching/releasing the composite films of 
rGO and elastic tape, making the process simple, low cost, 
energy-saving, and scalable. When attached to the throat, 
it can detect the complicated epidermis/muscle movements 
during speaking (Fig. 11i). The sensor shows characteristic 
and repeatable signal pattern when the wearer spoke differ-
ent words, such as “hello”, “graphene”, “sensor”, and “fish 
scale” (Fig. 11j).

3.6  Tactile Sensation

Tactile sensation is the sensation produced by human skin 
when it touches physical stimuli (such as pressure, temper-
ature, humidity, and vibration). When human skin tactile 
receptors receive appropriate stimuli from the external envi-
ronment, action potentials are generated, which are transmit-
ted to the cerebral cortex through nerve conduction pathways 
and generate corresponding perception [258]. E-skin can 
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realize the interaction between machines or between humans 
and machines [259]. The main function of the soft tactile 
sensor is to detect the physical properties of the manipulated 
object or identify the manipulated object or operation state. 
Generally, the principle of sensing can be summed up as 
the measurement of strain, pressure, displacement, torsional 
deformation, and other parameters, and thus a series of pie-
zoresistive, piezocapacitive, piezoelectric, and triboelectric 
sensors are proposed [260].

At present, many studies focus on triboelectric sensors, 
because of its self-powered advantage [261]. Cai et al. pro-
posed a self-powered tactile sensor based on triboelectric 
[262]. Through ultraviolet ozone radiation and tensile treat-
ment, regular folds are generated in PDMS/MXene com-
posite film (Fig. 12a), which greatly increases the contact 
area and sensitivity of the friction layer. High sensitivity 
of 0.18 and 0.06 V  Pa−1 are achieved in the range of 10–80 
and 80–800 Pa, respectively. The sensor can distinguish four 
different movements (pulse, heartbeat, breath, flexion, and 
extension of biceps) and different weights by output voltage 
waveform and amplitude (Fig. 12b).

Compared with triboelectric effect, piezoelectric effect 
can monitor the continuous deformation process under con-
tact condition. Zhu et al. proposed a self-powered hybrid 
electronic skin (HES) based on triboelectric effect and 
piezoelectric effect (Fig. 12c) [263]. A sensor unit is only 
82.6 mg and can be kept stable at any bending, so it can be 
directly attached to the skin as HES sensor array. Since it 
combines the advantages of triboelectric effect and piezo-
electric effect, it can realize sensing in the entire contact, 
separation, deformation, and recovery process. It has been 
successfully applied to measure click, distance, respiration, 
head motion, vocal cord vibration, and some physiological 
signals. It can also identify multi-point pressure distribution 
and realize real-time single-point touch trajectory visualiza-
tion. Lin et al. proposed a soft piezoelectric tactile sensor 
array that can perceive and distinguish the size, position, 
and pattern of different external stimuli in real time [264]. In 
order to eliminate crosstalk interference and reduce the num-
ber of wires, they designed a comb sensor connection mode 
without crossing. For n × m sensor array, only n + m wires 
are required (Fig. 12d). The sensor consists of two protective 

Fig. 11  Soft artificial throat. a One-step fabrication process of LIG. b Artificial throat can detect the movement of throat and generate control-
lable sound, respectively. c LIG’s resistance changes toward the throat vibrations of the tester who makes two successive coughs, hums, screams, 
swallowing, and nods. Reproduced with permission [101]. Copyright (2017), Nature Publishing Group. d Frame diagram of how different throat 
movements were transformed to different sound signals. e Response of attached LSG toward sound, “Happy New Year”. One wave curve is mag-
nified to be showed. f Artificial throat system worn by a tester. Reproduced with permission [256]. Copyright (2019), American Chemical Soci-
ety. g Response toward the sound “graphene” and its magnified image. Inset: throat with an attached sensor. Reproduced with permission [233]. 
Copyright (2018), American Chemical Society. h Top-view SEM images of a fish-scale-like graphene strain sensor. i Photograph of the sensor 
attached to the throat of a person. j Responsive curves recorded during the processes of speaking “hello”, “graphene”, “sensor”, and “fish scale”, 
respectively. Reproduced with permission [257]. Copyright (2016), American Chemical Society
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layers (100 μm PDMS film), two silver-plated PVDF sensory 
layers, and one insulative layer (500 μm PDMS film) to sim-
ulate the human skin structure. The sensor can detect a weak 
carotid pulse and also accurately pick up the movement of a 
5 mg spider, including position, resting time, and duration 
of passage. When mounted on a robotic hand, the feedback 
can accurately guide and complete a series of operations to 
grasp, hold, and release objects (Fig. 12e).

In addition to motion measurement, morphology rough-
ness is also a key parameter for e-skin to obtain subject 
information [265]. Wang et al. proposed a 3D printed soft 
piezoresistive tactile sensor based on graphene-PDMS 
microspheres to simulate the structure of human finger 

fingerprints (Fig. 12f). It can not only monitor pressure, 
but also detect different degrees of surface roughness, and 
detect air fluids [266]. The sensor has a short response time 
of 60 ms and a sensitivity of up to 2.4  kPa−1 at low pres-
sure. The sliding test shows that the surface of stainless 
steel with average roughness of 0.959 ± 0.005, 0.826 ± 0.08, 
0.811 ± 0.04, and 0.785 ± 0.04 μm can be resolved. Luo et al. 
demonstrated a soft piezocapacitive sensor using a micro-
structured graphene nanotube (GNWs) electrode and a con-
formal microstructured dielectric layer (Fig. 11g) [267]. The 
top pyramid-structured electrode of the capacitor includes 
GNWs/PDMS/ZnO prepared through conformal growth and 
replica transfer methods, and the bottom is a plate electrode 

Fig. 12  Soft tactile sensation sensor. a Schematic diagram of the triboelectric tactile sensor fabrication process. b Voltage–time waveform of 
the sensor under pulse, heartbeat, breath, and flexion and extension of biceps. Reproduced with permission [262]. Copyright (2021), Elsevier. c 
Schematic diagram of the battery-free e-skin structure. Reproduced with permission [263]. Copyright (2021), Elsevier. d Schematic diagram of 
the skin-inspired piezoelectric tactile sensor array. A large number of sensor pixels can be fabricated with a small quantity of wires. e Sensor 
array placed on the robot hand and the tofu block grasped by real-time feedback. Reproduced with permission [264]. Copyright (2021), Wiley–
VCH. f Response of the graphene-PDMS microsphere structure tactile sensor to items with different roughness. Reproduced with permission 
[266]. Copyright (2021), American Chemical Society. g Schematic diagram of soft piezocapacitive sensor structure and slipping imaging of sur-
faces with different roughness. Reproduced with permission [267]. Copyright (2021), Elsevier
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dielectric including PMMA layer and AgNWs. The micro-
structure of electrode and dielectric layer can not only avoid 
the slip between electrodes and improve the stability, but 
also increase the area of the air-gap dielectrics and zinc 
oxide film to enhance the polarized electric field, so as to 
improve the piezocapacitive effect of the sensor. The sensor 
was applied as the smart glove to successfully distinguish the 
amount of water in the cup and realized braille recognition 
and roughness detection.

3.7  Heart Sounds

Heart sounds are the sounds produced by the heart muscle 
as it contracts, the heart valves and the blood hitting the 
blood vessel walls during heart contraction and relaxation. 
During this process, the signal is collected through a chest 
microphone or a digital stethoscope and the resulting image 
of the wave amplitude over time is recorded, which is called 
phonocardiogram (PCG) [268].

Normally, the first and second heart sounds can be heard, 
as well as the third heart sound that occurs in children and 
adolescents. But in pathological conditions, third heart 
sounds, fourth heart sounds, and various murmurs can also 
be heard in non-adolescents [269]. Because abnormal heart 
sounds under pathological conditions contain a lot of infor-
mation about heart valves, such as arrhythmias, valvular 
heart diseases, and heart failure [270], cardiac auscultation 
is often an important basis for the early detection of car-
diovascular diseases. The wearable heart sound sensor can 
avoid frictional sounds in the process of auscultation with 
the traditional stethoscope, and can carry out continuous 
monitoring. With the help of computers, automatic heart 
sound analysis does not depend on the skills, experience, and 
subjective feelings of the health care provider [271]. Heart 
sound is a signal that can be acquired in vitro and can be 
extracted in real time, but the signal is weak. In addition, the 
environmental noise is easy to be introduced in the process 
of signal collection, and there are many noises and motion 
artifacts, so high sensitivity and high SNR are required for 
the sensor.

Chen et al. based on previous studies [272], present a 
small-sized, ultrasensitive accelerometer for continuous 
monitoring of lung and heart sounds to assess the lung 
and heart status of patients [273]. Thanks to two-stage 

amplification of the asymmetric gapped cantilever struc-
tures and electric charge amplifier (Fig. 13a), the sensitivity 
of the sensor can meet the extraction of weak heart sound 
signals. Theoretical simulations showed that the response 
of the modified structure was about 9.7 times that of a com-
mercially available high-end electric stethoscope with a con-
ventional cantilever structure, and continuous monitoring 
of patient heart sounds was consistent with clinical reports.

In order to reduce motion artifacts, heart sound moni-
toring puts forward higher requirements for sensor per-
formance. To solve this problem, Cotur et al. proposed a 
stretchable and mechanically robust low-cost soft composite 
composed of silicone and hydrogel, which can be used as 
acoustic propagation medium to significantly reduce noise 
and continuously monitor PCG in the presence of clothing 
isolation (Fig. 13b, c) [274]. Even in the case of exercise, the 
recorded PCG did not change significantly due to improved 
contact between the sensor and human skin.

Usually, in order to obtain more physiological infor-
mation, the extraction of heart sounds and other physi-
ological signals is often integrated in the same wearable 
device [275]. Gupta et al. combined the accelerometer and 
microphone, and presented a wearable sealed vibration 
sensor with high sensitivity (Fig. 13d). Due to its wide fre-
quency range (up to 12 kHz), it can simultaneously moni-
tor heart and respiratory frequencies, heart sounds, lung 
sounds, and body movements (Fig. 13e). In addition, weak 
pathological heart sounds were detected in patients with 
cardiopulmonary diseases [276]. Nayeem et al. obtained 
three nanofiber layers by electrospinning process [277]. 
The upper and lower layers were PU nanomesh sheets 
deposited with polyethylene and Au, and the middle 
layer was an ultrathin (2.5 μm) PVDF nanofiber electrode 
layer (Fig. 13f). Then, an all-nanomesh mechanoacoustic 
sensor was prepared by stacking the three together. The 
nanomesh structure significantly reduces its density, the 
total weight is as small as 5 mg, and it exhibits good air 
permeability and cyclic bending performance, showing a 
sensitivity of 10,050.6 mV  Pa−1 in the frequency range of 
heart sounds (< 500 Hz). Due to the inherent piezoelectric 
effect of PVDF and the triboelectric effect between PVDF 
and the upper and lower layers of nanofibers, the sensor 
does not require external power supply and is suitable for 
long-term monitoring (> 10 h) of cardiopulmonary signals 
(Fig. 13g).
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3.8  Electrophysiological Signals

With the intensification of population aging in many con-
tourites, the incidence rate of cardiovascular and cerebro-
vascular diseases is increasing. Therefore, an increasing 
amount of research has been focused on real-time sustain-
able long-term health monitoring. Electrophysiological sig-
nals monitoring has become an important research branch. 
Electrophysiological signals include ECG, EEG, EMG, and 
EOG, etc. Among them, ECG refers to the trend chart of the 
potential changes of the myocardial cell membrane inside 
and outside the myocardial cell membrane due to the change 
of the cell membrane permeability when the cardiomyocyte 
is stimulated by a certain intensity. ECG signal can also 
be used for arrhythmia, fatigue, sleepiness monitoring, etc. 
[278].

EEG is a graph to reflect electrophysiological changes 
in brain nerve cells. It can be used to migraine [279] and 
emotion [280] recognition. In addition to using ECG sig-
nal to detect non-convulsive seizures [281], EEG can be 
used to predict epilepsy [282]. Moreover, Cao et al. used 

the dynamic changes of the frontal lobe EEG to study the 
response of patients with refractory depression (TRD) to 
ketamine [283]. Combined with the measurement of the 
Hamilton Depression Scale score, it is expected to be used 
for depression real-time inspection and treatment.

When a potential appears on both sides of the exciting 
muscle cell membrane and conducts along the cell mem-
brane to the deep part of the cell, the muscle cell contracts 
and generates a weak current. The graph of the current 
intensity over time is called EMG. Among them, surface 
EMG (sEMG) is a synthesis of the potentials of multiple 
motor units and does not need to invade the skin for meas-
urement. Therefore, it is often used in wearable devices. The 
EMG signal can be used for gesture classification [284], 
foot gesture recognition [285], silent speech recognition 
[286], human–machine interfaces [287], clinical evalua-
tions of muscle functions [288], etc. Epidermal electronic 
systems (EES) can form an intimate conformal contact with 
the skin surface through the action of van der Waals adhe-
sion alone and is therefore an important method for meas-
uring sEMG. Jeong et al. established a set of guidelines in 

Fig. 13  Wearable heart sound sensor. a Inside view of the prototype with a printed circuit board and structure of the accelerometer-based on an 
asymmetric gapped cantilever structure. Reproduced with permission [273]. Copyright (2021), Nature Publishing Group. b Preparation of the 
water–silicone composite materials and integration with acoustic sensors. c Monitoring heart sounds while clothed and comparison of water–sil-
icone based sensor and commercial stethoscope for heart sounds detecting. Reproduced with permission [274]. Copyright (2020), Wiley–VCH. 
d Cross-sectional view of the sensor showing the ultrathin capacitive gaps, satisfying low noise and broadband. e Recording of cardiopulmo-
nary vibrations, sounds, and body motion. Reproduced with permission [276]. Copyright (2021), Nature Publishing Group. f Structure of all-
nanofiber mechanoacoustic sensor. g Sensor allowing for more than 10 h of continuous monitoring. Reproduced with permission [277]. Copy-
right (2020), National Academy of Sciences
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materials, mechanics and geometric designs for EES con-
figured to measure sEMG signal. During mechanical defor-
mation of the skin, the EES demonstrated a higher SNR, 
by comparison to conventional electrodes [287]. Ramírez 
et al. proposed a wearable piezoresistive sensor composed of 
Palladium nano-islands on a single-layer graphene for meas-
uring swallowing activity after radiotherapy for head and 
neck cancer. They combined these sensors with traditional 
sEMG and machine learning algorithms to achieve real-time 
monitoring and distinguish the signals generated by cough-
ing, head-turning, and swallowing pills of different concen-
trations [289]. Ameri et al. reported a sub-micrometer thick, 
multimodal graphene electronic tattoo (GET) sensor with a 
total thickness of 463 ± 30 nm, optical transparency of about 
85%, and stretchability of more than 40%. Since conformal 
contact increases the effective contact area, GET–skin inter-
face impedance was on par with Ag/AgCl gel electrodes 
and essential for a high SNR in sEMG measurements. The 
open-mesh structure made the GET breathable and its stiff-
ness negligible [290]. Jiang et al. developed a molecular 
engineering strategy based on a topological supramolecu-
lar network and fabricated a 64-channel microelectrode 
array that can record high-density spatiotemporal dynamics 
sEMG due to the low impedance of PEDOT:PSS and the 
low modulus of the entire electrode array [291]. Xu et al. 
presented a platform, where four transcutaneous electrical 
stimulation electrodes cointegrate on a common substrate 
with EMG sensor. Through geometry design, they simulta-
neously implemented the stimulation and measurement of 
EMG signals in a compact area of skin [288]. Choi et al. also 
integrated the stimulating and recording electrodes made 
of biocompatible Ag–Au core–sheath nanowires composite 
into one wearable device [166].

EOG signal reflects changes in the potential difference 
between the cornea and the fundus and is closely related 
to eye movement with a high SNR. Zheng et al. designed a 
four-electrode method based on forehead EOG for continu-
ous alertness estimation, and it can be used in the actual 
driving environment [292]. EOG can also be used for HMI 
[293]. Electroretinogram (ERG) is also an electrical signal, 
which generated on the surface of the cornea by various neu-
rons and non-neuronal cells in the retina in response to light 
stimulation. ERG can be used to assess the functional integ-
rity of the retina. Wei et al. have produced a hydrogel contact 
lens to superimpose computer-generated visual information 
in the real world, providing instant and hands-free access to 

the information. They performed a full-field ERG record-
ing on rabbits to prove that the device is suitable for daily 
wearing [294].

At present, electrodes are still a key tool for noninvasive 
wearable health monitoring devices to obtain electrophysi-
ological signals, and many researchers are dedicating to opti-
mizing electrodes. On one hand, reducing motion artifacts 
and improving skin compatibility are important factors to 
consider [295]. On the other hand, the latest research pro-
gress of the electrode mainly focuses on the innovations in 
material selection, structure, and process flow simplification 
to optimize electrode performance. In terms of materials, the 
electrode performance is optimized mainly by adding highly 
conductive materials or coating a highly conductive layer, 
such as adding PEDOT:PSS [296, 297], Ag ink [298, 299], 
AgNWs [88, 300], graphene [289], GO [301, 302], rGO 
[297, 303], Au [304, 305], and carbon nanofillers [306]. In 
addition, it is also important to choose suitable, soft, stretch-
able, and biocompatible substrates or polymer materials, 
such as PET [300, 307], PDMS [304, 308], and e-textiles 
[296, 301]. Some typical parameters of soft electrodes are 
listed in Table 3.

With regards to structure, the current trend in electrodes 
design is shifting from a 2D structure to a 3D structure. For 
example, Ren et al. demonstrated that the soft serpentine-
shape microneedle array electrodes (MAEs) can reduce 
induced strain and prevent the conductive pattern from bro-
ken (Fig. 14a) [298]. An electrode designed into a bipolar 
concentric shape (Fig. 14b) [299] or a dual tripolar concen-
tric ring (Fig. 14c) [308] can obtain high-fidelity ECG sig-
nals. As shown in Fig. 14d, He et al. fabricated the detecting 
patch into a brush structure to reduce the influence of skin 
surface hair on the monitoring results [304]. To overcome 
the poor adhesion of electrodes in sweating or underwater 
environments, Kim et al. mimicked the microchannel net-
work of the tree frog toe pad and the convex cup structure on 
the octopus sucker and designed similar structure to improve 
the adhesion of the electrode in a humid environment [307]. 
Similarly, Kim et al. designed a mushroom-shaped micropil-
lar surface as the gecko to enhance the adhesion of the elec-
trode (Fig. 14d) [306]. Yang et al. utilized the interlocking 
structure formed between interfacial polymerized conductive 
PPy and silk fibroin (SF) gel to ensure the SF biocomposite 
electrode still has good shape retention and adhesion even 
under sweating conditions [309].
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In addition to improving the conductivity and reducing 
the electrode–skin interface impedance to obtain a high 
SNR, some studies also discussed other aspects of electrode 
performance optimization, for example the washability of 
the electrodes. Textile electrodes made of cotton, polyamide, 
and polyester coated with PEDOT:PSS can monitor ECG 
signals after washing 50 times [296]. Compared with pure 
PEDOT:PSS and rGO, PEDOT:PSS-rGO compound has 

better washing stability [297]. By adding super hydrophilic 
zwitterionic groups, epidermal lipids can also be removed by 
washing with water (Fig. 14e) [304]. The high-aspect-ratio 
micropillars with spatula tips make the electrode surface 
superhydrophobic [306]. Shao et al. prepared waterproof 
electrodes coated with dopamine-containing polymer, which 
can be used for real-time ECG signal monitoring underwater 
[310].

Table 3  Characteristics of different electrodes

Electrode materials Signal Type Process Pattern Advantage References

Modified 
PEDOT:PSS

ECG Textile electrodes Dip Coating Solid circle More than 50 wash-
ing cycles

[296]

PET, Ag Ink ECG, EMG, EEG Microneedle array 
electrodes

Laser-direct writing, 
Magneto-rheo-
logical drawing 
lithography

Serpentine Low electrode–skin 
interface imped-
ance

[298]

Graphene/Palladium 
Nanoislands/
PMMA/PI Tape

sEMG Piezoresistive sensor Thermal evapora-
tion, Sputtering, 
Spin coating

Dog-bone Monitor swallowing 
function

[289]

rGO EOG E-Textiles Chemically reduce – Capture EOG pat-
terns

[301]

Ag Ink or 
PEDOT:PSS, PET

ECG Textile Screen printing Concentric ring High spatial resolu-
tion

[299]

rGO nanoplatelets, 
PET

ECG Skin patches Photolithography, 
Reactive-ion etch-
ing, Spray coating

Hexagonally sym-
metrical micro-
channels, convex 
cup

Greater adhesion on 
wet skin

[307]

AgNWs, GO, PET ECG Hybrid electrode Screen printing – High transparency, 
good for mass 
production

[300]

AgNWs/PDMS ECG Composite electrode Screen printing Bipolar or Tripolar 
concentric ring

Reject powerline 
interference effi-
ciently

[308]

Aproanthocyanins/
rGO/PVA

ECG, EMG Hydrogel electrode Beak – Rapid self-healing, 
more accurate and 
stable detection

[303]

PMPC-Au/PDMS ECG, EMG On-skin electrode Thermal evapora-
tion, Surface-initi-
ated atom transfer 
radical polymeri-
zation

Polymer brush Clean the epidermal 
surface lipids 
by simple water 
rinsing

[304]

PEDOT:PSS-rGO 
NPs

ECG Textile electrode Coated knitted 
textile

Same as the 
commercial gel 
electrode

Combination of 
exhaust dyeing, 
Improved the 
washing stability 
and degradation 
of the textile elec-
trodes significantly

[297]

Carbon Nanofillers /
PDMS

ECG On-skin electrode Deep reactive-ion 
etching, Photoli-
thography

Mushroom structure Self-cleaning, 
Strong adhesion to 
human skin

[306]
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Fig. 14  Typical electrodes with conductive patterns. a Image of the soft MAE. Reproduced with permission [298]. Copyright (2018), MDPI. b 
Schematic diagram of concentric ring electrodes (CREs) and CRE integrated with an adjustable belt. Reproduced with permission [299]. Copy-
right (2018), MDPI. c AgNWs paste screen printed on a glass substrate with a shape of the tripolar concentric ring. Reproduced with permission 
[308]. Copyright (2019), Institute of Electrical and Electronics Engineers. d Configuration of the designed electrode (left) and the water-enabled 
oil-cleaning effect (right). Reproduced with permission [304]. Copyright (2020), Wiley–VCH. e A skin patch inspired by the microchannel 
network of the tree frog toe pad and the convex cup on the octopus’s sucker. Reproduced with permission [307]. Copyright (2020), Wiley–VCH
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3.9  Brief Summary

Up to now, many physiological signals (such as pulse, res-
piration, human motion, IOP, phonation, tactile sensation, 
heart sounds, ECG, EEG, EMG, EOG, etc.) can be detected 
by the contact methods. During the monitoring process, the 
tight interface between soft electronics and skin is important 
to the high signal quality. As the most devices discussed 
above, the sensitive material is protected by the soft pack-
age for example PDMS and Ecoflex, rather than come into 
contact with skin directly. Therefore, transferring the soft 
sensitive material to the soft package is a significant process. 
In addition, to realize the tight interface, the soft package 
material should have similar elastic modulus and Poisson’s 
ratio with skin, which can avoid the relative motion and 
noise. The thickness of total device consists of soft sensitive 
material and package should be as thin as possible. Taking 
the advantage of wrinkle structure of skin, the device with 
the thickness less than 10 μm can grasp skin tightly. The 
airtight package will greatly influence the skin metabolism 
and wearing experience, which limits the wide application of 
the soft electronics. The nanomesh and other fiber package 
is a good solution.

4  Soft Electronics Assisted by Machine 
Learning Algorithm

Machine learning algorithms are multidisciplinary math-
ematical model mapping methods, which specially study 
how computers simulate or realize human learning behavior, 
so as to acquire new knowledge or pattern, reorganize the 
existing knowledge structure and constantly improve its own 
performance. Nowadays, machine learning can help human 
beings in many fields. The machine learning algorithm can 
be divided by some methods, for example supervised learn-
ing, unsupervised learning, and reinforcement learning, or 
classification and regression. In 2011, Kim et al. in Rogers’ 
group demonstrated the epidermal electronics [311]. They 
used the algorithms to classify the EMG signals.

Supervised learning requires training data with labels. 
The algorithm is told the correct answers during the learn-
ing process. After learning for enough time and data, the 
algorithm then deals with the test set like an examination. 
Most of the algorithm used in the soft electronics is the 
supervised learning. Unsupervised learning does not need 

labels, it only has input data, and the algorithm can only find 
the law in the data by itself. The reinforcement learning is 
a kind of machine learning algorithm inspired by behavior-
ist psychology, concerned with how software agents ought 
to take actions in an environment so as to maximize some 
notion of cumulative reward. Through this optimal strategy, 
intelligent physical fitness actively adapts to the environment 
to maximize future rewards. The reinforcement learning has 
not been widely used in the soft device, which will not dis-
cussed carefully in this review.

Classification and regression model both predict the 
output according to the input. If the output of the machine 
learning model is the class belongs a discrete value, such as 
an integer value, the model was called a classification model, 
for example, forecasting the meaning of different gesture and 
the disease type represented by the physiological signal. If 
the output of the machine learning model is the value of an 
object, the model with continuous output values is called a 
regression model. For example, the algorithm predicts the 
current body temperature through the previous temperature 
and the pressure values through the skin appearance. The 
results of classification model are certain, which only has 
two conditions right and wrong. Regression model gives an 
approximate prediction of the real value, which is uncer-
tain. The closer the predicted value to the real value, the 
smaller the error. Then the model is considered to be a good 
regression model. In this review, due to the classification 
algorithms were used in most of the research on soft elec-
tronics, the classification model was mainly discussed. In 
this section, many classic machine learning algorithms will 
be first discussed. Due to the rapid development and its tight 
combination with soft electronics, the neural network will be 
introduced carefully. Some parameters of algorithm-assisted 
soft electronics are illustrated in Table 4.

4.1  Classic Machine Learning Algorithms

Classic machine learning methods, such as SVM and 
K-mean, usually have smaller computation scale, which 
usually corporate with data dimension reduction or feature 
extraction methods such as PCA, LDA, Fourier transform 
(FT), and WT. The classic machine learning methods are 
more suitable for those with obvious features and few clas-
sification types. Therefore, the dimension reduction and 
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classic machine learning classification algorithms will be 
carefully discussed.

4.1.1  Dimension Reduction Algorithms

4.1.1.1 Principal Component Analysis PCA is an unsu-
pervised dimension reduction method, whose main function 
is compression and simplification. When studying multi-
variable problems, too many variables will increase the 
complexity of the work. The goal is to obtain as much effec-
tive information as possible by analyzing as few variables 
as possible. In many cases, there is a certain correlation 
between variables, that is, it can be considered that there is 
overlap between the information reflecting this topic. PCA 
is a multivariate statistical method which can analyze the 
correlation between multiple variables. First, it is assumed 
that the data follows the Gaussian distribution. Then, how 
to reveal the internal structure of the total variables through 
a few principal components is studied. A group of variables 
that may have correlation is converted into a group of line-
arly unrelated variables through orthogonal transformation. 
In other words, the n-dimensional feature is mapped to the 
k-dimensional feature, which is a new orthogonal feature, 
also known as the principal component. After the PCA, a 
group of orthogonal coordinate axes originated from the 
original space are found. Among them, the first new coor-
dinate axis is the direction with the largest variance in the 
original data, the second new coordinate axis is the one with 
the largest variance in the plane orthogonal to the first coor-
dinate axis, and the third axis is the one with the largest 
variance in the plane orthogonal to the first and second axes 
(Fig. 15a).

Moin et al. reported a wearable and high-density sEMG 
biosensing system that uses PCA dimension reduction for 
hand gesture classification [312]. 64 Ag electrodes array 
were fabricated on the PET substrate by screen printing and 
connected with a miniaturized printed circuit board (PCB) 
that includes complex sensing, processing and telemetry 
components. An ECG Ag/AgCl electrode attached on the 
elbow was applied as reference. The total weight of the 
sEMG system is only 26 g (Fig. 15b). Then, the system 
could be used to monitor muscle activity, which can also 
reflect the hand gesture. To process the hyperdimensional 
data detected by the sEMG system, PCA was performed on 
the classification windows consisting of five feature vec-
tors, as well as on projected spatiotemporal hypervectors 
from trials of the single-degrees of freedom (DOF) gestures. 
The top two principal components show general clustering Ta
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of different gestures (Fig. 15c). The system can classify 13 
DOF hand gestures with 97.12% accuracy for two partici-
pants when training with a single trial per gesture. A high 
accuracy (92.87%) is preserved on expanding to 21 gestures 
(combined with the multi-DOF gesture) (Fig. 15d).

Zhou et al. realized a wearable sign-to-speech transla-
tion system based on yarn-based stretchable sensor arrays 
(YSSAs) and a wireless PCB (Fig. 15e) [31]. Assisted by 
machine learning, the system can accurately translate the 

hand gestures into speech. The yarn unit is composed of a 
conductive yarn coiled around a rubber microfiber. Then, the 
entire body is sheathed with a PDMS sleeve. The yarn can be 
self-powered with the sensitivity of 2.47 V. After attached on 
the hand, the system can translate the hand gesture assisted 
by PCA and SVM algorithm (Fig. 15f). A multi-class SVM 
algorithm, which will be discussed later, is applied to clas-
sify hand gesture patterns by using the extracted features 
with PCA dimensionality reduction. By analyzing 660 hand 

Fig. 15  Signals detected by the soft system and processed by PCA. a Schematic diagram of PCA. b 64 channels sEMG detected system on the 
forearm of a participant. c Single-DOF gesture subset. The multi-DOF gesture subset. d PCA for all classification windows from five trials of 
13 single-degrees of freedom gestures. The top two principal components are plotted for features. Reproduced with permission [312]. Copyright 
(2021), Springer Nature. e Photograph of YSSA and the wireless PCB attached on a subject’s hand. f Photographs of the sign language hand 
gestures according to ASL and the corresponding voltage profiles generated by YSSA as recognition pattern. Reproduced with permission [31]. 
Copyright (2020), Springer Nature
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gesture recognition patterns, the recognition rate can be up 
to 98.63% and a real-time translation can be realized with 
the recognition time less than 1 s.

4.1.1.2 Linear Discriminant Analysis When processing a 
given training sample set, LDA projects the samples onto a 
straight line, which makes the projection points of similar 
samples as close as possible and the projection points of 
different samples as far as possible. In a word, the intra class 
variance is the smallest and the inter class variance is the 
largest after projection (Fig. 16a). When used as classifica-
tion algorithm, data is projected onto the straight line, and 
then the category of the new sample is determined accord-
ing to the position of the projection point. PCA and LDA 
have some similarities. For example, both PCA and LDA 
can be used to reduce the dimension of data. Both of them 
use the matrix eigen decomposition in dimension reduc-
tion and assume that the data follows Gaussian distribution. 
However, compared with PCA, LDA is a supervised dimen-
sion reduction algorithm. In PCA, the algorithm does not 
consider the label of data. LDA selects the projection direc-
tion with the best classification performance, while PCA 
only selects the direction with the largest variance of the 
sample point projection.

Liu et  al. reported a mechanoacoustic monitoring 
platform for multimodal operation, which can record 
EMG and sound from the skin (Fig.  16b) [27]. The 

mechanoacoustic–electrophysiological sensing platform 
consists of circuit interconnects, accelerometer, amplifiers, 
resistors, capacitors, small-scale chip, a pair of electrophysi-
ological measurement electrodes (Au), etc. All components 
are encapsulated above and below by an ultralow-modulus 
elastomeric core (Ecoflex, Smooth-On), which can realize 
the robustness of adhesion to the skin. The intimate con-
tact between the sensors and the skin renders the signal 
unaffected by ambient acoustic noise. With appropriate 
placement, the platform can simultaneously capture both 
EMG signals from articulator muscle groups and acoustic 
vibrations from the vocal cords (Fig. 16c). Combining the 
platform and a standard microphone, speech recognition 
can be realized. The signals were averaged and reduced in 
dimensionality by PCA to form a feature vector. Then, the 
feature vector was finally classified using LDA (Fig. 16d). 
Finally, the system can be used in real time to play a Pac-
Man game and express four commands: “left,” “right,” “up,” 
and “down.” (Fig. 16e).

4.1.1.3 Fourier Transform and  Wavelet Transforms FT 
decomposes the signal into the superposition of a series of 
trigonometric functions of different frequencies for analy-
sis. However, for non-steady state signals, FT cannot reflect 
the frequency change under different time. When FT is 

Fig. 16  Signals detected by the soft system and processed by LDA. a Schematic diagram of LDA. b Photograph of an epidermal mechanoa-
coustic sensing electronics attached on the vocal cords. c EMG (top) signals and vocal vibrational (bottom) signals detected simultaneously from 
the neck. d Confusion matrix of the result of the speech classification. e Demonstration of speech recognition and classification in a Pac-Man 
game, which can realize left, right, up, and down instruction. Reproduced with permission [27]. Copyright (2016), American Association for the 
Advancement of Science
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applied, each frequency component calculated corresponds 
to the time range of the whole signal, which makes the time 
information of the original signal lost, and the change of fre-
quency with time cannot be analyzed, and the sudden change 
occurring at a certain time cannot be located. In order to 
overcome the shortcomings of FT, the whole time-domain 
signal is decomposed into numerous smaller processes of 
equal length (windowed). Each process is approximately 
stable, and then FT is used to obtain the frequency spectrum, 
which called short-time Fourier transform (STFT). The nar-
row window has high time resolution and low frequency 
resolution, and the wide window has low time resolution 
and high frequency resolution. Therefore, for time-varying 
non-steady signals, the high-frequency part is suitable to be 
analyzed by small windows, and the low-frequency part is 
suitable to be analyzed by large windows. However, during 
one time of STFT, the width of the window is fixed. There-
fore, STFT also has its limitations.

WT can be regarded as the base transform of FT, which 
transforms the infinitely long trigonometric function 
base of FT into a finite long attenuated wavelet base. WT 
decomposes the signal into a series of wavelet functions 
with different scales and different times, and these wave-
let functions are obtained from a mother wavelet through 
translation and scaling. The energy of wavelet base is lim-
ited and concentrated near a certain point. In addition, the 
integral value of wavelet base is zero. Therefore, WT can 
be used for time–frequency analysis to obtain the time–fre-
quency spectrum of the signal. Wavelet can also be consid-
ered as a band-pass filter, which only allows signals whose 
frequency is close to the center frequency of wavelet after 
scaling (Fig. 17a).

Lee et al. reported a digital stethoscope using a soft 
wearable system as a quantitative disease diagnosis tool 
for various diseases [29]. The soft wearable stethoscope 
(SWS) system includes a microelectronic mechanical sys-
tem (MEMs) microphone sensor, a soft thin film circuit 
wiring, a rechargeable battery, and a Bluetooth-low-energy 
(BLE) unit for wireless data transmission. Then, the sys-
tem was packaged in an elastomeric enclosure with an 
inner silicone gel (4 kPa in Young’s modulus) (Fig. 17b). 
Compared with other substrates (3 M 2476P tape, 3 M 
Tegaderm tape, and 3 M Micropore tape), the silicone sub-
strate can realize better device-skin contact, which can 
improve the SNR to 16 dB. WT was used to the noise 
filtering processes of heart and lung sound signals, which 
was crucial in the signal processing and classification 

because the microphone captures all sounds from the 
body and the surrounding (Fig. 17c). Then, each sam-
ple (Crackle, rhonchi, wheeze, stridor, and normal case, 
Fig. 17d) is clustered into 2-s packets and fed into CNN 
algorithm. The classification results show a high accuracy 
of 94.78%.

4.1.2  Classic Machine Learning Classification 
Algorithms

4.1.2.1 Gaussian Naive Bayes Gaussian Bayes model 
refers to the assumption that the conditional probability of 
each feature dimension of the sample follows the Gaussian 
distribution. Then, the posterior probability of the new sam-
ple belonging to each category was calculated according to 
the Bayesian formula (Eq. 1). Finally, the category of the 
sample was obtained by maximizing the posterior probabil-
ity.

 Naive Bayesian method is a simplification on the basis of 
Bayesian algorithm, where the distribution is assumed to 
be conditionally independent when the target value is given 
(Eq. 2).

 GNB assumes that each parameter satisfies Gaussian dis-
tribution and has independent ability to predict output vari-
ables. The probability of the dependent variable classified 
into each group was calculated, and the final classification is 
the combination of all parameters and assigned to the clas-
sification with higher probability (Fig. 18a).

Ozer et al. developed a soft processing engine named 
‘natively soft processing engine’ (NFPE) that operates as a 
central processing unit (CPU), where machine learning algo-
rithms can be implemented for an odor recognition applica-
tion [313]. The NFPE is fabricated using 0.8-μm IGZO TFT 
technology, and contains 1024 logic gates. The n-type TFT 
circuits are made on a soft PI substrate with a minimum sup-
ply voltage of 3 V. A soft e-nose sensor array consisting of 
multiple organic field effect transistors (OFETs) (Fig. 18b). 
Each OFET sensor has an organic semiconductor channel 
that is sensitive and selective to volatile organic compounds 
(VOCs) in odor and can generate a current when exposed 
to odor. To develop ML hardware to classify odor, a num-
ber of standard ML algorithms, such as SVM, multilayer 

(1)P(A|B) = P(B|A) × P(A)∕P(B)

(2)P(AB) = P(A) × P(B)
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Fig. 17  Signals detected by the soft system and processed by WT. a Schematic diagram of WT. b Exploded view of the SWS with multiple lay-
ers of deposited materials. c Schematic illustration of the flowchart of the wavelet denoising algorithm to realize decomposition and recomposi-
tion of collected sounds. d Scalogram of crackle, rhonchi, wheeze, and stridor data in sample series versus normalized frequency with density 
after the wavelet denoise for each sample. Reproduced with permission [29]. Copyright (2022), American Association for the Advancement of 
Science

perceptron (MLP), DT, kNN, and GNB were investigated, 
and the GNB has the best performance with a prediction 
accuracy of 92%. Finally, the ‘univariate Bayes feature vot-
ing classifier’ (UB-FVC) was implemented in the NFPE for 
sweat odor classification (Fig. 18c, d).

4.1.2.2 Support Vector Machine SVM is a generalized 
linear classifier that classifies data by supervised learning. 
The decision boundary is used to make the classification, 
which is the maximum margin hyperplane. When the data 
is linearly separable, the optimal classification hyperplane 

of two types of samples can be found in the original space. 
When the linearity is inseparable, the slack variable is 
added and the samples in the low dimension input space 
are mapped to the high dimensional space by using non-
linear mapping to make them linearly separable, so that 
the optimal classification hyperplane can be found in the 
new feature space. The tool to rise the dimension is kernel 
function.

SVM can also be used for multi classification problems 
by combining many two classifiers to construct multiple-
class classifier. During the training process, the samples 
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of a certain class are classified into one class, and the 
remaining samples are classified into another class. Thus, 
K SVMs are constructed from the samples of K classes. 
The unknown samples are classified into the class with the 
largest classification function value (Fig. 19a).

As mentioned above, Zhou et al. developed a multi-class 
SVM algorithm to classify hand gesture patterns using the 
extracted features with PCA [31]. Then, each class of the 
acquired hand gesture recognition pattern is set as a classifier 
sample, and the other remaining samples are set as another 
classifier sample obtain a binary-class SVM classifier and 
then create a multi-class classifier.

Xu et al. proposed a collaborative interface including 
EOG and tactile perception for fast and accurate 3D HMI 
[314]. The EOG signals are mainly used for the 2D (XY-axis) 
interaction, and the tactile sensing is utilized for the Z-axis 
control in the 3D interaction. The EOG electrodes and tac-
tile sensor are based on the honeycomb LIG. Patterned LIG 
produced on the commercial PI film was transferred to the 
medically nonsensitive PU film as the electrodes, which are 
attached around the eyes for monitoring nine different eye 
movements (Fig. 19b). The open eyelids, the left and right 
movements of the eyeball can make changes in EOG that 
reflect the potential difference between the retina and cornea. 

Fig. 18  Signals detected by the soft system and processed by GNB based on soft chip. a Schematic diagram of GNB. b Schematic diagram of 
a single OFET sensor and an e-nose sensor array containing eight OFET sensors. c Microarchitecture of the UB-FVC inference stage. Five-bit 
sensor data are received serially and demultiplexed (block 1) into the sensor data buffer (block 2). Each feature is implemented as a multiplexor 
(blocks 3). Then, a fast histogram count calculation is performed by Block 4 for the eight BCs or votes. The highest histogram value is calculated 
through a comparator reduction tree (‘Find MAX’ block 5). Five parallel comparators (block 6) take the five histogram values and compare each 
one with the highest histogram value from block 5 to find the statistical mode. d Micrograph of the NFPE implementing the UB-FVC micro-
architecture. Reproduced with permission [313]. Copyright (2020), Springer Nature
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Nine eye movement signal sets were trained and verified by 
the lightweight SVM classification algorithm that can be 
easily implemented into wearable electronics (Fig. 19c). The 
confusion matrix results show that the average prediction 
accuracy of the algorithm is 92.6% (Fig. 19d). To realize 

3D HMI, a 4 × 4 capacitive tactile sensor array was realized 
with the LIG as the electrodes, which can control the Z-axis, 
which can provide the simplest and most convenient interac-
tion for people with mobility difficulties.

Fig. 19  Signals detected by the soft system and processed by SVM. a Schematic diagram of SVM. b Position of honeycomb graphene elec-
trodes attached around eyes of tester. c Flow chart of the SVM algorithm for eye movement classification. d Confusion matrix of SVM clas-
sification training recognition accuracy. Reproduced with permission [314]. Copyright (2022), American Chemical Society. e A tester seated in 
a powered wheelchair with the LED stimulus array in front of the tester. f EEG data recorded at each state, labeled as alpha rhythms, 11.1, 15.2, 
12.5, and 16.7 Hz SSVEPs respectively, which corresponds to different commands. Target machines to be controlled by SSVEPs signals, includ-
ing a wireless electric wheelchair with five classes (no action, forward, rotate anticlockwise, rotate clockwise, and reverse), and a wireless vehi-
cle with the same commands as the wheelchair. Reproduced with permission [32]. Copyright (2019), Springer Nature
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Mahmood et al. developed a fully portable, wireless, and 
soft scalp electronic system (referred to as ‘SKINTRON-
ICS’), containing an ultrathin aerosol jet-printed skin elec-
trode, three soft conductive polymer electrodes and a soft 
membrane circuit [32]. The EEG recording setup for two 
channels (O1–Oz and O2–Oz) incorporates an aerosol jet-
printed skin-like electrode. Due to the extreme mechanical 
compliance and small form factor, SKINTRONICS exhibits 
a significant reduction of noise and electromagnetic inter-
ference, compared to the existing portable EEG systems 
with rigid electronic components. The system can realize 
real-time long-range wireless data acquisition and accu-
rate classification of steady state visually evoked potentials 
(SSVEPs) with a high information transfer rates from only 
two recording channels. During the experiments, the testers 
were seated in front of the LED stimulus, where all four 
frequencies (11.1, 12.5, 15.2, and 16.7 Hz) are presented 
simultaneously (Fig. 19e). The testers conducted five tasks, 
including a null task (eyes closed for alpha rhythms) and 
gazing at four different LED locations. Then, SVM and 
CNN models are able to achieve the EEG classifying with 
high accuracies using frequency–domain features. Finally, 
the subjects used the system and algorithm to control three 
target machines, including a wireless electric wheelchair, a 
wireless mini-vehicle, and presentation software (Fig. 19f).

4.1.3  Dynamic Time Warping

During machine learning process, the length of the two data 
that need to be analyzed may not be the same. For example, 
the duration of each pulse wave may be different and the 
speech speed of different people is different. Dynamic time 
warping (DTW) is a method to measure the similarity of two 
data with different lengths. In complex cases, the distance 
between two data series that cannot be effectively obtained 
using the traditional Euclidean distance. Comparing arrays 
having different lengths can be realized by constructing one-
to-many and many-to-one matches in order to minimize the 
total distance between the two series (Fig. 20a). DTW is 
widely used in speech recognition, gesture recognition, data 
mining, and information retrieval.

Xu et al. presented a textile-based sensing system, named 
Smart Cushion, which can analyze the sitting posture of 
tester [315]. The single sensor in the array is a fiber-based 
yarn which is coated with piezoelectric polymer. The total 

sensor surface area is 10 × 10 inches, where the area of 
each square sensor is 5/8 × 5/8 inch. Each bus is 5/8 inch in 
width, and the space between sensors is 1/8 inch (Fig. 20b). 
Each sensor has an independent ADC to sample the pres-
sure. Instead of processing pressure map (2D image with 
256 pixels in total) directly, the data was converted into a 
pressure profile sequence (1D time series), which can reduce 
the dimension of the data and tackle the rotation issue easier 
(Fig. 20c). Then, the DTW was used to classify different 
sitting postures (Fig. 20d). The overall accuracy of the algo-
rithm over all sitting postures can be 85.9%.

4.1.3.1 k‑Nearest Neighbor kNN is a supervised learning 
classification method. It has a wide range of applications 
and high accuracy when the sample size is large enough. 
When new data without labels is input, each feature of the 
new data is compared with the corresponding feature of the 
data in the training set, and then the algorithm calculates the 
classification label of the most similar data (nearest neigh-
bor) of the sample. Only the first k-nearest data in the train-
ing set was selected, which is why the algorithm is called 
kNN. k is usually an integer less than 20. Finally, the most 
frequent label among the k-nearest data is selected as the 
classification of the new data. The schematic diagram of 
kNN (k = 3 and k = 7) is shown in Fig. 21a.

Sun et al. reported the design of an integrated system for 
decoding facial strains and for predicting facial kinemat-
ics [316]. Aluminum nitride (AlN) piezoelectric thin films 
sandwiched between two molybdenum (Mo) electrodes 
and encapsulated with a layer of silicon dioxide  (SiO2) was 
applied as strain sensor on compliant PDMS substrates. The 
low-modulus substrate is comparable to the human epider-
mis which enables soft reversible lamination of the conform-
able facial code extrapolation sensor (cFaCES) (Fig. 21b). 
When laminated onto the facial skin, the cFaCES enables 
the creation of a library of motions from which a large sub-
set of human language could be inferred (Fig. 21c). Each 
motion can be classified as one of the motions in the library 
by a real-time decoding (RTD) algorithm. The kNN–DTW 
model was used and runs by the onboard processor of the 
Raspberry Pi (Fig. 21d).

Kwon et al. developed an all-printed nanomembrane 
hybrid electronics system (referred as “p-NHE”), incor-
porating machine learning, offers multi-class and versatile 
HMI [30]. Ag was used as the conductive circuit traces, 
functionalized conductive graphene was used as the oxida-
tion barrier for Ag as well as sensing electrodes, and PI 
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was applied as the insulating and structural support layers. 
The aerosol jet-based printing method with two atomizing 
modes (ultrasonic and pneumatic) can realize the deposi-
tion of inks with a wide range of viscosity without the use 
of pattern masks or screens. The all-printed EMG devices 
can be used as the HMI scenarios including hand gesture-
controlled wireless target controls, such as drones and a 
computer software. The tester wore the p-NHE to gener-
ate several motions, including open hand, closed hand, 
flexion of index finger, and wrist flexion (Fig. 21e). Two 
types of machine learning algorithms including kNN and 
CNN. A 3D, three-channel RMS plot from three devices 
shows seven distinctive clusters, generated by motions of 
individual fingers and hand gestures over repeated trials 
(Fig. 21f).

4.1.3.2 K‑Means K-means algorithm is a classical clus-
tering method, and it is an unsupervised learning classifi-
cation method. The basic idea of K-means algorithm is to 
cluster with k points as the center and classify the objects 
closest to them. After the iteration, the value of each cluster 
center is updated one by one until the best clustering result 
is obtained. Firstly, K objects are randomly selected from N 
data objects as the initial clustering centers. For the remain-
ing objects, they are assigned to the nearest clusters accord-
ing to the distance between them and the cluster centers. 
Then, the cluster center of each new cluster is updated to the 
mean value of all objects in the specific cluster. This pro-
cess is repeated until the convergence of standard measure 
function. The K clusters have the following characteristics: 
the internal data of each cluster is as compact as possible, 
and the distance between clusters is as large as possible 
(Fig. 22a).

Fig. 20  Signals detected by the soft system and processed by DTW. a Schematic diagram of DTW. b Photograph of Smart Cushion with textile 
sensor array. c A DTW example of two pressure profile sequences. d Sitting posture analysis: seven sitting postures (top) are evaluated and each 
eTextile pressure map (middle) is transformed to a corresponding pressure profile sequence (bottom). Reproduced with permission [315]. Copy-
right (2013), Institute of Electrical and Electronics Engineers
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Fig. 21  Signals detected by the soft system and processed by kNN. a Schematic diagram of kNN (k = 3 and k = 7). b Conformable sensor laminated onto a curved 
glass cylinder. Insets: the edge of the AlN sensing element and serpentine electrodes (top right); and the set of eight serpentine electrodes from four sensing ele-
ments connecting to Al bonding pads (bottom right). c cFaCES (white dashed box) laminated onto various testers at different positions of the face. d Schematic of 
the EMG RTD system. A cFaCES with four sensing elements is laminated onto the face and connected to a signal processing board (SPB) for differential signal 
amplification and analog-to-digital conversion. Then, the digital signal from the SPB is fed to the Raspberry Pi, which automatically detects facial motions and 
classifies it. The classification is based on a kNN-DTW algorithm, where the k = 3. The dataset contains seven motions: twitch (T), smile (S), open mouth (OM), 
pursed lips (PL), mouthing the vowel ‘I’ (V–I), mouthing the vowel ‘E’ (V–E), and mouthing the vowel ‘O’ (V–O), which can be mapped to five selector motions 
(T, S, OM, PL, and V–I) to select options within each command or language message menu. Reproduced with permission [316]. Copyright (2020), Springer Nature. 
e Schematic illustration (top) of target muscles on forearm to recognize multiple gestures and photographs (bottom) capturing three p-NHE positioned on targeted 
muscles, including palmaris longus, brachioradialis, and flexor carpi ulnaris. Enlarged image of the system with a circuit and electrodes. f 3D plot of three-channel, 
EMG root-mean-square (RMS) signals for clear differentiation of seven different gestures. Reproduced with permission [30]. Copyright (2020), Springer Nature
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Gou et al. reported an artificial eardrum using an acous-
tic sensor based on 2D MXene  (Ti3C2Tx), which can real-
ize the function of a human eardrum for voice detection 
[26]. Besides, it can also be used for the voice classifica-
tion by combining with the machine learning algorithm. 
The artificial eardrum has two-stage amplification for the 
voice signals. The interlayer spacing of  Ti3C2 nanoflakes 
(1.31 nm) can be greatly changed under an external pres-
sure, indicating that MXene can give a sensitive mechanical 
response. Hence, the MXene can be regarded as the first-
stage enhancement of sound sensing. In addition, the surface 
of PDMS substrate was fabricated into micropyramid array 
structure, which can provide a second-stage enhancement 
of sound sensing (Fig. 22b). Therefore, the MXene eardrum 
shows an extremely high sensitivity of 62  kPa−1 and a detec-
tion limit of 0.1 Pa. It can maintain a higher SNR of 50 dB 
from 200 to 900 Hz and remains 40 dB at higher frequencies 
up to 2.5 kHz. Finally, the K-means algorithm was used to 
classify 280 voices (seven kinds of words, namely, “sen-
sor,” “excellent,” “hello,” “happy,” “beautiful,” “science,” 
and “national”) with a high accuracy of 95% (Fig. 22c, d).

4.1.3.3 Decision Tree A DT is a tree structure (binary tree 
or non-binary tree), which includes a root node, several 
internal nodes and several leaf nodes. The leaf node cor-
responds to the decision result, and each other node corre-
sponds to an attribute test. Samples contained in each node 
are divided into child nodes according to the attribute test. 
The process of decision-making starts from the root node. 
Then, the classification is made according to the feature 
attributes, and select the output branch until reaching the 
leaf node, whose category is the decision result (Fig. 23a).

In the DT flowchart, the ellipse represents the judgment 
module, and the rectangle represents the termination mod-
ule. It indicates that the conclusion has been reached and the 
operation can be terminated. The left and right arrows are 
called branches. The most important part of the DT algo-
rithm is the construction of the DT, which is measuring the 
attribute selection and determine the topological structure 
between each feature attribute. The construction process 
usually has three steps: feature selection, generation of the 
decision tree, and pruning of the DT. The key to constructing 
a decision tree is the split attribute, which construct differ-
ent branches at a node according to different divisions of a 

Fig. 22  Signals detected by the soft system and processed by K-means. a Schematic diagram of K-means. b Schematic diagram of the MXene 
eardrum. The device consists of two layers of MXene-PDMS-PE film. c Normalized response waveform of seven kinds of words recorded for the 
1st and 40th times by the MXene eardrum. d Visualizing the pronunciation information of seven kinds of words within 280 voices after dimen-
sionality reduction. Reproduced with permission [26]. Copyright (2022), American Association for the Advancement of Science
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characteristic attribute. The goal of DT is to make the items 
to be classified in a split subset belong to the same category 
as much as possible.

Wu et al. developed an ionic conductive nanocomposite 
hydrogel (PAMAC-L) with ultra-stretchability and self-
healing functions [317]. The PAMAC-L was fabricated by a 
facile one-step process. MWCNT was selected as a reinforce-
ment agent with large aspect ratio and ultrahigh mechanical 
strength, which endows the hydrogel networks with excellent 
mechanical performances (i.e., tensile strength, stretchabil-
ity and toughness up to 1.09 MPa, 4075%, and 12.8 MJ  m−3, 
respectively). The reversible physical crosslinks including 
ionic interactions and hydrogen bonding endows the PAMAC-
L hydrogel with autonomous self-healing capability. Combin-
ing machine learning algorithm, the hydrogel-based platform 
exhibits great recognition accuracies to human handwriting 
motion. Traditional handwriting on paper using a pen hold 

by tester was investigated. By writing 26 English letters from 
“a” to “z” in the size of daily handwriting, the slight move-
ments of the finger were sensitively detected by the hydrogel 
sensor attached on the finger, and a series of current signals 
was gathered. The average recognition rates calculated from 
10 writings of each word reached 87%. Another handwrit-
ing manner, writing in the air using the forefinger was moni-
tored and recognized, by which the writing motion can also 
be translated into digital text without the keyboard or touch 
panel (Fig. 23b, c). The average recognition accuracy of 26 
English letters can be 91.8%. The Machine Learning toolbox 
of MATLAB was used to run all available algorithms and the 
model showing the best predicted accuracy (Ensemble Clas-
sifier: Bagged Trees) was selected.

Fig. 23  Signals detected by the soft system and processed by DT. a Schematic diagram of DT. b Schematic diagram of the handwriting recogni-
tion system. c Recognition results from the software for handwriting of the word “letter” and “hydrogel” on the paper and “letter”, and “hydro-
gel” in the air. Reproduced with permission [317]. Copyright (2022), Elsevier
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4.2  Neural Network

With the development of big data, internet of thing, and 
computer science, neural network has been proven to be 
a powerful algorithm in many fields. Besides, computing 
science is becoming more and more powerful. Graphics 
processing unit (GPU), which was mainly used to display 
high-quality images, was found to be able to provide strong 
support for training neural networks on large data sets. Neu-
ral network usually consists of the three parts: input layer, 
hidden layer, and output layer. The input layer connects 
each point of the input data. Therefore, the number of neu-
rons should be as many as the number of pixels in the input 
image. In the hidden layer, the data is transformed layer by 
layer to improve the overall similarity with the images whose 
labels are known. In the output layer, the final prediction 
results are produced. In the classification problem, the num-
ber of neurons usually equal to the kinds of labels. In the 
regression problem, the number of neurons usually equal 
to the predicted parameter numbers. Besides, there is a loss 
layer behind the output layer which is not usually illustrated. 
It compares the prediction results with the labels to provide 
feedback on whether the input is correctly identified or not. 
The comparison results are usually called loss. The number 
of losses is depended on the loss function such as Mean 
square error, Mean absolute error (for regression problem), 
Cross entropy, Softmax (for classification problem), etc. If 
the prediction is correct, the feedback from the loss layer 
will strengthen the activation path of the prediction result; 
if the prediction is wrong, the error will return along the 
path in reverse, and the activation conditions of the neurons 
in this path will be readjusted to reduce the error. This pro-
cess is called back propagation, which usually based on the 
gradient descent method and its optimized method such as 
Momentum, Adagrad, and Adam.

Each layer consists of units and each unit can also be 
called a neural node, which is defined according to biologi-
cal sources. The neural nodes also have input, output, and 
calculation functions. Input can be compared to dendrites of 
neurons, output can be compared to axons of neurons, and 
calculation can be compared to nuclei. At each neural node, 
the calculation function is shown below:

(3)Oj = �

(
∑

i

wijIi + bj

)

where Ii is the input data (the output of each neural node in 
the last layer), bj is the bias of the neural node. wij are the 
connection weight from each neural node in the last layer to 
each neural in the current layer, which is the most important 
training target in the neural network algorithm. � is the acti-
vation function, which is the nonlinear function such as Sig-
moid, Tanh, ReLU, etc. Oj is the output of the neural node.

There are three kinds of commonly used neural networks, 
fully-connected neural network (FNN), CNN, and recurrent 
neural network (RNN). The FNN is all built by neural nodes 
mentioned above, which also called the MLP. However, the 
calculation load of FNN is much high. For example, if we 
want to classify a picture with the size of 768 × 1024, we 
need an input layer with 786,432 neural nodes, if the hid-
den layer also has 786,432 neural nodes. More than 6 ×  1012 
weights are needed to calculate in this layer. If we have more 
layers, this is really a huge work. Besides, too many neural 
nodes may also cause the overfitting problems.

To solve the calculation load problem, CNN and RNN 
are proposed. The core of CNN is the convolution kernel, 
which can be the filter in the digital image processing. The 
convolution kernel can be used to take the local features 
of pictures such as the edge, texture, brightness, etc. The 
CNN layer can greatly decrease the computation load and 
increase the accuracy. Therefore, many classic CNN have 
been demonstrated such as LeNet [318], AlexNet [319], 
VGGNet [320], and ResNet [321]. The CNN is widely used 
in the computer vision field. To further identify individual 
objects and their position in the pictures, some target rec-
ognition algorithm such as You Only Look Once (YOLO) 
[322] and Faster R-CNN [323], where the classic CNNs 
are usually applied to be the backbone. With the increas-
ing number of neural network layers, the algorithm is also 
called deep learning.

Another strategy to decrease the computation load is 
RNN, where a unit structure can be shared repeatedly. The 
hidden state produced by last time can be the input to the 
next time. Therefore, RNN have the memory and association 
function, which can be used in translation.

 where ht − 1 is the hidden state of time t − 1, xt is the input 
of time t, wf is the weight of the RNN, bf is the bias, and � 
is the activation function. Besides, to solve the forgotten 
problem, some gate-controlled RNNs have proposed, such as 
long short-term memory (LSTM) [324] and gated recurrent 

(4)ht = �

(
wf ∗

[
ht−1, xt

]
+ bf

)
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unit (GRU) [325]. The diagrams of FNN, CNN, and RNN 
are shown in Fig. 24.

Another popular deep learning algorithm is transformer 
[326], which is based on the attention mechanism to acceler-
ate the neural network. Due to the transformer is not widely 
used to assist the soft device, the transformer algorithm is 
not discussed in this review.

In addition to building the neural network by yourself, 
the classic neural network can be modified to realize your 
functions. In other word, the neural network system can rec-
ognize and apply knowledge and skills learned in previous 
domains/tasks to novel domains/tasks. This process is called 
transfer learning.

The common physiological signals can usually be divides 
into two kinds, 1D statistics and 2D pictures. 1D CNN and 
RNN [327] is useful to the 1D statistics. 2D CNN is power-
ful to the pictures. The combination of CNN and RNN can 
improve the performance [328, 329]. Over the past decades, 
the ECG and imaging diagnosis (CT, MRI, and ultrasound) 
were widely used in the hospital, which provides huge 
amount statistics to the machine learning [330]. For the soft 
electronics, the electrophysiology sensors have been studied 
a lot. Besides, many neural network algorithms have been 
demonstrated to analyze the electrophysiology signals such 
as EEG [331], ECG [332], EOG [333], EMG [334], and 
ECoG [335]. Other signals like pulse, tactile, and respiration 

can also be analyzed with the neural network [336, 337]. It 
is a trend to combine the soft electronics with the neural 
network.

However, the neural network is not omnipotent, especially 
for the “simple” tasks. Neural network has a strong learning 
ability, but for some “simple” tasks, it is redundant to use 
this powerful tool. For example, classic machine learning 
methods can be used for samples with obvious features and 
few classification types. Neural network can be used when 
the features are not obvious (such as ECG and EEG) with 
many classification types (gesture recognition).

4.2.1  Fully‑Connected Neural Network

Wang et al. reported a large-area, soft, breathable, substrate- 
and encapsulation-free electrodes, which can be designed into 
transformable filamentary serpentines and rapidly fabricated 
by cut-and-paste method [338]. The epidermal electrodes can 
capture various biopotentials (16-channel sEMG) in high fidel-
ity at scale (Fig. 25a). The Cartan transfer printing method 
can realize an open-mesh filamentary serpentine network to be 
transferred on human skin (whole chest, forearm, and neck.) 
conformally without any substrate, even on the deformed skin. 
16-channel sEMG on the forearm was recorded using the elec-
trodes, which can be used to recognize the American Sign 

Fig. 24  Diagram of a FNN, b CNN, and c RNN
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Language (ASL) (Fig. 25b). All electrophysiological data were 
filtered with a high-pass filter. Then, two typical time–domain 
features, including mean absolute value and root mean square 
and mean frequency, were extracted and imported to an FNN-
based pattern recognition in MATLAB. After trained with 
half of the data, the network was validated with the remaining 
and then used to carry out the continuous recognitions or the 
manipulation of a robotic hand. The classification accuracy of 
26 alphabets and the rest gesture after verification can be very 
high accuracy (over 96%) and some even 100%. The average 
classification accuracy is as high as 97.4%. Real-time ASL 
recognition through sEMG was demonstrated by a participant 
continuously expressing “HELLO” (Fig. 25c).

4.2.2  Convolutional Neural Network

In 2019, Kim et al. developed an all-in-one, wireless, stretch-
able hybrid electronics (SHE) system to detected motion, 
respiration, and the ECG signals [339]. The Au/Cr elec-
trodes and Cu connector between electrodes and flexible 
printed circuit boards (FPCB) are fabricated by the soft 
process. With the extremely low-modulus Ecoflex 1:2 as the 
substrate, the system can realize an intimate contact intimate 
skin contact (Fig. 26a). With the Tegaderm as the substrate, 
the SHE system can realize the in vivo cardiac monitoring of 

Fig. 25  FNN for recognizing ASL. a Photographs and corresponding optical micrographs of large-area epidermal electrodes with and without 
substrate attached on forearm. b Classification accuracy of 26 ASL alphabets and a rest gesture, respectively. c One trial of the continuous recog-
nition of the sign language saying “HELLO” consists of single letter. Reproduced with permission [338]. Copyright (2020), American Associa-
tion for the Advancement of Science
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rat (Fig. 26b). To analyze the ECG, acceleration, and orien-
tation data automatically, CNN with sequence-to-sequence 

annotation concept has been used to predict the motion 
state such as idle, walk, run, and fall. Besides, four cardiac 

Fig. 26  ECG signals detected by soft system and analyzed by CNN. a Photograph of an SHE system laminated on the skin without the use of 
adhesives. Inset is the patterned Au electrodes. b In vivo animal study of the SHE system, involving ambulatory ECG monitoring of a rat model 
on its shaved back. c A set of ECG signals measured by SHE system (left) and motion activity, measured by change of acceleration (top right) 
and orientation (bottom right). d Overview of data processing methods consisting of four columns: HR estimation process, RR estimation pro-
cess, ECG classification CNN, and Motion classification CNN. e Each column showing the outputs from the column in d, in the order of HR, 
RR, ECG annotation, and motion activity class. Reproduced with permission [339]. Copyright (2019), Wiley–VCH
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diseases can also be classified by the CNN such as (1) myo-
cardial infarction (MI), heart failure (HF), and miscellaneous 
arrhythmia (AR), (2) fusion beat (FB), (3) supraventricu-
lar ectopic beats (SVEB), and (4) ventricular ectopic beats 
(VEB). Heart rate (HR) and respiratory rate (RR) can also 
be extract from the ECG signals (Fig. 26c–e).

Sundaram et al. fabricated a scalable tactile glove (STAG) 
covering the full hand with 548 press sensors based on com-
mercial force-sensitive film (FSF) as shown in Fig. 27a 
[340]. The FSF is patterned by the laser cutting, and the total 
cost of STAG is only about US$10. When touching different 
objects, the stress distribution map recorded by the STAG 
are different. Then, they used the transfer learning method 
mentioned above to identify 26 objects. The 32 × 32 map is 
put into the adjusted ResNet-18 CNN (Fig. 27b). However, 
the held methods will influence the classify result (Fig. 27c). 
In addition to identifying objects, the weights of held objects 
can also be estimated. Li et al. fabricated a multisensory 
tactile system to recognize objects, which combined the soft 
temperature (Pt/Cr thermosensitive ribbons) and pressure 
(porous PDMS/AgNPs) sensors [341]. They built a 3-layer 
FNN to identify cotton, sponge, tangerine, human hand, 
mango, and napkin.

Inspired by the somatosensory-visual (SV) fusion hier-
archy in the brain, Wang et al. built a bioinspired soma-
tosensory-visual (BSV) algorithm consists of three neural 
networks [342]. The somatosensory signals were detected 
by transparent and skin-like stretchable strain sensors con-
sisted of SWCNT as the sensing component, PDMS layer 
and adhesive poly (acrylic acid) hydrogel layer (Fig. 27d). 
Then, they built a dataset consists of 3000 SV samples with 
10 categories of hand gestures. Each sample containing an 
image of a hand gesture with a complex background and 
one group of strain data detected by the five strain sensors 
over the knuckle of the thumb, index, middle, ring, and lit-
tle finger, respectively (Fig. 27e). The BSV algorithm with 
five-dimensional somatosensory vector, an AlexNet CNN 
and a five-layer sparse neural network can achieve a recogni-
tion accuracy of 100% (Fig. 27f). Finally, they built an auto-
recognition and feedback system based on BSV algorithm to 
guide a robot by hand gesture even in non-ideal conditions 
such as dark.

Mahmood et al. developed a wireless scalp electronic sys-
tem with virtual reality (VR) for real-time, continuous clas-
sification of motor imagery brain signals (Fig. 28a) [343]. 
The system consists of three major components: multiple 

and high-density soft microneedle electrodes (The area of 
each electrode set is about 36  mm2) (Fig. 28b) for mounting 
on the hairy scalp, laser-cut stretchable and soft intercon-
nects, and a low-profile, soft circuit (Fig. 28c). In addition, 
the inclusion of a VR component was used as a convenient 
and immersive training environment to assist with motor vis-
ualization. The approximate positions of the six electrodes 
corresponding with the standard 10–10 electrodes placement 
system are Fz, C5, C3, C4, C6, and POz, with the reference 
electrode at Cz, and the ground electrode placed at the mas-
toid. Assisted by a VR interface, motor imagery (MI) tasks 
were realized by combining the system with the CNN-based 
machine learning algorithm (Fig. 28d). Testers were asked 
to imagine the actions of opening and closing their hands, 
as well as depressing a pedal with both feet in the first per-
son for the tasks. In the VR examination, the testers were 
provided with clear visual guidance on what they should be 
imagining by VR, using animated disembodied limbs within 
the normal field of view. Finally, the system with only 6 
EEG channels can realize a high accuracy of 93.22 ± 1.33% 
for four classes.

Our group developed an intelligent artificial throat by 
nanomesh containing strain sensor part (Au/PU nanomesh), 
EMG sensor part (Au/PU nanomesh), sound source (Au/
PVA nanomesh) (Fig. 28e) [182]. The nanomesh was fabri-
cated by electrospinning and sputtering. The Au/PU nano-
mesh can be used as the strain sensor with high sensitivity, 
large work range, and good stability. The Au nanomesh can 
be applied as the physiological electrodes whose impend-
ence is even lower than the commercial gel electrodes to 
detect the ECG and EMG signal. The Au/PVA nanomesh 
with good low heat capacity, high thermal conductivity, and 
electronic conductivity can be used as sound source. In addi-
tion, the nanomesh has good water permeability, stability, 
and conformal property with skin. Taken the advantage of 
nanomesh, the EMG-strain synergetic artificial throat was 
realized. Combined with the intelligent synergetic convo-
lution neural network (SCNN) algorithm (Fig. 28f), the 
artificial throat can distinguish the transient voice. After 
attaching nanomesh on the neck of tester without any tape, 
the EMG part using Au nanomesh was used to monitor the 
EMG signals when tester was speaking letters of alphabet 
“B”, “C”, “D”, “E”, and “F”. The strain part using Au/PU 
nanomesh was used to monitor the vibration of throat when 
tester was speaking letters of alphabet “B”, “C”, “D”, “E”, 
and “F” (Fig. 28g, h). Finally, a SCNN algorithm built by 
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Fig. 27  Mechanical signals detected by soft sensor and analyzed by CNN. a STAG architecture consisting of the individual locations of the 548 
sensors, along with the interconnects, slot, and 64 electrodes. The piezoresistive sensor array can be divided to different architectures. b CNN 
architecture applied for identifying objects with the input N arrays of tactile data (32 × 32 arrays). c Tactile maps, corresponding visual images, 
and the classification results from single tactile map inputs. The ground-truth object labels are marked in black. Reproduced with permission 
[340]. Copyright (2019), Springer Nature. d Diagram of the conformable, transparent, and adhesive stretchable strain sensor. e Illustration of 
the SV dataset containing 3000 SV samples. f Diagram of the BSV algorithm. Reproduced with permission [342]. Copyright (2020), Springer 
Nature
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Fig. 28  CNN for classification task. a Illustration of a tester wearing VR headset and scalp electronics with stretchable interconnectors and a 
soft microneedle electrode. b Zoomed-in photograph of a microneedle array along with a magnified SEM image (inset). c Photograph of a soft 
wireless circuit with integrated chips, which has mechanical compliance. d Detailed illustration of a spatial CNN model with hidden layers of 
brain signals acquired from six EEG channels, which demonstrates the capability of decomposing spatial features. Reproduced with permission 
[343]. Copyright (2021), Wiley–VCH. e Diagram of the intelligent nanomesh artificial throat, including nanomesh voice detecting part (strain 
sensor and EMG electrodes), electromyogram-strain synergetic CNN algorithm, and nanomesh sound source. f Diagram of the CNN algorithm 
consisting of modified 1D ResNet18 (EMG part) and common two-layer CNN (strain part). g Typical EMG signals detected by the Au nano-
mesh electrodes when tester spoke “B”, “C”, “D”, “E”, and “F”. h Typical normalized strain signals detected by the Au/PU nanomesh strain sen-
sor when tester spoke “B”, “C”, “D”, “E”, and “F”. Reproduced with permission [182]. Copyright (2022), Elsevier
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1D ResNet18 (EMG part) and two-layer CNN (strain part) 
is demonstrated to distinguish the transitory voice signals 
detected by the nanomesh strain sensor and electrodes with 
the high accuracy of 98.9%.

4.2.3  Recurrent Neural Network

Kim et al. developed a novel e-skin sensor system integrated 
with a RNN that captures dynamic finger motions without 
creating a sensor network [344]. The sensor can detect sub-
tle deformations from the unique laser-induced crack struc-
tures. Colorless polyimide (CPI) is first uniformly coated 
on a glass substrate and AgNPs ink is then spin-coated over 
the CPI layer. The bilayer of AgNPs and PI is patterned 
into the serpentine structure by laser ablation, and then the 
AgNPs was selectively converted into a crack-induced layer 
(Fig. 29a). After transferring the patterned structure to the 
PDMS, the sensor can be directly mounted on the skin. A 
topographical movement of the wrist can be triggered by 
the epicentral finger motion, with the attached crack-based 
sensor producing a signal, which contains the information 
of finger motion (Fig. 29b). Then, LSTM was designed to 
accomplish two tasks: analyzing sensor signal patterns into 
a latent space encapsulating temporal sensor behavior and 
mapping latent vectors to the finger motion metric space cor-
responding to encoding and decoding network. To perform 
the classification task, the decoding network was modified to 
a three-layered dense block producing 8-dimensional vector 
output, which corresponds to eight classes (Fig. 29c). The 
classifying accuracy of finger motions and noises is 96.2% in 
average and 92.9% in the worst case for little finger motions.

Hughes et al. developed a fully soft, wearable glove, 
which is capable of real-time hand pose reconstruction, envi-
ronment sensing, and task classification (Fig. 29d) [34]. The 
wearable glove incorporates two novel sensing technologies: 
a resistive sensing architecture (strain sensor) and a fluidic 
sensing architecture (pressure sensor). A fully conductive 
thread glove as a substrate, and two kinds of sensors was 
sewed onto it. Electrode connections have been made at 
points between joints to optimize the capture of strain caused 
by joint bending. The 16 connection points (corresponding 
to 16 strain sensors) chosen provide one connection point 
per major facet of the hand, consisting of one connection 
per finger joint and two on the palm. The pressure sensors 

use a soft tube with 2 mm outer diameter. One end is sealed 
by knotting, and the other end is given an airtight connec-
tion to the pressure transducer. Six pressure sensors were 
used: one on each of the five fingers, and one on the palm. 
By using MLP and LSTM, the regression and classification 
function can be both realized. Although not a mechanical 
task, both pressure sensors and resistive sensors can be used 
to estimate the temperature of grasped object. Changes in 
temperature have a direct correlation with the resistivity of 
the knit glove. In addition, the pressure in the fluid is cor-
related temperature through the ideal gas law. The LSTM 
network realize the regression task, for example estimating 
an average temperature with the estimation error of just over 
1 ℃. The MLP and LSTM can identify the classification of 
the natural grasps of 30 objects with almost 100% classifica-
tion success (Fig. 29e).

4.2.4  Spiking Neural Network

As mentioned above, the current artificial neural network 
(ANN) usually receives continuous values and outputting 
continuous values. Although ANN has enabled us to achieve 
breakthroughs in many fields, they are not precise in biology 
and cannot imitate the operation mechanism of biological 
brain neurons. Spiking neural network (SNN) also calculate 
the appropriate synaptic weight matrix for the given multiple 
input pulse sequences and multiple-target pulse sequences, 
so that the output pulse sequences and the corresponding tar-
get pulse sequences are as close as possible. In other words, 
SNN also tries to minimal the error evaluation functions. 
Since the transmission of information is based on pulses, 
the input of the network needs additional coding, such as 
frequency coding and time coding, to convert the data into 
the pulses form (Fig. 30a). Therefore, the energy consump-
tion of SNN is lower, and each neuron works independently. 
Some neurons will not work when they do not receive input 
strong enough.

Navaraj et al. developed a tactile sensor based on piezo-
electric oxide semiconductor field effect transistors (POS-
FETs) for tactile sensing [345], which exhibits a sensitivity 
of 2.28  kPa−1. The tactile sensor can mimic the static and 
dynamic force feedback from the slow-adapting (SA) recep-
tors and fast-adapting (FA) receptors of the skin (Fig. 30b). 
The sensor stack was integrated on the distal phalange of 
the index finger of a robotic/prosthetic hand, which was 
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mounted as an end effector with a custom 3D-printed fix-
ture to a 6-DOF UR5 robot. Biological research suggests the 
tactile information is processed with the temporal frequency 
channels. Inspired by this, windowed Gabor wavelet trans-
form (GWT) was used to processed the data, which offers 
localization in time and frequency, thereby capturing tem-
poral variation and biologically plausible. Various textured 

surfaces (Hook and Loop) were classified by SNN tempotron 
classifier system. The information about fingertip touching 
different texture was assumed to be transmitted within a single 
spike when this fast response was considered together with 
the various associated delays such as peripheral nerve con-
duction, the generation of muscular force, and processing. 
By temporal coding, the signal was encoded and transmitted 

Fig. 29  RNN for the classification task. a Schematic depicting the patterning and crack fabrication by laser fabrication. b Depiction of skin 
deformations for different finger bending motions. c Neural network composed of an encoding network and a decoding network. LSTM layers 
are used in encoding network to analyze temporal sensor patterns to generate latent vectors. Two independent dense layers map created latent 
vectors to the metric space expressing hand motions. Dropout is used as the regularization technique to prevent the network to be overfitted to a 
single use case. Reproduced with permission [344]. Copyright (2020), Springer Nature. d Resistive sensing and fluidic sensing are combined to 
provide signals for strain and contact force information, respectively. These signals are fed into a pretrained neural network architecture for infer-
ence, which is trained from captured data labeled with ground-truth knowledge. Depending on the neural network, the output of the network pro-
vides inference for a wide variety of downstream tasks. Electrode points which are usually not visible have been colored and enlarged in the left-
hand images for clarity. e Object classification dataset, with associated grasps. Reproduced with permission [34]. Copyright (2020), Wiley–VCH
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into latency-coded spike trains. Stronger the amplitude, faster 
the spike was elicited within the time span (Fig. 30c–f). The 
weights of the input synapses were trained to emit an output 
spike to match the target category using a supervised learning 
strategy. The signal processed by STFT-based approach pro-
vides a maximum classification accuracy of 95.3%, whereas 
the GWT-based approach can be up to 99.45% for the same 
windowed time.

4.3  Neural Network Run on Soft Electronics

The algorithms discussed above are run in CPU or GPU of 
computers or servers. Therefore, the data interaction is inevi-
table during the practical application, which complicates the 
circuit of soft system and increases power consumption. It’s 
meaningful to run the algorithms in site by the soft devices. 
For the neural network algorithm, the training process can 

be in situ or online. The weight and bias can be saved in the 
soft electronics.

Kim et al. realized a bioinspired stretchable sensory-neu-
romorphic system (SSNS), comprising an artificial mecha-
noreceptor, artificial synapse, and epidermal photonic actua-
tor (constructed using a capacitive pressure sensor array, 
RRAM array, and quantum dot light emitting diode (QLED) 
array, respectively) (Fig. 31a) [346]. The system has three 
vital functions: (i) the artificial mechanoreceptor for convert-
ing physical input into electrical potential, (ii) the artificial 
synapse that uses a neural network based on training/infer-
encing, and (iii) the epidermal photonic actuator for color 
change. An stretchable printable conductor that consists 
of PDMS, 4,4-methylenebis(phenyl urea), and isophorone 
bisurea (PDMS-MPU0.4-IU0.6) and Ag flakes was devel-
oped. Based on the stretchable printed conductor, an artifi-
cial mechanoreceptor (5 × 5 capacitive touch sensing array) 
was fabricated, which can significantly improve the cell 

Fig. 30  Signals detected by the soft system and processed by SNN. a Schematic diagram of SNN. b Mechanoreceptors in the human skin 
which enable the tactile sensation. SA mechanoreceptors respond with continuous spikes during the static stimuli and the FA mechanoreceptors 
respond with spikes during the transition or the dynamic part of the stimuli. c A typical recorded signal from the dynamic scan when the sensor 
touching different texture (Hook and Loop). d Gabor wavelet scalogram of different texture signals (Hook and Loop) corresponding to c. Output 
from the tempotron SNN classifier neuron corresponding to e Hook and f Loop. Reproduced with permission [345]. Copyright (2019), Wiley–
VCH
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Fig. 31  Neural network worked on soft device. a Schematic of the SSNS (top left, inset image denotes photographs of the stretched SSNS) 
and overall operation process of the SSNS. (i) Extraction of LTP/LTD data from the stretchable artificial synapse. (ii) Capacitive measurement 
by the pressure sensor array. (iii) Training/inferencing process in online MLP using the extracted LTP/LTD data. (iv) Inferencing process in 
online MLP to deliver feedback processed information to the QLED photonic actuator. Reproduced with permission [346]. Copyright (2021), 
Wiley–VCH. b Thermal drawing of the digital fiber performed by feeding conductive W wires into the empty channels. At the preform level, the 
W wires are spaced far apart with a polymeric barrier separating the device and the wires. The inset showing the converging of the four W elec-
trodes toward the four pads at the necking region of the preform-to-fiber transition. c Photograph of a spool containing continuous digital fibers 
with 100 embedded devices (left). Magnified optical image of the fiber array showing that the digital devices are all rotated to the critical angle 
with connections to wire electrodes (right). Photograph showing the size difference between the fiber and a coin (bottom). d Schematic of the 
shirt integrated with a digital fiber including sensors, data storage, customizable programmers, and a neural network stored within its memory 
devices. Integration of the digital fiber e through a needle, f in the sleeve of a sweater, and g in a cotton-based fabric. Reproduced with permis-
sion [347]. Copyright (2021), Springer Nature
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density and scalability of the biomimetic sensor. To impart 
synaptic functionality into SSNS, an RRAM module was 
used with an Al/TiO2/Al layered structure (cross-sectional 
area of active region: 250 × 250 μm2) as a neuromorphic 
device featuring cognitive computation. The RRAM cells 
were fabricated on the  SiO2/Si wafer, and transfer printed 
onto the stretchable substrate. Finally, each island (500 × 500 
μm2) was then bridged via stretchable printed interconnects. 
The QLED featured a PDMS/PI/Ag/ZnO NPs/quantum 
dots/4,4-bis(9-carbazolyl)-biphenyl)/Molybdenum oxide/
Ag/SiO2 structure. Au auxiliary electrodes were used to 
reduce the contact resistance between the QLED electrodes 
and the sinter-free stretchable interconnects. To train the 
neural networks, the synapse weights were updated using 
a backpropagation algorithm. The applied voltage signals 
were multiplied by synapse weights (Wn,m) and summed at 
the output neurons, where the synapse weight was defined as 
synapse conductance (W = G). The output neuron layer was 
transformed using a sigmoid activation function to obtain 
the output neuron signals. After trained for 140 epochs, a 
100% pattern recognition accuracy was realized. Finally, 
the feedback actuation was visualized via the 5 × 5 QLED 
arrays in response to inference results (“S,” “N,” “U,” and 
“K” patterns).

Loke et  al. developed a scalable preform-to-fiber 
approach to producing tens of meters of soft fiber contain-
ing hundreds of interspersed, digital temperature sensors, 
and memory devices with a memory density of ~ 7.6 ×  105 
bits per meter [347]. The fiber has the ability to measure 
and store physiological parameters and harbors the neural 
networks required to infer sensory data. During thermal 
drawing, four 25-μm diameter tungsten wires are fed into 
the preform. Hundreds of individually addressable digi-
tal devices (square silicon microscale digital sensor and 
memory chips) are electrically connected in situ during 
the fiber drawing process, with all devices accessible on 
the same in-fiber digital communication bus (Fig. 31b, c). 
Each chip with four corner-positioned contact pads is first 
placed into slots within a polymeric preform and placed 
at angle of 26.56° with respect to the fiber axis and the 
slots in the preform are milled to the exact dimensions of 
the chips. The PMMA is chosen to be the barrier between 
wires and devices. Discrete in-fiber electronic devices are 
positioned uniformly at different spatial positions along 
the fiber. Each device offering different functions such as 
sensing, data storage, or storage of in-fiber algorithms. 

By sending a predetermined serial combination of digi-
tal 1 and 0, the device with the correct matching digital 
address along the fiber can be switched ‘on’ to activate 
its internal functionality including memory or sensing 
modalities (Fig. 31d). To realize the information interac-
tion, the I2C protocol was implemented into the fiber. 
The equivalent logic circuit of each device within the 
fiber is composed of XNOR and AND gates. The digital 
fibers are also thin and soft enough to be passed into 
a needle and sewn into textiles (Fig. 31e–g). The fiber 
permits for large memory storage in a single strand of 
fiber. A 767-kilobit full-color (red–green–blue) 8-frame 
movie file can be stored within a meter of fiber stored 
for 2 months without power. A digital fiber, composed of 
a hybrid of memory and temperature-sensing function-
alities along the same strand, was fabricated. The fiber 
temperature sensor (thermistor device) is in direct contact 
with the skin of the armpit. Body temperature measured 
every 0.5 s is converted from analog-to-digital signals and 
communicated to the fiber memory to store the tempera-
ture under different physical activities: sitting, standing, 
walking, and running. The body temperature dataset is 
then used to train a neural network to detect and classify 
four distinct activities (sitting, standing, walking, and 
running). To train this network, ~ 1800 data sections of 
temperature values, each spanning 12 s corresponding to 
the four classes, are provided as input into a CNN. The 
CNN is optimized to provide a high training accuracy 
(average of 97.9 ± 0.7%). After training, the values of 
the weights and biases are extracted and reduced to pro-
duce a compressed neural network, including mathemati-
cal equations for feature selection, weights, biases, and 
ReLU functions (1650 neuronal connections), which are 
all stored into the digital memory of the fiber.

4.4  Brief Summary

Assisted by the machine learning algorithms, the physi-
ological signals introduced above can be not only moni-
tored but also diagnosed by the soft electronics. Up to now, 
many algorithms such as PCA, LDA, FT, WT, GNB, SVM, 
DTW, kNN, K-means, DT, FNN, CNN, RNN, etc., have 
been demonstrated to coordinated with the soft electronics. 
Limited by the database size, the advantage of deep learn-
ing algorithms especially neural network has not been fully 
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utilized. In some works, classic algorithms even have better 
performance than the neural network. As the table we sum-
marized, the function of the most of algorithms are clas-
sification, which is a qualitative analysis. More qualitative 
analysis based on the regression models should be studied.

The soft electronic can be used to build large-scale data-
base, which containing more physiological information to 
analyze. In addition, most of the current researches are based 
on the supervised learning. The complex data calibration 
process is inevitable. More unsupervised learning model 
should be further studied. For the better wearing experi-
ence, both front-end sensor and rear-end circuit should 
be designed in soft form. For the larger and more correct 
database, the interface between sensor and circuit should be 
optimized to decrease the noise, and the interface between 
soft system and skin should also be designed. With the 
development of soft electronics, the powerful function of 
neural network can be fully taken. With the development of 
the microcontroller unit, more chips can support the in situ 
operation of machine learning algorithm, which are suitable 
to the small-scale algorithms (Table 5). How to choose the 
operation method and chips depends on the algorithm size 
and power dissipation. In addition, during practical appli-
cation, the interface between the hardware and algorithms 
in situ or on cloud should also be designed.

5  Challenge, Outlook, and Conclusions

5.1  Soft Neuromorphic

To some extent, the organism can be regarded as a neural 
network. The initial neural network information was saved 
in the gene. The living of organism is a transfer learning 

process. The organism was “told” the “label” to know the 
correct answers and got the feedback to train its own neural 
network. Finally, the new neural network was passed the 
information to the next generation for the next transfer learn-
ing process. In addition, the SNN discussed above mimic the 
performance of the nerve cell. Therefore, the soft electronics 
have great potential in the HMI and neuromorphic field. The 
soft HMI is usually noninvasive can attached to the skin, 
where the soft character can realize the tight contact with the 
skin and further improve the SNR. The HMI application has 
been discussed above. Therefore, the neuromorphic will be 
introduced below, which can link the organisms and circuits.

An important application of the soft HMI is the intel-
ligent prostheses. However, the signals picked by sensors 
are not suitable to the nerves. Therefore, the signals need 
to be processed by the ICs chip. Besides, there are com-
plex connections between circuits and sensors. A solution 
of this problem is to fabricate neuromorphic devices with 
the sensors together in the same substrate. The sensors are 
connected to neuromorphic devices which can convert the 
mechanical or optical signals detected by sensors into the 
neural signal like a synapse. In the synapse, the signal ampli-
tude and frequency are controlled by the neurotransmitter 
emitted by the presynaptic membrane to synaptic space 
and accepted by postsynaptic membrane. Besides, there are 
many neuromorphic characters such as long-time potentia-
tion (LTP), long-time depression (LTD), paired pulse facili-
tation (PPF), spike-timing-dependent plasticity (STDP), etc. 
For the soft neuromorphic devices, they generally divided 
into two kinds, memristor (or RRAM) and synapse transis-
tor. Some integrated sensor and neuromorphic device system 
are summarized in Table 6.

The memristor usually has two resistive state, the high 
resistance state (HRS) and the low resistance state (LRS), 

Table 5  Typical chips supporting algorithm implantation

Type Core Frequency Memory Computation Website link

STM32WB55 Arm 32-bit Cortex-M4 CPU 64 MHZ 256 KB RAM, 1 MB FLASH 219.48 CoreMark [367]
STM32L4S5VIT6 Arm 32-bit Cortex-M4 CPU 120 MHz 640 KB RAM, 2 MB FLASH 409.20 CoreMark [368]
ESP32-C3 RISC-V 32-bit CPU 160 MHz 400 KB RAM, 4 MB FLASH 407.22 CoreMark [369]
ESP32-S3 Xtensa Dual-core 32-bit LX7 CPU 240 MHz 512 KB RAM, 8 MB FLASH 1181.60 CoreMark [370]
BCM2711 ARM Quad-core Cortex-A72 64-bit CPU 1.5 GHz 8 GB RAM, 1 MB L2 CACHE 15,600 CoreMark [371]
nRF52840 ARM Cortex

-M4 32-bit CPU
64 MHz 256 KB RAM, 1 MB FLASH 212 CoreMark [372]

Kendryte K510 Tripe-core RISC-V 64-bit CPU 800 MHz 4 GB eMMC, 128 M FLASH 3 TOPS [373]



Nano-Micro Lett.           (2023) 15:66  Page 61 of 86    66 

1 3

which can be used as the memory. There is a gradually 
changing state between HRS and LRS. The HRS and LRS 
can be regarded as the “0” and “1” in the digital circuit. 
The process converting HRS to LRS is named “SET”. On 
the contrary, the process converting LRS to HRS is named 
“RESET”. The gradual state can be regarded as the continu-
ous signal in the analog circuit. During the working process 
of memristor, the conductive filament is induced by the 
applied voltage. The pre-electrode, resistive layer, and post-
electrode can be regarded as presynaptic membrane, syn-
aptic space, and postsynaptic membrane, respectively. The 
gradual forming and vanishing of filament would increase 
and decrease the conductance of the memristor, which can 
imitate the excitation and inhibition of synapses. Up to now, 
many materials have been used to fabricate the memristor, 
such as transition metal oxide [374], TMD [95], and organic 
materials [375].

For the synapse transistor, the gate electrode, semiconduc-
tor channel, and source electrode can be regarded as presyn-
aptic membrane, synaptic space and postsynaptic membrane, 
respectively [376]. In the metal oxide semiconductor field 
effect transistor (MOSFET), there is an electrical double 
layer (EDL) at both sides of the dielectric layer. The EDL 
can adjust the electron density of state and the conductance 
of the channel, which can influence the current of the source 
and drain (postsynaptic current). To improve the controlling 
of channel, electrolyte such as the ionic liquid can be used as 

the dielectric layer. There are two EDLs at electrolyte/semi-
conductor interface and electrolyte/gate electrode, which can 
have a much higher gate capacitance. Therefore, the gate 
signal can control the channel better [377].

Kim et al. realized an artificial afferent nerve containing 
three parts: resistive pressure sensors array, organic ring 
oscillators, and a synaptic transistor (Fig. 32a) [378]. The 
pressure sensors are composed of a conducting pyramid-
structured elastomer and Au electrodes. Higher pressure 
would increase the contact area and decrease the resist-
ance. Then, the sensors are connected to an organic ring 
oscillator, which can convert tactile stimuli into voltage 
pulses. The output frequency of the oscillator is propor-
tional to the input voltage. In addition, the oscillator per-
formance is similar to the mechanoreceptor of the human 
skin [379]. Finally, the oscillator is connected to the ion 
gel-gated synapse transistor. They connected the artificial 
afferent nerve to biological efferent nerves of a discoid 
cockroach (Fig. 32b) to realize a biological reflex arc. 
The pressure sensors can lead to the actuation of the tibial 
extensor muscle in the cockroach leg (Fig. 32c). Lee et al. 
mimicked the Merkel cell function in human skin by a soft 
ferroelectric organic field effect transistor (Fe-OFET). The 
gate dielectric is barium titanate NPs and poly (vinylidene 
fluoride-trifluoroethylene). This single soft transistor can 
convert the mechanical energy to potential like the Piezo-2 
channels in Merkel cell [380].

Table 6  Typical biomimetic systems

Bionics object Substrate Sensor Sensitive mate-
rial

Cascade device Neuromorphic 
device

Neuromorphic 
material

Application References

Somatosensory 
system

SEBS Pressure CNT/Au Organic ring 
oscillator

Synaptic tran-
sistor

Pentacene/Ion 
gel liquid

Driving cock-
roach leg

[378]

Tactile sensory 
organs (Mer-
kel cells)

PI Pressure Pentacene/BT 
NPs/P(VDF-
TrFE)

None Synaptic tran-
sistor

Pentacene/BT 
NPs/ P(VDF-
TrFE)

Expecting 
touching 
order

[380]

Human visual 
system

PI UV detector In2O3 SMWs None Memristor Ni/Al2O3/Au UV imaging 
and pattern 
recognition

[382]

Haptic memory 
system

PI Pressure AgNWs/PDMS None Memristor Ag/SiO2/Au Reconstruct-
ing pressure 
distribution

[381]

Stretchable 
memory sys-
tem

PDMS Strain Au None Memristor Ag/ZIF-8/Au Detecting and 
recording 
joint move-
ment

[384]

Light sensory 
synapse

SEBS Photodetector Organics/ZnO Polymer actua-
tor

Synaptic tran-
sistor

CNT/NW/Ion 
gel liquid

Optical driving 
controlling

[383]
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Fig. 32  Biomimetic systems containing soft sensor and neuromorphic devices. a A biological afferent nerve stimulated by pressure and corre-
sponding an artificial afferent nerve made of pressure sensors, an organic ring oscillator, and a synaptic transistor. The parts with the same colors 
in (upper) and (lower) correspond to each other. b Discoid cockroach with an artificial afferent nerve on the back. c Hybrid reflex arc with the 
artificial afferent nerve. Pressure stimuli from sensors can be converted into postsynaptic currents. Postsynaptic currents are amplified to stimu-
late biological nerves and cockroach muscles to initiate movement. Reproduced with permission [378]. Copyright (2018), American Association 
for the Advancement of Science. d Diagram of the haptic memory device comprising of pressure sensor and memristor. e Typical I–V curves 
of the integrated device with pressure and without pressure. The device can only be programmed and erased with the pressure applied. f Photo-
graph of the mold (letter “T”) put on integrated haptic memory arrays. Scale bar represents 1 mm. Mapping of letters “N”, “T”, and “U”. Only 
device cells beneath the letters can be programmed. Demonstration of the device arrays to memorize the applied pressure and multicycle usage. 
Reproduced with permission [381]. Copyright (2016), Wiley–VCH. g Diagram of the bioinspired visual memory unit consisted of an image 
sensor and a memristor. h Photograph of the integrated devices arrays on soft PI substrates. Scale bar represents 1 cm. i Information storage per-
formance and effective reusability of the soft visual memory device arrays. Reproduced with permission [382]. Copyright (2018), Wiley–VCH
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Zhu et al. demonstrated haptic memory devices for the 
mimicry of human haptic memory [381]. They integrated 
memristors with resistive pressure sensors, where the resist-
ance states in a memristor can be recognized. By applying 
pressure on the pressure sensor. The pressure sensor is based 
on pyramid-structured PDMS film embedded with AgNWs 
as sensitive layer. Then pressure sensor is on the top of the 
Ag/SiO2/Au memristor (Fig. 32d). When there is no pres-
sure, the device has a very high resistance because both the 
pressure sensor and the memristor are in the HRS. When 
the pressure is applied, the memristor can be switched from 
HRS to LRS by a sweeping voltage (Fig. 32e). These haptic 
memory devices can map and memorize the external pres-
sure distribution, when different letter molds of “N”, “T”, 
and “U” applied on the device arrays (Fig. 32f). The arrays 
can retain the pressure distribution for a week with little 
decay, and the pressure information can be easily erased by 
the voltage sweep.

In addition to the mechanical memory devices, Chen et al. 
designed an artificial soft visual memory system by inte-
grating a ultraviolet (UV) image sensor and a memristor, 
where top electrode of the memristor is replaced by one elec-
trode of the two-terminal image sensor (Fig. 32g, h) [382]. 
The UV image sensor is based on the  In2O3 semiconductor 
micrometer-sized wires fabricated by printing process, and 
the memristor is based on the Ni/Al2O3/Au architecture. The 
system can be applied to detect the UV laser pattern and 
recorded it. The pattern can retain in the visual memory 
array for 1 week with little attenuation. Besides, the state 
of memristor can also be erased. Lee et al. realized a light 
sensory synapse, consisted of an organic photodetector 
(OPD), a stretchable organic nanowire synaptic transistor 
(s-ONWST), and a polymer actuator [383]. The optical sig-
nals detected by the OPD and processed by the s-ONWST 
can be applied to drive the actuator.

In all, the soft neuromorphic can be the hardware form of 
neural network. The sensor, the processor, and the memory 
can be integrated into a single device, which can improve the 
computational efficiency and decrease the power dissipation.

5.2  Soft Integrated Circuit Hardware for Algorithms

One of the most important inventions of twentieth century 
is the ICs. It is the fundament of the modern information 
technology [385]. The ICs is the hardware foundation of 

algorithms. As discussed in “Neural network run on soft 
electronics” part, the neural network has been run on the 
soft system. However, for the stronger computing power, the 
computing device density of the soft system should be fur-
ther improved. The past decades have witnessed the explo-
sive development of ICs following the Moore’s law [386]. 
However, in the recent years, due to the leaky current in the 
MOSFET, it is hard to decreasing the feature size of silicon 
transistor in the nanometer level. At the meaning time, some 
new materials show the potential in the next-generation tran-
sistor. With the 1D SWCNT as the gate and 2D  MoS2 as the 
semiconductor channel, the gate length of the transistor can 
be 1 nm [387]. With the single-layer graphene edge as the 
gate and 2D  MoS2 as the semiconductor channel, the gate 
length of the transistor can be as small as 0.34 nm [388]. 
With the s-SWCNT as channel, the gate length of the CMOS 
can be down to 5 nm. ICs Chips based on the SWCNT has 
also been developed, which can be used to the CNT comput-
ers [66, 389] and sensor system [390]. Although found later 
than CNT, 2D semiconductor like  MoS2 can also be applied 
in the ICs chips. Polyushkin et al. designed a operational 
amplifier circuit based on the  MoS2 [391].

Due to the flexibility of nanomaterial, it also has the 
advantage than silicon in the soft electronics. Up to now, 
many soft transistors based on the nanomaterials have been 
proposed. The integration and ICs design may be the next 
step. The soft ICs chips will solve the problem that the mis-
match of interface between the soft sensor and rigid chip, 
and really realize the soft system. Lei et al. reported a series 
of soft ICs devices based on the s-CNT with an ultrahigh 
selectivity of 99.997% and a high sorting yield of 19.9% 
(Fig. 33a) [392]. By increasing CNT density, the mobilities 
of CNT TFT can be up to 49  cm2  V−1  s−1, however with 
larger device variations. With the pseudo-CMOS design 
style, they realized basic logic gates, including inverters, 
NAND, and XOR logic gates, five-stage ring oscillators 
running up to 3.5 MHz, and a tunable-gain amplifier with 
voltage gain of 1000 at 20 kHz. Based on the positive edge 
triggered D flip-flop (DFF), they realized an eight-stage shift 
register (SR) containing 304 CNT TFTs operating at 50 kHz 
clock rate (Fig. 33b). Figure 33c shows the measured wave-
forms of the SR. This work has the potential in wearable or 
IoT applications. Xiang et al. also realized CNT-based TFTs 
and ICs with bio-integration capability [393], which can be 
transferred to arbitrary surfaces such as a wrist, a biodegrad-
able PVA film, and a plant leaf by wet and dry approaches 
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(Fig. 33d). The statistical distribution of the mobility The 
CNT TFTs is 48.9 ± 7.8  cm2  V−1  s−1. Based on the CNT 
TFTs and inverters, basic PMOS logic gates such as NOR 
and NAND gates were fabricated. A half-adder was realized, 
which consisted of 18 TFTs and 7 basic logic gates. In addi-
tion, A NAND read-only memory (ROM) was constructed 
using 29 transistors to map a 3-bit address input onto 8-bit 
data output values (Fig. 33e). The data output read from the 
NAND-ROM circuit shows correct logic values (Fig. 33f).

TMD materials can also be used to fabricated the soft 
ICs. Shinde et al. developed a water-assisted method of 
transferring wafer-scale  MoS2 films, where the ultrathin 
PI film (1.5 μm) can be the carrier layer and substrate at 
the same time for a soft device [394]. The rollable inte-
grated circuit consisted of inverter, NAND, and NOR can 
be embedded on a glass pipette (Fig. 34a). Besides, the 
performances of the FETs on the PI were similar to those 
on Si substrate. The performance of NAND gates based 

on  MoS2 transistors on a PI substrate shown in Fig. 34b, 
and the output functionalities were measured in flat states. 
There are usually two typical phase, semiconducting hex-
agonal (2H) and metallic monoclinic (1T) phase. Zhang 
et  al. chemically synthesized 2H and 1T  MoTe2 using 
 MoO2.0–2.5 and  MoO3 thin films at 650 °C in a single step 
(Fig. 34c, d) [395]. 2H phase was applied as the semicon-
ducting channel and 1T phase used as the source and drain, 
which can realize the seamless connection (Fig. 34e). 
The transition voltage of  MoTe2 inverter approached the 
ideal voltage (VDD/2) and the voltage gain can be about 
35. Compared with traditional process, the one-step fab-
rication of FETs can avoid interfacial contaminations and 
material degradation without the post-synthesis litho-
graphic process. The device array can be transferred to 
the PVP and PVA thin films as the mediator and obtained 
a freestanding thin film with device arrays (Fig. 34f).

Fig. 33  Soft IC. a Layer structures of the CNT TFT. b Photograph of an eight-stage SR containing 304 CNT TFTs. c Measured waveforms 
of the eight-stage SR with CLK at 50 kHz and input data at 10 kHz. Reproduced with permission [392]. Copyright (2019), Springer Nature. d 
Images of the soft electronic devices transferred onto a wrist, a biodegradable PVA film, and a plant leaf. e Photograph of a NAND-ROM. Scale 
bar represents 200 μm. f 8-bit readout voltage of NAND-ROM under different 3-bit addresses of ‘000’, ‘001’, ‘010’ and ‘100’. Reproduced with 
permission [393]. Copyright (2018), Springer Nature
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Fig. 34  Soft ICs. a Photograph of the rollable logic circuits wrapped around glass pipette together with magnified NAND and NOT structure. 
Scale bar represents 1 cm. b Schematic and measurement results of the NAND gates on the PI substrate. Reproduced with permission [394]. 
Copyright (2018), Wiley–VCH. c Schematic of a 1T/2H  MoTe2 FET with a CNT gate. d Transfer characteristics of the inverter operating at 
VDD =  − 2, − 4, and − 6 V. Gains of the inverter for the same vales of  VDD. e Self-supporting substrate with an array of 144 stretchable transis-
tors. Insets: photograph of the device array on  SiO2/Si substrate before peeling-off (top) and cross-sectional schematics of the devices (bottom). 
Optical and Raman mapping image of a 1T/2H  MoTe2 junction on PVP/PVA film, respectively. f  MoTe2 devices with PVP/PVA substrate on 
skin. Reproduced with permission [395]. Copyright (2019), Springer Nature. g Transistor arrays under different mechanical deformation such 
as stretching, poking, and crumpling. Reproduced with permission [396]. Copyright (2019), American Association for the Advancement of Sci-
ence. h Optical microscope images of a stretchable amplifier in initial state (top) and stretched to 100% strain (bottom). i Input and output signals 
after amplification at 0%, 50%, and 100% strain. j Stretchable amplifier applied to amplify arterial pulse signals measured by a stretchable strain 
sensor. The devices are attached on skin side-by-side. k Pulse signals before and after amplification. Reproduced with permission [398]. Copy-
right (2018), Springer Nature. l Optical micrographs of the system when freestanding (top), twisted (middle) and poked (bottom). Reproduced 
with permission [399]. Copyright (2018), Springer Nature
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Compared with the inorganic semiconductor, the 
organic semiconductors are not only flexible but also 
stretchable. Sim et  al. developed fully rubbery inte-
grated electronics and logic, which can still work when 
stretched by 50% [396]. The metallic CNT (m-CNT) doped 
P3HT–nanofibrils (NFs) is exploited as the rubbery semi-
conductor. AuNPs–AgNWs/PDMS elastomeric conductor 
was applied as the source and drain electrodes, and ion 
gel was used for the gate dielectric. Due to the rubbery 
character of the materials, the transistor array can sustain 
mechanical deformations without any physical damage, 
such as stretching, poking, and crumpling (Fig. 34g). The 
fully rubbery logic gates, including inverters, NANDs, and 
NORs were also realized. Wang et al. developed transistors 
based on conjugated polymer/elastomer phase separation 
induced elasticity, which can still work under 100% strain 
only with little shift in the transfer curve. 6300 stretchable 
transistors can be integrated on an area about 4.4 × 4.4 
 cm2. A digital NAND gate and an analog amplifier circuit 
are realized by the stretchable transistors, both can still 
work under 100% strain (Fig. 34h, i). Finally, an on-skin 
amplifier was used to be applied to amplify raw detected 
physiological signals successfully (Fig.  34j, k). Kwon 
et al. developed an approach to integrating soft organic 
transistor 3D monolithically [397]. A large-scale soft logic 
circuitry was realized using a 12 × 8 3D NAND gate array. 
In addition to the MOS-level, the soft ICs can also be more 
integrated into the PCB-level. Huang et al. developed a 
multilayer PCB system (Fig. 34l). The interlayers were 
connected using vertical interconnect accesses formed by 
laser ablation.

With the development of soft semiconductor materials 
such as CNT and TMD, and the fabrication process, the 
function single soft CMOS transistor and integration of the 
soft ICs can be further improved. The ability of machine 
learning algorithm to process physiological signals in situ 
will be greatly enhanced.

5.3  Microfluidic Channels for Collecting Chemical 
Signals

The signals and devices discussed above are most physical 
physiological signals. In addition, most of the algorithms 
cooperated with soft electronics reviewed above only ana-
lyze single signal. Considering the complexity of human 

body, only single signal, even only physical signals cannot 
fully reflect the state of human body. When we go to the 
hospital for physical examination, chemical signals are also 
indispensable. Therefore, the soft system integrating physi-
cal and chemical signals can obtain more information about 
human body. In addition, assisted by the powerful machine 
learning algorithms, the potential information hidden in 
multimodal signals can help the diagnosis of the disease.

The chemical physiological information is usually saved 
in the body fluids, such as sweat [400], tears [401], saliva 
[402], and interstitial fluid [403]. Among these body fluids, 
due to the easy to collection, sweat has been studied most. 
Compared with the physical physiological signals, the chem-
ical physiological signal is easier to be contaminated during 
the sample collection process. Microfluidic channels can be 
used to collect the fluids, and wildly used in the biochemical 
analysis field.

Sweating is the basic biological activity of the human 
body, which plays an important role in keeping the stability 
of the internal environment. There are many functions of 
the sweat. Heat can be taken away from the body surface 
through the evaporation of sweat, thus maintaining a con-
stant body temperature. Some metabolism and toxins can 
also be excreted by sweating.

Sweat has complex components. In addition to water, the 
most abundant substance in sweat is NaCl. Some trace ele-
ments such as Ca, Zn, and Mg can also be found in sweat. 
Besides, amino acids, hormones, urea, uric acid, lactic acid, 
glucose, and creatinine are also the components of sweat. 
Therefore, much human health information can be obtained 
by analyzing sweat, such as electrolyte imbalance, glucose 
level, lactic acid index, dehydration status, and calorie burn-
ing value [404, 405]. Compared with the blood analyzing, it 
is a noninvasive and in vitro method, which makes it more 
convenient and healthier.

To detect the sweat loss of human body, Reeder et al. 
developed a soft microfluidic device [406]. When the sweat 
loss exceeds a threshold, the sweat can trigger to release 
menthol or capsaicin solution as an alert (Fig. 35a). By 
designing microstructured features of microfluidic surface 
and strain-actuated elastomeric suction pump and elasto-
meric pinch valve, the sweat in microchannel can be pulled 
out, if the sweat loss was not across the threshold, which 
makes the device reusable.

To analyze the components of sweat, there are usually two 
common methods, colorimetric and electrochemical method. 
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However, a problem should be solved before the analysis. 
The tested sweat is easy to be contaminated by oils, dirt, 
and chemicals of skin and environment. In addition, how to 
prevent the interference between sweat excreted at differ-
ent time is also a problem. The microfluidic channel is an 
effective way to collect fresh sweat [407, 408]. Choi et al. 
designed capillary bursting valves (CBVs), which can direct 
the sweat to fill the microreservoirs in a sequential manner 
(Fig. 35b) [409]. the computed bursting pressures for CBVs 
#1, #2, and #3 are 498.9, 881.7, and 3035.7 Pa, respectively. 
When sweat arrives at CBVs #1 and #2, CBV #1 will open 

and allow sweat into the chamber. After filling the cham-
ber, the sweat flow will burst CBV #2 at sufficient pressure 
to fill the next chamber. After finishing the collection, the 
device was inserted into the centrifuge to open CBV #3 and 
move the sample into extraction chambers for lab analysis. 
Finally, the sample was analyzed by chromatography–mass 
spectrometry system.

Colorimetric method is based on the reaction between 
sweat components and color indicator to produce color 
change, and realize the detection of the tested substances 
[410, 411]. The color change is mainly recognized by human 

Fig. 35  Soft sweat sensor. a Schematic flow of reusable microfluidic channels operation. C.A. = Chemesthetic agent. Reproduced with permis-
sion [406]. Copyright (2019), Nature Publishing Group. b Schematic illustration of a unit cell, containing a collection chamber, extraction cham-
ber, sampling outlet, and three CBVs. SEM images of CBVs. Sketch of CBVs with indicated channel width and diverging angle. Reproduced 
with permission [409]. Copyright (2017), Wiley–VCH. c Photographs of the microreservoirs for the assays before (upper) and after (lower) fill-
ing with sweat collected by microfluidic channels under visible light illumination. d Procedure for performing a fluorometric assay: 1. Collecting 
sweat by skin-interfaced microfluidic device 2. Peeling away the black shield 3. Capturing a photograph of the device using a smartphone with 
the optics module. Reproduced with permission [412]. Copyright (2018), Royal Society of Chemistry. e Multiple functions of the laser-engraved 
sensor: sweat UA and Tyr detection, sweat rate estimation, temperature sensing, and vital-sign monitoring. Reproduced with permission [414]. 
Copyright (2020), Nature Publishing Group. f Schematic illustration of the exploded view of the hybrid battery-free microfluidic channels sys-
tem. Reproduced with permission [415]. Copyright (2019), American Association for the Advancement of Science
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eyes. Therefore, it is not accurate enough. However, colori-
metric method is much easier in special field, such as the fast 
test. Sekine developed a fluorometric sweat sensor which 
have three components: an adhesive layer, a platform of 
microfluidic channels, and valve structures to excrete sweat 
to microreservoirs (Fig. 35c, d) [412]. The microreservoir 
contains fluorescent assays tailored for Cl, Na, and Zn. A 
detachable light-shielding layer is fabricated to prevent 
exposure of fluorescent reagents to light before the readout 
process. A smartphone-based fluorescence-imaging modules 
was built to analyze the fluorescent performance. In addition 
to the components, the sweat loss can also be measured by 
the flower-shape microfluidic channels.

Compared with colorimetric method, electrochemical 
method has better sensitivity and accuracy. By modifying 
the selective electrode, the selective recognition and detec-
tion of physiological markers in sweat can be realized by 
detecting the potential difference, current and resistance 
signals between the electrodes [413]. Yang et al. realized 
the simultaneous sweat sampling, chemical sensing, and 
vital-sign monitoring by a laser-engraved sensor (Fig. 35e) 
[414]. LIG was used as the active material of temperature 
and strain sensor to detect temperature and respiration rate. 
Microfluidic channels pattern was engraved directly on the 
PET substrate by laser. LIG was also applied as the elec-
trochemical electrode to analyze the sweat collected by the 
microfluidic channels. Low-concentration uric acid and 
tyrosine can be detected to prevent diseases such as gout. 
Bandodkar et  al. realized a battery-free, wireless elec-
tronic sensing system, which can simultaneously monitor 
sweat rate/loss, pH, lactate, glucose, and chloride (Fig. 35f) 
[415]. The sweat collection and loss rate were measured by 
microfluidic channels. Lactate and glucose were detected 
by electrochemical method. PH and chloride were detected 
by colorimetric method. Besides, an NFC-based system can 
harvest energy from mobile phone and read data. This sys-
tem has good long-term stability for more than 2 days.

Machine learning algorithm can efficiently find the rela-
tionship between various signals. The more the signal types, 
the more powerful the algorithms. Therefore, by combining 
physical and chemical signals, more useful information for 
the health care can be mined.

5.4  Challenge and Outlook

The applications and advantages of soft electronics assisted 
by algorithms have been demonstrated above. However, 
many challenges still need to be overcome.

In the material level, the repeatability and yield of the 
nanomaterial should be further improved. For example, the 
well-aligned and all-semiconducting SWCNT films with 
high uniformity, high array density, and low defect density 
on large wafers are urged. Improving the quality and area 
of graphene thin films and finding better ways to transfer it 
are important for its further applications. For the wearable 
device, the safety and comfort are the most important param-
eters. The preparation process of some organic materials and 
heavy metal usually requires the toxic solutions, etc., which 
may be harmful to the human organisms. Therefore, how to 
improve the biocompatibility of soft material is important, 
and the biocompatibility experiment should be paid more 
attention. In addition, for the wearable device, the interaction 
between materials and skin or excreta should be discussed 
in detail in the future.

Although the soft electronics has been developed for 
many years. Most of the soft devices and system are still 
based on the dense polymers (PDMS and Ecoflex), which 
makes the sweat hard to evaporate and limit the metabolism 
of skin. When worn for a long time, there will be inevitable 
redness and inflammation. The uncomforting performance of 
these devices will hinder the development of soft electronics. 
Therefore, the morphology of material or structure should be 
designed to let the water and gas cross. In addition, the dense 
polymers usually have thickness in millimeter, which will 
influence the interface between the device and skin [287]. 
The nanomesh has potential to the solve the problem. In 
addition, for the current breathable sensor, only the sensor 
is breathable, while the circuit and other part are not. It is 
urgent to realize a permeable system. Besides, the inter-
face between soft sensor and circuit should be optimized to 
obtain a high SNR. The ideal solution is the fully soft system 
consisting of the sensor, interconnection, and chips.

For the soft electronics combined with algorithms, there 
are still some points need to be further optimized in software 
and hardware. In terms of software, first, more industry-
standard signal dataset suitable to the soft electronics should 
be built. This can avoid much redundant work and provide a 
standard to judge the performance of devices and algorithm. 
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Second, the test method of physiological signals should also 
be standardized. Third, more special algorithm should be 
proposed to further widen the application field of machine 
learning in the soft electronics. For example, limited by the 
device density in the soft system, small-scale algorithms are 
tended to be chosen. Fourth, the system combining physical 
and chemical signal can provide more information about 
the physical condition. Therefore, the synergetic algorithm 
to analyze the multimodal signal is necessary. Fifth, to fully 
taken the powerful function of neural network algorithms, 
many novel neural networks such as Yolo, Faster R-CNN, 
and transformer should be combined with the soft electron-
ics to realize more functions, for example multiple-target 
colorimetry recognition. In terms of hardware, the density 
of computing device in the soft system should be increased, 
which can run the larger-scale algorithm in situ. To realize 
more powerful soft system, advanced soft material and fab-
rication process should be studied.

The health care process can be divided into two types, 
health monitoring and real-time alert. Both of them can be 
realized by the machine learning-assisted soft electronics. The 
tight interface and good wearing experience can enlarge the 
size of dataset, which can provide more information to diag-
nose and make a more accurate monitoring process. For the 
real-time alert, the characteristic signal can be distinguished 
timely or even ahead of time. Taking the ECG as an example, 
users wear the ECG sensor the monitor their ECG signals. 
In traditional chest pain centers, medical personnel can read 
the ECG of users. If the abnormal signal appears, medical 
personnel can give warning timely by the medical personnel. 
However, with the increasing of users, more medical person-
nel are needed, which leads to larger economic pressure and 
social pressure. In addition, most of the physiological signals 
are normal signals, and the waste of resources is inevitable. 
The machine learning-assisted soft electronics can solve this 
problem, and relieve the medical pressure mentioned above. 
To improve accuracy of the diagnosis, the correctness of the 
label is important. Before the practical application, more 
experienced experts should be invited to label the data. Based 
on this, the diagnostic capability of the intelligent soft system 
can achieve the expert level in the future.

For the soft electronics combined with the neuromorphic 
devices, the HMI has the huge potential. Many sense organs 
such as eye and skin can be reconstructed. Besides, the pros-
thesis based on the soft neuromorphic system can recover 
the motor function. To realize the artificial prosthesis, more 

devices should be demonstrated to realize more neuromor-
phic functions. The electronics should be combined with 
physiology in the future.

For the soft ICs, the analog and digital circuit all have 
huge improvement. The basic amplifier has been realized to 
the analog signal amplification, and basic digital logic gates 
have been applied to realize the Boolean operation. How-
ever, the soft large-scale integration and very large-scale 
integration have not been realized yet. Some modular such 
as ADC and Bluetooth are indispensable to the totally soft 
system.

In conclusion, a comprehensive review about the soft 
electronics system has been demonstrated which consists of 
material, physiological signal, and machine learning algo-
rithm. Some nanomaterials such as CNT, graphene, and 
AgNWs have been discussed in detail. Characteristics of 
different physiological signals corresponding devices have 
been introduced. Then, the intelligent soft system powered 
by the machine learning algorithm has been discussed care-
fully. Finally, the challenge and outlook of the intelligent 
soft system based on nanomaterial has been stated. With the 
help of the machine learning, the soft system can detect and 
diagnose physiological signal, simultaneously. The diagnosis 
and prevention of many diseases can be carried out during 
the daily life, which can greatly relieve medical pressure and 
decrease the physical examination cost.
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