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Self‑Healing Liquid Metal Magnetic Hydrogels 
for Smart Feedback Sensors and High‑Performance 
Electromagnetic Shielding
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HIGHLIGHTS

• A conductive, stretchable, adaptable, and self-healing, GaInSn/Ni--based composite hydrogel by incorporating a magnetic liquid 
metal into the hydrogel framework through crosslinking polyvinyl alcohol with sodium tetraborate.

• The multifunctional composite hydrogels showed outstanding performance for magnetic repair movement sensing, and EMI shielding.

ABSTRACT Hydrogels exhibit potential applications in smart wear-
able devices because of their exceptional sensitivity to various external 
stimuli. However, their applications are limited by challenges in terms 
of issues in biocompatibility, custom shape, and self-healing. Herein, 
a conductive, stretchable, adaptable, self-healing, and biocompatible 
liquid metal GaInSn/Ni-based composite hydrogel is developed by 
incorporating a magnetic liquid metal into the hydrogel framework 
through crosslinking polyvinyl alcohol (PVA) with sodium tetraborate. 
The excellent stretchability and fast self-healing capability of the PVA/
liquid metal hydrogel are derived from its abundant hydrogen binding 
sites and liquid metal fusion. Significantly, owing to the magnetic con-
stituent, the PVA/liquid metal hydrogel can be guided remotely using 
an external magnetic field to a specific position to repair the broken 
wires with no need for manual operation. The composite hydrogel also exhibits sensitive deformation responses and can be used as a 
strain sensor to monitor various body motions. Additionally, the multifunctional hydrogel displays absorption-dominated electromagnetic 
interference (EMI) shielding properties. The total shielding performance of the composite hydrogel increases to ~ 62.5 dB from ~ 31.8 dB of 
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the pure PVA hydrogel at the thickness of 3.0 mm. The proposed bioinspired multifunctional magnetic hydrogel demonstrates substantial 
application potential in the field of intelligent wearable devices.

KEYWORDS EMI shielding; Liquid metal; Hydrogel; Self-healing properties; Strain sensor; Magnetic patterning

1 Introduction

Liquid metals of Ga-based alloys have attracted intensive 
interest because of their deformability, nontoxicity, self-
healing capability, high electric/thermal conductivity, and 
unique surface chemistry [1–3]. In particular, the fluidity and 
deformability of liquid metals in aqueous environments are 
promising for applications in various fields, such as flexible 
electronics [4–6], soft robotics [7, 8], energy harvesting/stor-
age [9, 10], microfluidics [11], sensors [12], actuators [13, 
14], and wearable sensing [15].

Currently, miniaturized, integrated, and high-power 
electronic devices are being rapidly developed for wire-
less communication, and significantly large electromag-
netic interference (EMI) is produced as an inevitable by-
product [16, 17]. EMI has a substantial effect on the nearby 
electronic apparatus and may result in the degradation and 
malfunctioning of electronics, particularly those working at 
high frequencies [18–20]. Furthermore, EMI pollution has 
severe adverse effects on the surrounding environment and 
human health. Therefore, the development of EMI functional 
materials has become a significant alternative to effectively 
alleviate this dilemma [21–23]. Compared with traditional 
rigid metals, MXenes and carbon nanomaterials [24–26], 
liquid metals have emerged as promising EMI shielding 
materials and attracted increasing attention because of their 
excellent processability, good fluidity, and high conductiv-
ity [27–29]. Zhu et al. fabricated a flexible multifunctional 
EM shielding film derived from an Ecoflex elastomer filled 
with magnetic liquid metal droplets [30]. The film exhibited 
strain-improved electrical conductivity and EMI shielding 
properties when subjected to uniaxial tensile stress. A three-
dimensional (3D) liquid metal network was inserted in a 
stretchable polydimethylsiloxane composite foam, and the 
resulting material demonstrated significant EMI shielding 
enhancement under compression and stretching [31, 32]. The 
3D liquid metal configuration could regulate the electrical 
conductivity during stretching and compression, enhancing 
the reflection of EM waves and shielding the EMI. Liquid 
metal-based monoliths with a 3D continuous conductive 

network were successfully prepared using a constrained 
thermal expansion method [33]. The as-prepared monoliths 
possessed tunable architectures owing to the microcosmic 
fluidity of the liquid metal and demonstrated excellent 
EMI shielding performance. Huang et al. developed a self-
standing thermostable composite film for EMI shielding by 
introducing a small quantity of aramid nanofibers into liquid 
metals [34].

However, the EMI shielding properties of liquid metal-
based composites are mainly achieved by reflecting elec-
tromagnetic waves, which will cause secondary pollution. 
Moreover, their limited self-healing ability hampers their 
applications in intelligent, flexible devices. In contrast to 
metal liquid-filled elastomers, hydrogels are a type of engi-
neering material composed of a crosslinked network of 
hydrophilic blocks surrounded by water [35], demonstrating 
the potential for absorption-based EMI blocking [36]. More-
over, compared to their dry counterparts, soft polymer hydro-
gels possess shape adaptability and self-healing capabilities, 
enabling stable and conformal interfaces with blocked tar-
gets for applications in artificial skin or wearable electronics 
[37–39]. In the past decades, fast self-healing, shape/size-
tunability, and EMI shielding properties of hydrogels have 
been extensively studied. Accordingly, several hydrogels 
have been developed, such as sandwich-structured hydro-
gels consisting of a layer of silver nanowire and two layers 
of polyvinyl alcohol (PVA) hydrogels reinforced by aramid 
nanofibers [40],  Ti3C2-MXene-functionalized poly(3,4-eth
ylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) 
hydrogels [41], ionic liquid doped PEDOT:PSS hydrogels 
[42], polyacrylic acid/cellulose nanofibers/MXene/calcium 
ion composite hydrogel [43], MXene organohydrogel con-
taining glycerol and water binary solvents [44], and multi-
wall carbon nanotubes/polyacrylamide/cellulose nanofiber 
hydrogels [45]. However, these hydrogels repair themselves 
by the aid of external manual operation. The fabrication of 
self-healing liquid metal-based soft hydrogels with no need 
for manual touch remains an open challenge.

Herein, we present a simple ultrasonic method to fab-
ricate PVA/GaInSn–Ni composite hydrogels with rapid 
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self-healing capability and excellent stretchability and 
shape adaptability. The multifunctional composite hydro-
gels demonstrated high performance for magnetic repair and 
prototyping, body movement sensing, and EMI shielding. 
The abundant reversible hydrogen bonds between PVA and 
borate ions and the fluidity of liquid metals render the PVA/
liquid metal hydrogel self-healing features in the absence of 
any external stimulus. In the presence of a magnetic field, 
broken wires can be repaired remotely by placing them in 
a sealed space with one end warped by the magnetic liquid 
metal hydrogel. The composite hydrogel could be used as a 
strain sensor to detect body motions and as a signature sen-
sor that sensitively and rapidly responds to various external 
stimuli. The water-rich hydrogel with moderate conductivity 
provides absorption-dominated EMI shielding performance 
to the composite. Importantly, the composite hydrogel 
exhibited long-term stability for EMI shielding even after 
storage for 1 year.

2  Experimental

2.1  Raw Materials

PVA (Mw ≈ 145,000) was purchased from Meryer Co., Ltd. 
Sodium tetraborate (anhydrous, 99%), gallium (99.9%), 
indium (99.9%), and tin (Sn, 99%) were obtained from 
Shanghai Macklin Biochemical Co., Ltd. Nickel micropar-
ticles (99.9%) were obtained from Shengshida Metal Mate-
rials. Co. Ltd., China. All reagents were used as received 
without further modification.

2.2  Synthesis of EGaInSn Droplets

The EGaInSn liquid metal alloy was fabricated by melting 
a mixture of Ga (68 wt%), In (22 wt%), and Sn (10 wt%) in 
an oil-bath pan at 150 °C for 1 h.

2.3  Preparation of PVA/EGaInSn–Ni Composite 
Hydrogels

First, PVA white powder (0.4 g) was added to 5 mL of 
deionized (DI) water and magnetically stirred at 80 °C 
for 7 h until all powders were dissolved to obtain a PVA 

solution (8 wt%). Thereafter, EGaInSn and Ni were added 
to the solutions, and then, EGaInSn–Ni was evenly dis-
persed in the solution by ultrasonic treatment for 2 h. 
Meanwhile, sodium tetraborate was dissolved in hot DI 
water (60 °C) and shaken well until the particles were 
completely dissolved to produce a solution of 4 wt%. After 
cooling to room temperature, the sodium tetraborate solu-
tion was slowly blended with the PVA mixture to prepare 
composite hydrogels. PVA-based hydrogels with different 
mass ratios of EGaInSn and Ni, namely 1:0.5, 1:1, 1:2, 
1:4, and 1:8, are denoted as PVA/EGaInSn–0.5Ni, PVA/
EGaInSn–1Ni, PVA/EGaInSn–2Ni, PVA/EGaInSn–4Ni, 
and PVA/EGaInSn–8Ni, respectively.

2.4  Characterization

A powder X-ray diffractometer (XRD, Bruker, D8 
ADVANCE) was used to record the XRD patterns. X-ray 
photoelectron spectroscopy (XPS) analyses were per-
formed on a Kratos AXIS Ultra spectrometer equipped 
with a monochromatized Al Kα X-ray source. Fourier 
transform infrared (FTIR) spectra were acquired using a 
spectrometer (Bruker, Vertex80V). The functional groups 
of the PVA-based hydrogels were examined using an 
FTIR spectrometer (Thermo Nicolet iS10). The morphol-
ogy and elemental distribution of the PVA–LM hydrogels 
were characterized using Scanning electron microscopy 
(SEM, Nova Nano SEM 450) coupled with energy-
dispersive X-ray spectroscopy (EDS, Bruker Silicon). 
The rheological behavior of the hydrogels was investi-
gated using a Thermo HAAKE MARS 60 machine with 
a 20 mm parallel plate. A dynamic frequency sweep of 
0.1–10 Hz was conducted at 25 °C with a fixed oscilla-
tion strain of 0.2% in the oscillation mode. The electri-
cal resistivities of the PVA/EGaInSn–Ni and pure PVA 
hydrogel samples were tested using an RTS-8 four-probe 
resistivity meter. An LCR instrument (TH2830) operated 
using a LabView software was used to collect all relevant 
data. In the EMI shielding measurement, the compos-
ite hydrogel is cut into rectangle shape with dimensions 
of 22.86 mm × 10.16 mm × 3.0 mm. The EMI shielding 
properties of the PVA/liquid metal composite hydrogels 
were measured using a vector network analyzer (N5234B, 
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KEYSIGHT) in the X band (8.2–12.4 GHz), and more 
details can be found in the Supporting Information.

3  Results and Discussion

3.1  Characterization of PVA–Liquid Metals Hydrogels

Figure 1a illustrates the fabrication process of the self-
healing PVA/EGaInSn–Ni composite hydrogel. A eutectic 
GaInSn (EGaInSn) suspension was first prepared by the 
ultrasonic treatment of Ga, In, and Sn metals with a specific 
mass ratio. The composite PVA/EGaInSn–Ni was obtained 
by mixing the EGaInSn suspension with Ni particles, PVA, 
and sodium tetraborate. Herein, borate molecules acted as 

crosslinkers by forming abundant hydrogen bonds with 
PVA [46, 47]. Previous studies showed that a thin oxide 
skin layer could be easily formed on the surface of gallium-
based liquid metals in the air [48], leading to secondary 
crosslinking with PVA chains. The as-fabricated PVA/
EGaInSn–Ni hydrogel exhibits excellent self-healing capa-
bility (Fig. 1b), which is derived from the abundant H-bond 
sites. The self-healing properties of the prepared hydrogels 
are mainly attributed to two factors: (1) As a self-healing 
supramolecular adhesive, PVA polymer not only has cer-
tain viscosity, but also has complex network structure and 
good biocompatibility, which can promote fluidity, ductility 
and self-healing. Polymerization of PVA with borax by diol 
results in many network structures, in which the hydroxyl 

Fig. 1  Fabrication of the self-healing liquid metal hydrogel. a Scheme illustrating the preparation of the PVA/EGaInInSn–Ni composite hydro-
gel containing primary crosslinked networks. b Self-healing mechanism of the PVA/EGaInInSn–Ni hydrogel. c Schematic demonstrating the 
high-performance EMI shielding of the liquid metal-based hydrogel resulting from conductive loss, interfacial polarization, and dipole polariza-
tion. d Schematic showing external magnetic force can move composite hydrogel
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group in the PVA chain forms a weak hydrogen bond with 
the borax molecule, forming a “tenon-like” structure. After 
the material is broken, the exposed new surface is rich in 
PVA hydroxyl group and borax molecule. When the two 
damaged surfaces contact, the weak hydrogen bonds formed 
between the hydroxyl group in the PVA chain and borax 
molecule gradually recombine and connect, which leads 
to the material healing. (2) Hydrogen bonds between the 
hydroxyl group of the PVA chain and the thin metal oxide 
layer on the liquid metal surface provide abundant sites for 
molecular crosslinking during self-healing, which can be 
repaired quickly after interconnection. Additionally, the flu-
idity of liquid metal further facilitates the crosslinking of the 
PVA hydrogel and promotes self-healing. These PVA–liquid 
metal composite hydrogels are expected to have excellent 
EMI shielding properties (Fig. 1c) because of the conductive 
networks of liquid metals, abundant dipoles in water, and 
numerous interfaces between PVA, EGaInSn, and Ni. Add-
ing magnetic Ni particles allows the composite hydrogels to 
move under a magnetic force (Fig. 1d).

The EGaInSn particles were synthesized through an iso-
thermal sonication process at 150 ℃ for 60 min. The long 
sonication process yields highly dispersed liquid metal drop-
lets with uniform elemental distribution (Fig. S1). A more 
detailed study on the surface composition of EGaInSn was 
performed using XPS (Fig. S2). In the XPS spectra of Ga 
3d (Fig. S2a), the peak at 18.5 eV is associated with metal-
lic gallium  (Ga0) [49], while two peaks at 19.6 and 20.6 eV 
correspond to the chemical states of  Ga1+ in  Ga2O and  Ga3+ 
in  Ga2O3 [50], respectively. The O 2s peak at 23.8 eV is also 
observed in the Ga 3d spectrum, confirming the oxidation 
of Ga [51]. The functional shell on the liquid metal drop-
lets had numerous oxygen-containing groups, which were 
expected to significantly enhance the interaction between the 
droplets and polymer matrix. In the In 3d core-level spec-
trum, two distinct peaks at 443.1 (In 3d5/2) and 450.7 eV (In 
3d3/2) are attributed to  In0 (Fig. S2b). Similarly, in the Sn 
3d XPS spectrum (Fig. S2c), the peaks centered at 484.8 
and 493.2 eV are related to the metallic  Sn0. These results 
suggest that the surface of the EGaInSn particles a mainly 
composed of Ga oxides and a small amount of the mixture 
of In and Sn oxides. The O 1s XPS spectrum (Fig. S2d) is 
deconvoluted into two peaks at 531.7 and 533.3 eV, suggest-
ing the presence of intact stoichiometric oxides and oxygen 
vacancies, respectively [52].

Figure 2a displays the powder XRD patterns of pure PVA, 
PVA/EGaInSn, and PVA/EGaInSn containing 8 wt% Ni par-
ticle (PVA/EGaInSn–8Ni) hydrogels. No distinct peaks are 
observed in the PVA hydrogel, confirming its crosslinking 
state [53]. After PVA is mixed with EGaInSn liquid metal, 
a low-intensity broad peak at ~ 35° appears, indicating the 
presence of amorphous components (e.g., amorphous oxides 
and/or the liquid itself) [54]. With the introduction of Ni 
particles, three clear diffraction peaks at 44.6°, 52.0°, and 
76.5° are observed, which are indexed to the (111), (200), 
and (220) planes of the face-centered cubic structure of Ni 
(JCPDS no. 04–0850). Similar to PVA/EGaInSn–8Ni, all 
XRD patterns of the hydrogels with various Ni contents 
show three diffraction peaks of Ni (Fig. S3). FTIR spec-
troscopy provides more detailed information for elucidat-
ing the crosslinked structure (Figs. 2b and S4). Pure PVA, 
PVA/EGaInSn, and PVA/EGaInSn–Ni hydrogels exhibit a 
strong and broad peak at 3400  cm−1 due to the absorption 
characteristic of water and stretching vibration of the –OH 
group, which is a typical indication of hydrogen bonding 
[55]. The peak associated with C–O stretching vibration is 
observed at 1630  cm−1. The carbonyl (C=O, the acceptors 
of hydrogen bonds) and hydroxyl groups (–OH, the donors 
of hydrogen bonds) can produce a high density of hydrogen 
bonds [56], which is consistent with the broad and strong 
peak at 3455  cm−1.

The chemical bonding states of the PVA/EGaInSn–8Ni 
composite hydrogels were confirmed using XPS (Fig. 2c–e 
and S5). The Ga 2p core-level spectrum (Fig. 2c) is decon-
voluted to three peaks related to  Ga+,  Ga3+, and metallic Ga. 
The high-resolution XPS spectrum of Ni 2p (Fig. 2d) shows 
the coexistence of  Ni0 and  Ni2+ species [57], indicating that 
oxidation occurred on the surface of the Ni particles. In the In 
3d region (Fig. S5a), the metallic indium exhibits two peaks 
centered at 443.7 (In 3d5/2) and 451.4 eV (In 3d3/2), with a sep-
aration of spin–orbit components Δ

metal
 ≈ 7.7 eV [58]. In the 

Sn 3d XPS spectrum (Fig. S5b), the peaks centered at 484.9 
and 493.5 eV correspond to the metallic tin [59]. As shown 
in Fig. 2e, the C 1s core-level spectrum has three-peak com-
ponents, i.e., C–C/C=C (284.9 eV) and C–O (286.5 eV). The 
strong C signal indicates the presence of abundant hydrophilic 
groups on the PVA chains, which offer abundant crosslink-
ing sites in the hydrogel [36]. The O 1s peaks are deconvo-
luted to metal oxide, hydroxide, and lattice oxide component 
peaks (Fig. S5c), demonstrating the formation of mixed liq-
uid metal oxides and the Ni oxidation states on the shell [60]. 
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SEM images illustrate the uniform dispersion of liquid metal 
particles containing Ni in the PVA polymer (Fig. 2f, g). Cor-
responding elemental mapping using EDS reveals that Ga, In, 
Sn, and Ni elements are confined in the particles, while the C 
and O elements are observed in all the SEM images, which is 
in good accordance with the hydrogel composition. In these 
PVA–liquid metal composite hydrogels, the water contents are 
high, with slight differences among the PVA hydrogels with 
introduction of liquid metals. As shown in Fig. S6, the water 
contents of PVA hydrogels decreased with increase in liquid 
metal amounts, and the water content of the original PVA-
EGaInSn–8Ni hydrogel sample can reach as high as about 
74 wt%.

3.2  Self‑healing, Magnetic‑Drag and Smart 
Responsible Properties of Hydrogels

The rheological properties of the liquid metal hydrogels 
were studied using oscillatory rheology (Fig. S6). For pure 

PVA and PVA/EgaInSn hydrogels, their loss modulus (G″) 
values are smaller than the storage modulus (G) in the fre-
quency range of 1–10 Hz, indicating their solid-like states. 
Significantly, the G″ value of PVA/EGaInSn–8Ni exceeds 
G′, exhibiting a liquid-like state (Fig. S7a). Therefore, Ni in 
the hydrogels facilitated the generation of a more liquid-like 
condition without damaging the complex network structure. 
Furthermore, for the liquid metal hydrogels with different 
Ni contents (Fig. S7b), the Gʹ of all composite hydrogels 
is less than G″, confirming their liquid-like behaviors. 
Therefore, for the subsequent experiments, we chose PVA/
EGaInSn–8Ni as the smart sensor hydrogel.

The black adhesive PVA/EGaInSn–8Ni hydrogel is in 
a chuddy‐like state with multifunctional performance. Its 
stretchability easily reaches more than 800% (Fig. 3a). The 
liquid metal hydrogel also demonstrated excellent plastic-
ity and writability. It could adapt to the desired shape, 
and the formed shape could be broken and pasted onto 
various objects in different shapes, such as starlike, heart, 
face-like shapes, indicating the shape-controllable feature 

Fig. 2  Material characterizations of PVA/EGaInInSn–Ni composite hydrogels. a XRD patterns and b FTIR spectra of pure PVA, PVA/EgaInSn, 
and PVA/EGaInInSn–8Ni hydrogels. High-resolution XPS spectra of c Ga 2p, d Ni 2p, and e C 1s in the PVA/EGaInInSn–8Ni hydrogel. f SEM 
images of PVA/EGaInInSn–8Ni and g corresponding element mapping of Ga, In, Sn, Ni, C, and O



Nano-Micro Lett.           (2023) 15:79  Page 7 of 14    79 

1 3

of composite hydrogels. During the deformation process, 
the hydrogel remained intact without cracks. Owing to its 
good liquid mobility, the hydrogel inks were used to write 
any words, including “FD” and “CUMTB.” The as-fabri-
cated PVA/EgaInSn–8Ni also has significant self-healing 
capability (Fig. 3b). When two separate parts touched each 
other in the natural environment, they joined seamlessly 
and rapidly. The high self-healing performances were 
derived from the intensive hydrogen bonding and liquid 
metal fusion that facilitated PVA crosslinking. Moreover, 
an emitting diode was used to illustrate the self-healing 
performance of the liquid metal composite hydrogel. 
When the power supply, wires, diode, and hydrogel were 

connected to form a loop, the diode was lit up. When the 
hydrogel was broken, the diode was turned off. Once the 
broken hydrogel was joined, the diode glowed again. Fig-
ure 3c illustrates a typical hydrogel repair of wire joints 
guided by an external magnetic field because the PVA/
EGaInSn–8Ni hydrogel possesses the specific saturation 
magnetization (Ms) value of 12.2 emu  g−1 (Fig. S8). The 
disconnected wire, in which one end is wrapped in the 
hydrogel, is placed in a plastic container. A permanent 
magnet is placed outside the plastic container. When the 
magnet is moved closer to the hydrogel, the entire hydrogel 
shifts toward the magnet. The strong adhesion between the 
liquid metal and PVA prevents the liquid metal droplets 

Fig. 3  Flexible, self-healing, magnetic-responsive properties of the liquid metal composite hydrogel. Optical photographs demonstrating a 
stretchability, plasticity, and writability; b automatically self-healing capability; c magnetic field-driven movement for the junction circuit; d 
magnetic field-induced prototyping. Relative current changes of the liquid metal hydrogel used as a pressure sensor for the real-time detection of 
e finger bending, f wrist bending, and g swallowing. h PVA/EGaInInSn–8Ni hydrogel sandwiched between two layers of polyimide films to real-
time monitor the handwriting of English letters “A/B/C”
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from leaving the hydrogels during magnetic field-driven 
movement. The magnet can drag the hydrogel to repair the 
wire conduction and finally lit the diodes up (Movie S1). 
In addition, the liquid metal hydrogel can be guided using 
the magnetic field to fill the custom-designed heart-shaped 
pattern (Fig. 3d and Movie S2).

The high stretchability, plasticity, writability, self-healing, 
and magnetic field-induced repair and shaping properties 
enable the application of PVA/liquid metal hydrogels as 
strain sensors for detecting various body movements. This 
magnetic liquid metal hydrogel was significantly soft and 
flexible and could easily adhere to different joints of the 
human body. The PVA/liquid metal hydrogel was attached 
to the index finger to monitor finger flexion, as shown in 
Fig. 3e. The uniform sensing signal and distinct signal 
change ( ΔI∕I0 , ΔI : change current under strain stimuli; I0: 
original current) indicate the good reliability of the mag-
netic PVA/liquid metal hydrogel monitoring. When the 
PVA/liquid metal hydrogel is attached to the wrist, the cur-
rent increases when bending the wrist, and the current–time 
curve exhibits significant stability and reproducibility 
(Fig. 3f). Therefore, the PVA/liquid metal hydrogel sensor 
demonstrates considerable potential for real-time human 
health monitoring [61]. Based on the compression effect 
generated by vocal cord vibration [62], when the hydro-
gel sensor is attached to the throat, swallowing can also be 
clearly identified (Fig. 3g). The accurate detection of swal-
lowing during water drinking suggests that the sensor can 
be used to create a pharyngeal motion recognition device. 
Additionally, the hydrogel sensor could accurately capture 
the frequency of the laryngeal vibrations. Moreover, when 
the hydrogel sensor was coated with two layers of polyim-
ide film on its surface, it acted as a smart-writing keyboard 
to sense the signature on its surface. When the letters “A,” 
“B,” and “C” are written on the hydrogel sensor (Fig. 3h), 
various forms of signals are generated. These results showed 
that magnetic PVA/liquid metal hydrogels have significant 
application potential in flexible wearable electronics.

3.3  EMI Shielding Properties of PVA–Liquid Metals 
Hydrogels

Electrical conductivity is crucial in determining the EMI 
shielding properties [63]. Therefore, the electrical conduc-
tivities of the PVA/liquid metal composite hydrogels were 

measured using a four-probe instrument. The electrical con-
ductivity of the PVA/liquid metal composite is related to 
the migration of free ions and free water in the PVA net-
work and the transport of electrons in the crosslinks con-
taining EGaInSn–Ni particles (Fig. S9). As the Ni:EGaInSn 
ratio increased from 0.5:1 to 8:1, the conductivity of the 
PVA-based hydrogel gradually improved from 0.015 to 
0.041 S  m−1. More Ni content in the hydrogel prompted 
electron migration and thereby increased electron conduc-
tion. However, the ion channels decreased with increasing Ni 
concentration, resulting in the reduction of ion conduction. 
Therefore, the final conductivity depended on the competi-
tion between ion and electron conduction.

EMI between electronic devices often results in equip-
ment failure. Self-healed conductive hydrogels with good 
EMI properties are ideal for soft robotic applications that 
integrate many electronic components. The EMI shield-
ing capabilities of PVA–liquid metal composite hydro-
gels (1.0 mm in thickness) were calculated by testing the 
scattering parameters (S11, S12, S21, and S22) in the band 
(8.2–12.4 GHz) using a vector network analyzer. In everyday 
applications, an EMI shielding effectiveness (SE) of 20 dB 
can block approximately 99% of incident EM wave energy 
[64]. As shown in Fig. 4a–c, the EMI shielding perfor-
mances of PVA/EGaInSn and PVA/EGaInSn–8Ni hydrogels 
are significantly improved compared to that of the pure PVA 
hydrogel. An average total SE  (SET) of 36 dB is obtained 
in PVA, which shields 99.975% of EM waves (Fig. 4c). 
The  SET values significantly increase to 46.1 dB (blocking 
99.9975% EM waves) and 65.8 dB (blocking 99.9999747% 
EM waves) for PVA/EGaInSn and PVA/EGaInSn–8Ni 
hydrogels, respectively; the increase percentage is 28.3% 
and 83.0%, respectively. These results indicate that introduc-
ing liquid metals into the PVA hydrogel can prompt EMI 
shielding. In comparison with EMI shielding properties and 
sensor ability of state-of-the-art hydrogels (Table S1), our 
PVA–liquid metal composite hydrogels demonstrate the 
competitive performance for EMI shielding, magnetic repair 
and prototyping. The contributions from absorption loss 
 (SEA) and reflection loss  (SER) were analyzed to assess the 
EMI shielding mechanism of the hydrogels (Figs. 4b, S10 
and S11). The average  SEA values of PVA, PVA/EGaInSn, 
and PVA/EGaInSn–8Ni hydrogels are 31.8, 42.2 (increase 
percentage of 32.9%), and 62.5 dB (increase percentage of 
96.8%), respectively, while the  SER values decrease from 4.2 
to 3.9 (decrease percentage of 7.1%) and 3.3 dB (decrease 
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percentage of 22.0%), respectively. This demonstrates that 
adding liquid metals can effectively increase the absorption 
and decrease the reflection, and it seems that the EMI shield-
ing mechanism mainly results from absorption. However, the 
calculated  SER was based on the total power of EM waves, 
whereas  SEA was based on the power of incident waves [65], 
as reflection occurs before absorption. To further evaluate 
the actual shielding mechanism of the hydrogels, the power 
coefficients of absorption (A) and reflection (R) for the PVA, 
PVA/EGaInSn, and PVA/EGaInSn–8Ni composite hydro-
gels are shown in Fig. S12. The R values are higher than 
A values over the entire frequency range for the PVA and 
PVA/EGaInSn hydrogels, suggesting that the EMI shielding 
is dominated by reflection. However, in the case of PVA/
EGaInSn–8Ni, the A value is higher than the R value in one-
third of the X-band, indicating that introducing magnetic Ni 

is favorable for absorption. Although reflection dominates 
the EMI shielding mechanism, absorption plays an impor-
tant role in the shielding contribution.

The EMI shielding properties of the PVA–liquid metal 
hydrogels with various Ni contents were investigated, and 
the results are shown in Fig. 4d. As expected, the total EMI 
shielding performance of the PVA–liquid metal hydrogels 
increases with the Ni content. To further understand the 
EMI shielding mechanism, the ratio of  SER and  SEA to the 
overall  SET were calculated, and the results are shown in 
Figs. 4e and S13. Distinctly, a high Ni content in PVA–liquid 
metal hydrogels leads to an increase in  SEA and a decrease 
in  SER, and the  SEA values are significantly higher than the 
 SER values. However, as previously discussed, the shielding 
mechanism cannot be well understood based on the  SER and 
 SEA values. In addition to the  SER and  SEA values, A and R 

Fig. 4  EMI shielding performances of PVA–liquid metal composite hydrogels. a EMI  SET plots, and b average  SER,  SEA, and  SET values of 
PVA, PVA/EGaInSn and PVA/EGaInInSn–8Ni hydrogels at X-band. c EMI  SET increment in PVA/EGaInSn and PVA/EGaInInSn–8Ni hydro-
gels compared with that of the pure PVA hydrogel. d EMI  SET plots, and e average  SER,  SEA, and  SET values of PVA/EGaInInSn–Ni hydrogels 
with various Ni contents. f Schematic of the reinforcement effect of Ni in absorption coefficients of PVA/EGaInInSn–Ni hydrogels. g EMI SE 
 (SER,  SEA, and  SET) values, and h  SER,  SEA, and  SET values in the healed PVA/EGaInInSn–8Ni hydrogel. i  SER,  SEA, and  SET values of PVA/
EGaInInSn–8Ni hydrogels and j after storage for 1 year
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values were calculated to provide insights into the electro-
magnetic response [66, 67]. As shown in Fig. S14, the power 
coefficient A increases with the Ni content, whereas the R 
values exhibit an opposite trend, indicating the reinforce-
ment effect of Ni in the absorption. In general, reflection loss 
is depended on the unbalanced impedance at the interfaces 
between the air and shields, and the absorption loss is related 
to the EM energy converted from the generated current and 
polarization relaxation [18, 68]. Figure 4f shows a schematic 
of the enhanced absorption coefficients resulting from the 
increase in the Ni content. For the PVA–liquid metal com-
posite hydrogel, conductive networks due to free ions and 
liquid metals dominate the ohmic loss [25], and the abundant 
dipoles in PVA and free water cause strong EM loss [69]. 
After introducing Ni particles, numerous interfaces between 
water, PVA, EGaInSn, and Ni particles are created; as a 
result, interfacial polarization significantly dissipates EM 
energy [70]. Importantly, adding Ni causes magnetic loss 
via the main natural resonance, significantly attenuating the 
EM energy [71, 72]. In other words, the synergetic effects 
of conductive loss, dielectric loss, and magnetic loss are 
responsible for the enhanced EM absorption.

The EMI shielding performance of PVA/EGaInSn–8Ni 
before and after self-healing was verified (Fig. 4g, h). All 
 SET,  SER, and  SEA values demonstrate a slight decrease 
owing to the minor damage to the conductive transport net-
works during the cutting process. Considering the power 
coefficients of A and R (Fig. S15), the R is higher than A 
in the frequency range of 8.2–10.7 GHz; however, the A is 
higher than R in the frequency range of 10.7–12.4 GHz. This 
illustrates that the reflection dominates in most measured 
frequency ranges. Most conventional EMI shielding mate-
rials show deteriorated shielding performance when placed 
in an air atmosphere for a long time [22, 41]. Noticeably, 
compared with the freshly prepared hydrogel sample (about 
74 wt%), the water content still maintains about 65.47 wt% 
after storage of 1 year (Fig. S16). Furthermore, the as-devel-
oped PVA–liquid metal composite hydrogel maintains a 
high EMI shielding performance (Figs. 4i–j, S17, and S18). 
Significantly, when stored in air atmosphere for one year, 
SET values increased from 65.8 to 75.2 dB, and  SEA values 
increased from 62.5 to 72.9 dB. The increase percentage 
of  SET and  SEA reached 14.3% and 16.6%, respectively. 

However,  SER values decreased from 3.3 to 2.3 dB, and 
the decrease percent was 28.5%. By analyzing power coef-
ficients of A and R (Fig. S18), PVA/EGaInInSn–8Ni presents 
an absorption-dominated EMI shielding mechanism after 
storage for one year. In an air atmosphere, hydrogels could 
absorb environmental water molecules to generate more free 
ions and dipoles, which was beneficial for EM energy dis-
sipation and enhancing  SET and  SEA values.

4  Conclusion

In summary, we developed a multifunctional PVA/liquid 
metal composite hydrogel with rapid self-healing ability, 
excellent stretchability, shape adaptability, magnetic pro-
totyping, sensing capability, and good EMI shielding prop-
erties. The fluidity of liquid metal and reversible hydrogen 
bonds between PVA chains and borate ions enabled the 
PVA/liquid metal hydrogel to complete self-healing rapidly 
without external stimuli. The proposed PVA/liquid metal 
hydrogel could effectively repair broken wire joints when 
they were placed in a precision-sealed space under an applied 
magnetic field. The synergy between the moderate conduc-
tivity and inherent moisture-rich environment endowed the 
composite hydrogel with high-efficiency EMI shielding. The 
total SE values significantly increased to 65.8 dB (blocking 
99.99997% of EM waves) for PVA/EGaInInSn–8Ni hydro-
gels, and the increase percentage reached as high as 83.0% 
in comparison with those of the pure PVA hydrogel. Intro-
ducing liquid metals to PVA could effectively increase the 
absorption loss and decrease the reflection loss, and absorp-
tion might dominate the EMI shielding mechanism. Signifi-
cantly, the excellent EMI shielding performance was main-
tained after storage for one year, showing long-term stability. 
Moreover, liquid metal hydrogels could conform to objects of 
arbitrary geometry and recover rapidly from damage, demon-
strating significant application potential in flexible electronics 
and artificial skin. The hydrogel served as a strain sensor to 
detect various body movements and a signature sensor for 
sensitive and rapid responses to external stimuli. Based on 
the above functions, the present study offers a novel strategy 
to develop intelligent hydrogels for multifunctional applica-
tions as well as a versatile method for fabricating liquid metal 
composites with extended performance.
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