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HIGHLIGHTS

• Polarization is an exceptional physical property of light that carries and differentiates a significant amount of optical information. 
Perovskite materials are utilized in polarization-sensitive photodetectors owing to their crystal structure anisotropy and controllable 
orientation growth, in addition to their excellent photovoltaic performance.

• This paper presents an overview of the structural characteristics and photovoltaic performance of different optical structures and low-
dimensional perovskite polarization photodetectors. This summary will contribute to the future development of perovskite-based 
photodetectors that are sensitive to polarization.
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Polarization means symmetry loss for light vibration 
along light propagation direction, which is a particular 
physical property of light. The polarization state is indeci-
pherable for most polarization-insensitive detectors. Polari-
zation can carry and differentiate light information, and can 
be used in polarized light detection, polarization imaging, 
and encryption communication [1]. Photodetectors are the 
core component of some photoelectric devices [2] used in 
biomedical sensing, remote sensing, military field, etc.

An excellent photodetector (PD) can recognize all the 
properties of light, including intensity, frequency, and polar-
ization. PDs capable of detecting polarized light need a spe-
cific optical structure or crystal structure. Lately, perovskite 
was used in polarization-sensitive PDs due to its controllable 
orientation growth and crystal structure anisotropy. In addi-
tion, compared with other polarization-sensitive materials 
like graphene [3], metal halide perovskites possess excel-
lent photovoltaic performance. The strong light absorption 
and high carrier mobility of perovskite can be combined 
with its ability to recognize polarized light, thus yielding 
self-powered polarization-sensitive perovskite photodetec-
tors (P-PPDs).

CsPbX3 perovskites were found to emit polarized light 
both in solution and in films in 2016 [4]. The study inspired 
people to explore the polarization detection capability of 
perovskites when used in optoelectronic devices. The 
research of P-PPDs was divided to linearly polarized light 
(LPL) and circularly polarized light (CPL). The electric field 
vector of CPL is rotary, so CPL has an axisymmetrically 
uniform distribution of the scattered field. Unlike CPL, the 
polarization direction of LPL is fixed, so linearly polari-
zation-sensitive perovskite photodetectors (LP-PPDs) can 
detect periodic photoelectric signal changes. LP-PPDs can 
be realized by constructing an optical structure or by con-
trolling crystal structure, which profits from the controllable 
growth orientation of perovskite and the anisotropy of lattice 
structure, respectively.

The optical structures of LP-PPDs refer to patterned 
perovskite active layers, including nanowire (NW) arrays, 
nanoribbon (NR) arrays, and so on. Most of these struc-
tures were fabricated by nano-imprinting, etching, or one-
step self-assembly. Tang et al. [5] made LP-PPDs by one-
step self-assembly of single-crystalline  CH3NH3PbI3 NW 
arrays. The large length/width ratio of these 1D nanowires 
led to an anisotropy of 1.3. In addition, they improved 
the stability of  CH3NH3PbI3 NWs by using oleic acid 

to passivate the surface defect of perovskite, obtaining 
a detectivity of 2 ×  1013 Jones. Jiang et al. [6] prepared 
a 1D  CsPbBr3 single crystal with rigid crystallographic 
alignment through an effective solution-processing method 
and assembled it to make LP-PPDs. The device realized 
an anisotropy ratio of 2.6, a dark current of 8.13 ×  10–10 
A, and a light on/off ratio of nearly  103. Ko et al. [7] used 
spin-coating method with solvent treatment to fabricate 
 CH3NH3PbI3 NR arrays and LP-PPDs. Compared with 
 CH3NH3PbI3 thin-film PPDs, NR arrays-based LP-PPDs 
showed higher detectivity due to effective photon manage-
ment of grating-like NR structure. In the same year, Tang 
et al. [8] demonstrated a β-CsPbI3 NW-based LP-PPDs 
with a high anisotropy ratio of 2.68, which is also suit-
able for flexible substrate. The flexible device exhibited 
an anisotropy ratio of 2.17 and a low loss of photoelec-
tric performance after 500 bending cycles. Though the 
above patterned structure-based LP-PPDs increased the 
polarization dimension of light, reducing the optical loss 
is crucial. Li et al. [9] designed a G-PC-PD by bonding 
a 1D nanograting with porous 2D photonic crystal (PC), 
which was inspired by the hierarchical architecture of 
the butterfly. The combination of 2D PC and nanograt-
ing contributed to the excellent light-harvesting ability of 
G-PC-PD, showing more than six times higher responsiv-
ity and detectivity than that of flat-film perovskite photo-
detectors. In 2021, a moiré LP-PPD with a double-nested 
grating was reported by Li et al. [10] Taking advantage 
of the waveguide effect of double-nested grating, and 
enhanced light-harvesting ability of top and bottom grat-
ing, a high responsivity of 15.62 A  W−1 and a detectiv-
ity of 5.58 ×  1013 Jones were achieved, respectively. The 
different optical structures of  CH3NH3PbI3 are shown in 
Fig. 1. There are many other perovskite materials like 
 CH3NH3PbBr3 and CH(NH2)2PbI3 served as surface-
patterned LP-PPDs [, 11, 12] (Fig. 2). Though surface 
artificial nanostructure assists optical management and 
polarization of PDs, the perovskite instability is inescap-
able. Table 1 summarizes LP-PPDs based on different 
optical structures. Recently, Zhang et al. [13] reported 
PDs with in-situ encapsulated moiré lattice, which con-
sist of two soft templates of nano-grating with rotation 
angles. The moiré lattice of  CH3NH3PbBr3 led to strong 
light-harvesting capability and high anisotropy. The moiré 
LP-PPDs showed an ultrahigh detectivity of 1.05 ×  1014 
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Fig. 1  Performance of LP-PPDs based on  CH3NH3PbI3 with different optical structures. a 1D nanowire arrays. Reproduced with permission [5], 
Copyright 2016, American Chemical Society. b 1D nanoribbon arrays. Reproduced with permission [7], Copyright 2018, John Wiley and Sons. 
c 1D nanograting with 2D photonic crystal. Reproduced with permission [9], Copyright 2019, John Wiley and Sons. d Stacked dual grating. 
Reproduced with permission [10], Copyright 2021, John Wiley and Sons
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Jones, a responsivity of 1026.5 A  W−1, and an anisotropy 
ratio of 9.1.

The structure for low-dimensional perovskites exhibits 
completely different optoelectronic properties from that of 3D 
perovskites. The optical anisotropy might be due to different 

bonding characteristic [14]. Using macromolecules to sepa-
rate 3D perovskite is an effective way to realize polarization-
sensitive detection. In 2019, 2D perovskite (iso-BA)2PbI4 
single crystals were prepared to make a narrowband LP-PPD 
[15]. (iso-BA)2PbI4 possesses enhanced anisotropy, yielding 

Fig. 2  Performance of LP-PPDs based on different perovskites. a  CsPbBr3. Reproduced with permission [6], Copyright 2017, John Wiley and 
Sons. b β-CsPbI3. Reproduced with permission [8], Copyright 2018, John Wiley and Sons. c  CH3NH3PbBr3. Reproduced with permission [11], 
Copyright 2021, John Wiley and Sons. d CH(NH2)2PbI3. Reproduced with permission [12], Copyright 2022, John Wiley and Sons
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a detectivity of 1.23 ×  1010 Jones and an anisotropy ratio of 
1.56 (Fig. 3a). Li et al. [16] also designed 2D perovskite 
[CH(NH2)2][C(NH2)3]PbI4  (FAGPbI4) with corrugated inor-
ganic layer. The high anisotropy of  FAGPbI4 was attributed 
to the existence of  [PbI6]4− layer, offering an anisotropy ratio 
of 2. The polarized light can be produced by some crystal 
planes through the regulation of temperature. Although 
hybrid organic–inorganic 2D perovskite came to be used in 
polarization-sensitive photodetection, the synthetic method 
for high-quality 2D perovskites is still being explored. Sun 
et al. prepared 2D perovskite (FPEA)2PbI4 with low trap den-
sity by a minute-scale rapid crystallization [17]. And the high 
anisotropy ratio (2.1) of LP-PPD was thought to be caused 
by the physical property of 2D quantum-well structure, com-
posed of organic cation barriers and inorganic perovskite 

wells (Fig. 3b). Besides, 2D inorganic perovskite advances in 
polarization-sensitive photodetection. In 2020, TRA was used 
to prepare 2D perovskite, yielding an anisotropy ratio of 2.1, 
and an on/off current ratio over  104 [18]. Though the crystal 
structure of 3D  CsPbBr3 is isotropy, some molecules’ intro-
duction can turn it into anisotropy. Sun et al. also synthesized 
a Dion-Jacobson (DJ) type 2D perovskite (HDA)CsPb2Br7 
by alloying diammonium into 3D  CsPbBr3 [19]. The device 
exhibited an anisotropy ratio of 1.6, a detectivity of 1.5 ×  109 
Jones, and a high phase stability in environmental conditions. 
Some other 2D perovskites can improve the performances of 
LP-PPDs, and the anisotropy ratio reached 6.8 [20] (Fig. 3c), 
the detectivity and on/off ratio reached 1.53 ×  1012 Jones and 
3 ×  108 [21] (Fig. 3d), respectively. Table 2 summarizes the 
performance of low-dimensional LP-PPDs.

Table 1  Performance for optical structure-based LP-PPDs

Active Layer Optical Struc-
ture

Wavelength 
(nm)

Anisotropy 
Ratio

Detectivity 
(Jones)

Responsivity (A 
 W−1)

Response Time 
(s)

On/Off Ratio Refer-
ences

CH3NH3PbI3 1D nanowire 
array

530  ~ 1.3 2 ×  1013 4.95  <  10–3 [5]

CsPbBr3 1D nanoribbon 
array

470 2.6 1.4 ×  103 2.15/2.34 ×  10–5  <  103 [6]

CH3NH3PbI3 1D nanoribbon 
array

300–800 1.76 ×  1011 2.2 ×  10–3 2.72/2.62 ×  10–2 [7]

β-CsPbI3 1D nanowire 
array

530 2.68 3.46 ×  1010 7.45 ×  10–1 [8]

CH3NH3PbI3 1D nanograting 
with 2D pho-
tonic crystal

620/620/750 1.6 3.22 ×  1013 12.67 2.1/6.7 ×  10–2 5.87 ×  103 [9]

CH3NH3PbI3 Stacked dual 
grating

650 1.58 5.58 ×  1013 15.62 1.12/0.63 ×  10–3 2.70 ×  104 [10]

CH3NH3PbBr3 Single crystal 
nanograting

532 2.2 1.08 ×  1010 8 ×  10–3 0.1 [11]

CH(NH2)2PbI3 Grating struc-
ture

532 7.8 ×  1012 11.7 1.01 ×  103 [12]

CH3NH3PbBr3 Two identical 
nanograting 
structure

650 9.1 1.05 ×  1014 1026.5 3.0/2.3 ×  10–3 [13]
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Fig. 3  Structure of different 2D perovskites, and the performance of LP-PPDs with different 2D perovskites. a (iso-BA)2PbI4. Reproduced with 
permission [15], Copyright 2019, John Wiley and Sons. b (FPEA)2PbI4. Reproduced with permission [17], Copyright 2020, John Wiley and 
Sons. c (BPA)2PbBr4. Reproduced with permission [20], Copyright 2021, Elsevier. d  PEA2MA4(Sn0.5Pb0.5)5I16. Reproduced with permission 
[21], Copyright 2021, John Wiley and Sons
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In short, only specific perovskites can detect light polari-
zation, based on the anisotropic crystal structure or the ani-
sotropy of optical structure. Linearly polarization-sensitive 
perovskite photodetectors have been advancing since 2016. 
More efforts are needed to explore the method for achieving 
high anisotropy and stability.
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