Supporting Information for

## Plasmonic Ag-Decorated Few-Layer MoS<sub>2</sub> Nanosheets Vertically

## Grown on Graphene for Efficient Photoelectrochemical Water

## Splitting

Dong-Bum Seo<sup>1</sup>, Tran Nam Trung<sup>1</sup>, Dong-Ok Kim<sup>1</sup>, Duong Viet Duc<sup>1</sup>, Sungmin Hong<sup>2</sup>, Youngku Sohn<sup>2</sup>, Jong-Ryul Jeong<sup>1</sup>, Eui-Tae Kim<sup>1, \*</sup>

<sup>1</sup>Department of Materials Science & Engineering, Chungnam National University, Daejeon 34134, Republic of Korea

<sup>2</sup>Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea

\*Corresponding author. E-mail: <u>etkim@cnu.ac.kr</u> (Eui-Tae Kim)

## **Supplementary Figures and Table**



**Fig. S1** (a) Raman spectra of ITO, pristine graphene, ITO/MoS2, and G/MoS2. (b) Graphene-region Raman spectra of pristine graphene and G/MoS2. (c) UV–Vis absorption spectrum of pristine graphene, exhibiting light transmittance of 96.8% at 550 nm



**Fig. S2** (a) Raman spectra of pristine graphene,  $ITO/MoS_2$ , and  $G/MoS_2$ . (b) SEM images of fewlayer  $MoS_2$  nanosheets grown on ITO ( $ITO/MoS_2$ )



**Fig. S3** Ag NP size distribution of (**a**) G/MoS2/Ag-2, (**b**) G/MoS2/Ag-4, and (**c**) G/MoS2/Ag-8



Fig. S4 Energy band diagram of the Schottky junction of MoS<sub>2</sub>/Ag



Fig. S5 PL spectra of G/MoS2, G/MoS2/Ag-2, G/MoS2/Ag-4, and G/MoS2/Ag-8



**Fig. S6** Nyquist plots of G/MoS2, G/MoS2/Ag-2, G/MoS2/Ag-4, and G/MoS2/Ag-8 in the dark



**Fig. S7** (a) Schematic representation of the formulated structure for FDTD simulations. The Ag NPs on a three-layer-thick MoS2 substrate is irradiated by a plane-wave source with the propagation vector in the *z*-direction and the E-field oscillating along the *x*-axis. (b) Real simulation environment with applied periodic boundary conditions



**Fig. S8** Dark current density–potential curves of PEC cells with various working electrodes (G/MoS<sub>2</sub>, G/MoS<sub>2</sub>/Ag-2, G/MoS<sub>2</sub>/Ag-4, and G/MoS<sub>2</sub>/Ag-8)



**Fig. S9** Repeated photocurrent–time measurement for G/MoS2/Ag-4 in 0.3 M KH2PO4 + 0.3 M KOH solution after a month



**Fig. S10** SEM images of ITO/MoS2, G/MoS2, and G/MoS2/Ag-4 after PEC measurement for 1 h

|                          | Dark                       |               | Illumination                   |               |                                   |
|--------------------------|----------------------------|---------------|--------------------------------|---------------|-----------------------------------|
| Samples                  | $R_{ct}\left[\Omega ight]$ | $R_s[\Omega]$ | $R_{ct} \left[ \Omega \right]$ | $R_s[\Omega]$ | $R_{ct}$ (dark)/ $R_{ct}$ (photo) |
| ITO/MoS <sub>2</sub>     | 4236                       | 43.7          | 2766                           | 45.5          | 1.53                              |
| G/MoS <sub>2</sub>       | 3264                       | 40.1          | 1959                           | 40.2          | 1.67                              |
| G/MoS <sub>2</sub> /Ag-2 | 2834                       | 41.7          | 1780                           | 41.7          | 1.59                              |
| G/MoS <sub>2</sub> /Ag-4 | 2572                       | 40.2          | 1284                           | 44.2          | 2.00                              |
| G/MoS <sub>2</sub> /Ag-8 | 3110                       | 66.8          | 1947                           | 48.3          | 1.60                              |

Table S1  $R_{ct}$  and  $R_s$  values of EIS analysis in the dark and under illumination