Supporting Information for

All-Solid-State Thin-Film Lithium-Sulfur Batteries

Renming Deng^{1, #}, Bingyuan Ke^{1, #}, Yonghui Xie¹, Shoulin Cheng¹, Congcong Zhang¹, Hong Zhang^{1, 2, 3}, Bingan Lu^{4, *}, Xinghui Wang^{1, 2, 3}, *

¹ College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, 350108, P. R. China

² Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China

³ Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou, 213000, P. R. China

⁴ School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China

[#] Renming Deng and Bingyuan Ke contributed equally to this work.

* Corresponding authors. E-mail: <u>luba2012@hnu.edu.cn</u>(B. Lu); <u>seaphy23@fzu.edu.cn</u>(X. Wang)

Supplementary Figures

Fig. S1 Potential profiles of liquid-electrolyte lithium-sulfur battery using Li_2S_6 electrolyte

Nano-Micro Letters

Fig. S2 Cross-section SEM image of the VGs

Fig. S3 FFT patterns, inverse FFT patterns

Fig. S4 HRTEM image of the graphene sheet.

Fig. S5 Electrochemical performance of the VGs-Li₂S thin-film cathode in liquid system. **a** CV curves; **b** voltage profiles at a current density of 25.8 μ A cm⁻²; **c** cycling performances

Fig. S6 Voltage profiles of the VGs-Li₂S thin-film cathode under different current densities

Fig. S7 Cycling performances of VGs-Li₂S/LiPON/Pre-Li cells at 10.5 μ A cm⁻² with an initial Coulombic Efficiency of 78.6%

Nano-Micro Letters

Fig. S8 Digital photos of the VGs-Li₂S/LiPON/Pre-Li cell (sealed with CR2025-type coin cell) connected with a small thermometer

Fig. S9 The fitted Nyquist plots of the VGs-Li₂S/LiPON/Pre-Li cell after 1000 cycles

Fig. S10 The corresponding relationship between Z_{Re} and $\omega^{-1/2}$ in the low frequency region of after (a) 200, (b) 500 and (c) 1000 cycles

The Li⁺ diffusion coefficient has been calculated from plots in the low frequency region using the following equation:

$$D = R^2 T^2 / 2A^2 F^4 C^2 \sigma_W^2$$
 (S1)

Where R is the gas constant, T is the absolute temperature, A is the area of the cathode thin film, F is the Faraday constant, C is the concentration of Li^+ , and σ_W is the Warburg impedance coefficient, which can be obtained from the slope of the real part of resistance (Z_{Re}) and the inverse square root of angular frequency ($\omega^{-1/2}$).

Fig. S11 EDS elemental mapping of S, C, and P at the VGs-Li₂S/LiPON interface before cycling

Fig. S12 Voltage profiles of the VGs-Li₂S/LiPON/Evp-Li cell at the first three cycles under a current density of $1.12 \ \mu A \ cm^{-2}$

Fig. S13 FIB-SEM image of VGs-Li₂S/LiPON/Evp-Li cell after cycling