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HIGHLIGHTS 

• Self-supporting Cu film with high porosity was obtained by dealloying of  Al98Cu2.

• Nanoporous Cu (NP-Cu) film shows good hydrophilicity and strong broadband light absorption.

• NP-Cu film exhibits outstanding solar steam generation and desalination performance.

ABSTRACT Solar steam generation (SSG) is a potential technology for freshwater 
production, which is expected to address the global water shortage problem. Some 
noble metals with good photothermal conversion performance have received wide 
concerns in SSG, while high cost limits their practical applications for water puri-
fication. Herein, a self-supporting nanoporous copper (NP-Cu) film was fabricated 
by one-step dealloying of a specially designed  Al98Cu2 precursor with a dilute 
solid solution structure. In-situ and ex-situ characterizations were performed to 
reveal the phase and microstructure evolutions during dealloying. The NP-Cu film 
shows a unique three-dimensional bicontinuous ligament-channel structure with 
high porosity (94.8%), multi scale-channels and nanoscale ligaments (24.2 ± 4.4 
nm), leading to its strong broadband absorption over the 200–2500 nm wavelength 
More importantly, the NP-Cu film exhibits excellent SSG performance with high 
evaporation rate, superior efficiency and good stability. The strong desalination abil-
ity of NP-Cu also manifests its potential applications in seawater desalination. The 
related mechanism has been rationalized based upon the nanoporous network, localized surface plasmon resonance effect and hydrophilicity.

KEYWORDS Solar steam generation; Nanoporous copper; Broadband solar absorption; Localized surface plasmon resonance; 
Seawater desalination; Dealloying
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1 Introduction

The shortage of freshwater resources has currently become one 
of the main threats to the sustainable development of human 
society. Unfortunately, all forms of freshwater resources are 

merely 2.5% of the total global water [1]. Therefore, saline 
water utilization is one of the important ways to solve the global 
freshwater shortage and has become a long-term development 
strategy of many countries [2]. To this end, a lot of efforts have 
been made to obtain clean drinking water from seawater or 
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wastewater [3–8]. Some traditional desalination methods (such 
as multistage flash distillation [9] and reverse osmosis [10]) 
require a lot of energy [11] and pollutants generated by burning 
fossil fuels have a negative impact on the environment [12]. 
Other desalination methods such as electrodialysis and emerg-
ing capacitive deionization, which are not suitable for seawater 
with high salt concentrations [13, 14]. So solar steam generation 
(SSG) using solar energy to desalinate seawater has been con-
sidered as one of the most attractive desalination technologies 
[15, 16]. The SSG technology does not need any moving parts 
and high-pressure operation [17], which with strong expansi-
bility is easy to be coupled with other technologies to realize 
multi-function such as power generation, medical sterilization 
and wastewater purification [18–21].

Efficient SSG systems need to meet the following charac-
teristics: excellent photothermal conversion capability, rea-
sonable heat management, and efficient water transportation 
and evaporation. Photothermal materials with excellent solar 
absorption and photothermal conversion capacities are the 
basis to ensure efficient SSG [22]. Over the past decade, many 
SSG systems have been developed based on different types 
of photothermal materials, such as metals [23–25], semicon-
ductors [26–28], polymers [29–31], biomass carbon materials 
[32–34], MXenes [35], and graphenes [36–38]. Among them, 
plasmonic metal nanomaterials (Au [39–41], Ag [42–44], 
Pd [45, 46], Pt [47, 48], etc.) have aroused extensive atten-
tion due to their localized surface plasmon resonance (LSPR) 
property. Compared with other photothermal materials, plas-
monic metal nanomaterials have the advantages of easy control 
of optical properties and structure, adjustable heat radiation 
loss, abundant optional types and good mechanical stability 
[49, 50]. However, the cost and practicability of noble metals 
hinder their further applications in SSG. Hence, developing 
non-noble metal-based photothermal materials is of central 
importance to achieve efficient and durable SSG [51].

Photothermal materials have good hydrophilicity and suf-
ficient porous structure by constructing hierarchical nano/
microstructures, which is an important guarantee for high-
efficiency sunlight absorption, water transfer and steam escape 
[52]. Traditional metal-based photothermal films are obtained 
by depositing metal nanoparticles onto porous substrates (such 
as airlaid paper, wood, filter paper and carbon cloth) [42]. It 
would be better to construct metal-based photothermal films 
with a porous structure and self-supporting morphology. Deal-
loying during which the more noble element diffuses and reor-
ganizes into a three-dimensional (3D) bicontinuous ligament/

channel structure with the selective removal of the less noble 
element, has been widely used to prepare nanoporous metals 
[53, 54]. This provides an idea for preparing self-supporting 
porous metal-based photothermal films. For example, Zhang 
et al. [39] reported a dealloying-driven black gold film with 
a hierarchically porous structure and good SSG performance. 
Cu is a potential candidate for photothermal materials because 
of its good plasmonic properties and low cost [55]. Nanoscale 
Cu is a typical plasmonic metal and the potential application of 
Cu in SSG has been explored [56–59]. However, nanoporous 
Cu (NP-Cu) films fabricated by dealloying have received less 
attention in SSG.

Herein, we demonstrated a one-step dealloying strategy 
to fabricate a self-supporting NP-Cu film with high poros-
ity and light weight. A dilute solid solution alloy  (Al98Cu2, 
at%) was elaborately designed for dealloying, and the involved 
microstructural evolutions were probed by in-situ and ex-situ 
characterization methods. The obtained NP-Cu film with the 
porosity of 94.8% and density of 0.4679 g  cm–3 shows excel-
lent broadband light absorption of 200–2500 nm in wavelength 
and outstanding SSG performance.

2  Experimental

2.1  Materials Preparation

The  Al98Cu2 ingot was prepared by co-melting Al and Cu 
(99.99 wt% purity) in a sealed quartz tube filled with argon 
using high-frequency induction heating. Then the ingot was 
cold-rolled to a sheet with a thickness of around 300 µm. 
Afterwards, the sheet was annealed at 550 °C for 300 min 
in vacuum and then immediately quenched in water. Even-
tually, the as-quenched  Al98Cu2 sheet was dealloyed in a 
0.5 M NaOH aqueous solution until no gas bubbles evolved 
at room temperature, and the self-supporting NP-Cu film 
was obtained. The dealloying process usually lasted for 
about 11 h. Additionally, the NP-Cu film was annealed in 
an argon-hydrogen atmosphere at 500 °C for 120 min to 
prepare the coarsened sample (named as NP-Cu-500).

2.2  Materials Characterization

The phase compositions of all samples were probed by 
X-ray diffraction (XRD, XD-3) with Cu Kα radiation. 
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The microstructures and chemical compositions of the 
as-dealloyed samples were characterized by transmission 
electron microscopy (TEM, FEI Titan 80–300) and scan-
ning electron microscopy (SEM, JSM-7800F) equipped 
with an energy dispersive X-ray (EDX) analyzer. Elec-
tron backscattering diffraction (EBSD) analysis of the 
 Al98Cu2 precursor was also performed using SEM. X-ray 
photoelectron spectroscopy (XPS) was used to charac-
terize the chemical states of elements in the dealloyed 
samples using an AXIS Supra spectrometer with Al Kα 
exciting source. All XPS spectra were calibrated by C 1s 
with the binding energy at 284.6 eV. Absorption spectra 
of the NP-Cu/NP-Cu-500 films were recorded by employ-
ing an ultraviolet-visible-near-infrared (UV-vis-NIR) 
spectrophotometer (UV-3600, Shimadzu) equipped with 
an integrating sphere. The infrared reflection spectrum 
of the NP-Cu film was measured by a Fourier transform 
infrared (FTIR) spectrometer (Nicolet iS50). The thermal 
conductivities were measured by a hot disk method (Hot 
Disk TPS 2500S). The DSA100S goniometer was used 
to measure the contact angle. In addition, in-situ XRD 
and ex-situ SEM were conducted to explore the phase and 
microstructure evolutions of the  Al98Cu2 precursor during 
dealloying.

2.3  SSG and Desalination Experiments

Figure S1 shows the SSG setup. A solar simulator (PLS-
SXE300/300UV) with an AM 1.5G filter was used as the 
light source. An optical power meter (PL-MW2000) was 
used to detect the light intensity. Infrared images and the 
corresponding temperatures were recorded by an IR cam-
era (FLIR E8xt). The real-time mass change of water was 
recorded by an electronic balance (BSA124S-CW, Sarto-
rius). A SSG system with a wick structure was used to test 
the water evaporation capacity of the NP-Cu samples. The 
samples were placed on a polystyrene (PS) foam, and a cot-
ton pillar was used as a channel to supply water. The SSG 
tests were performed at 28 °C and relative humidity of about 
40%. Additionally, the desalination ability of NP-Cu was 
tested using natural seawater from Bohai Sea, South China 
Sea and Yellow Sea. The ion concentrations in the seawater 
and the collected clean water were determined by induc-
tively coupled plasma mass spectrometer (ICP-MS, Agilent 
7700).

3  Results and Discussion

3.1  Fabrication and Structural Characterization 
of NP‑Cu Films

According to the phase diagram of Al-Cu (Fig. 1a) [60, 61], 
the composition point of the precursor was set as 2 at%. The 
annealing and quenching treatments could ensure the forma-
tion of solid solution in the  Al98Cu2 precursor. The EBSD 
image (Fig. 1b and inset) clearly reveals the size (several 
hundred microns), shape and crystallographic orientations of 
equiaxed grains in the  Al98Cu2 precursor. Due to the minor 
content of Cu in  Al98Cu2, Cu atoms can occupy the lattice 
sites of Al to form the dilute Al(Cu) solid solution (Fig. 1c). 
As shown in Fig. S2, the as-rolled  Al98Cu2 precursor is 
composed of Al phase (PDF# 04-0787) and minor  Al2Cu 
phase (PDF# 02-1309). In comparison, the as-annealed sam-
ple only consists of a single Al phase (Fig. 1d), indicating 
the formation of Al(Cu) solid solution. After dealloying, 
the XRD pattern of the NP-Cu film (Fig. 1d) only shows 
three broad peaks (at 2θ = 43.3°, 50.4° and 74.1°) of the Cu 
phase (PDF# 04-0836), indicating the thorough dealloying 
of  Al98Cu2 in the NaOH solution. The EDX results (Fig. 
S3) further confirm that most of Al was selectively etched 
away during dealloying and the residual Al amount is only 
1.3 at%. Moreover, the color of the sample changed from 
silvery white  (Al98Cu2) to black (NP-Cu) after dealloying, 
but its self-supporting characteristic is well retained (inset 
of Fig. 4d).

The microstructural evolution of the  Al98Cu2 precursor 
during dealloying was further explored by ex-situ SEM 
(Figs. 2 and S4). After 1 min of dealloying, the surface 
of  Al98Cu2 was slightly corroded (Fig. S4a) and island-
like humps formed (Fig. S4b). Notably, some irregular 
second-phase  (Al2Cu) particles appeared inside corrosion 
pits along the grain boundaries (Fig. S4c, d), but could not 
be detected by XRD (Fig. 1d). After 3 min of dealloying, 
bubbles-induced pits emerged on the sample surface and the 
bicontinuous ligament-channel structure could be clearly 
observed (Fig. 2a, b). Moreover, the corrosion degree of 
the grain boundaries deepened (Fig. 2c, d). The grains 
and grain boundaries became more obvious with increas-
ing dealloying time to 5 min (Fig. 2e, f). Furthermore, 
different grains showed distinct corrosion characteristics 
(Fig. 2g, h). Notably, some grain surfaces appear fibrous 
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structures after 5 min of dealloying (Fig. 2e–g), probably 
due to different orientations of the grains (Fig. 1b). With 
the extension of dealloying time, the surface corrosion fur-
ther deepened, and the nanoporous structure became more 
obvious (Fig. S4e–h). After 20 min of dealloying (Fig. 2i), 
the grain shape and size of the dealloyed surface are similar 
to those in the precursor (Fig. 1b), and the second phase at 
the grain boundaries disappeared owing to the dealloying of 
 Al2Cu (Fig. 2j–l). When dealloying for 60 min, farmland-
like cracks appeared inside the grains (Fig. S4i–l). After 
120 min of dealloying, both interlaced and parallel cracks 
appeared in different grains, and the ligament-channel struc-
ture could be observed in the porous layer (Fig. 2m–p). The 
photographs in Fig. S5 show the gradual blackening of the 
surface of the dealloyed samples. Figure 2q vividly dem-
onstrates the structural characteristics and evolution of dif-
ferent dealloying stages.

In-situ XRD was further performed to explore the phase 
evolution during dealloying of  Al98Cu2 (Fig. 3a, b). Fig-
ure 3a shows that the peak intensity of Al(Cu) gradually 
decreases with the prolongation of the dealloying time. The 
broad diffraction peak of Cu (111) begins to appear after 
300 min of dealloying and gradually becomes stronger. 
Thereafter, the other two diffraction peaks of Cu (200) and 
(220) can be observed, whose intensities further increase 
with dealloying time. But their peak positions do not change 
with time, and are consistent with standard values of f.c.c. 
Cu. And no intermediate phase emerges during the whole 
dealloying process. Finally, only Cu peaks remain in the 
XRD pattern. The corresponding contour plot in Fig. 3b 
visually shows the phase evolution and involved strength/
position changes of diffraction peaks with the dealloying 
time. Figure 3c shows the macroscopic morphology/color 
change of  Al98Cu2 during dealloying. Violent  H2 bubbles 

Fig. 1  a Phase diagram of Al-Cu indicating the design of dilute solid solution alloy. b EBSD image (Inset: corresponding crystallographic ori-
entation) and c schematic diagram of the crystal structure of the  Al98Cu2 precursor. d XRD patterns (Inset: photographs of the samples before 
and after dealloying) of the as-annealed  Al98Cu2 precursor and the NP-Cu film
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formed due to the reaction of Al with NaOH before 9 h of 
dealloying. Subsequently, the bubbles obviously decreased 
and finally disappeared at the dealloying of 11 h. And the 
color of the sample became dark and black. In addition, 
after 10.5 h of dealloying, an evident area shrinkage (ΔS/
S0) could be observed, and the final area shrinkage is around 
14%.

The composition and valence state of the  Al98Cu2 sam-
ples dealloyed for 3 and 10 min were further determined 
by XPS. Two peaks located at 932.4 and 952.3 eV of Cu 
2p spectra (Fig. 3d) can be assigned to the Cu 2p3/2 and 
Cu 2p1/2 signals, respectively, illustrating the existence of 
the metallic state  (Cu0) [62, 63]. Meanwhile, the peak of 
 Cu2+ in CuO and its shake-up satellite peak can be observed 

Fig. 2  Plan-view SEM images of  Al98Cu2 dealloyed for (a–d) 3, (e–h) 5, (i–l) 20, and (m–p) 120 min in the 0.5 M NaOH solution. q Schematic 
illustrations showing the microstructure evolution of  Al98Cu2 during dealloying
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at 935.4 and 945.0 eV, respectively, indicating the slight 
surface oxidation. When the dealloying time was extended 
from 3 to 10 min, the peak intensity of  Cu0 increases obvi-
ously. This is because Al atoms on the surface of  Al98Cu2 
were constantly corroded away and the nanoporous structure 
composed of Cu formed. The Al 2p spectra (Fig. 3e) show 
a characteristic peak at 75.4 eV, indicating the presence of 
 Al3+  (Al2O3) [64]. The peak intensity of Al 2p has no obvi-
ous change for these two samples. Additionally, the O 1s 
peaks are composed of two components (Fig. 3f). The two 

peaks at 530.4 [63] and 532.0 [65, 66] eV correspond to 
CuO and  Al2O3, respectively. Compared with the scenario of 
3 min of dealloying, the peak intensity associated with CuO 
is significantly enhanced at dealloying for 10 min, which is 
related to the increase of Cu content on the sample surface.

The obtained NP-Cu film was further characterized by 
SEM and TEM (Figs. 4a–g and S6). The SEM images in 
Figs. 4a, b and S6a show the river bed-like morphology of 
the NP-Cu film surface, which displays numerous channels 
with tens of microns in width. The cross-sectional SEM 

Fig. 3  a In-situ XRD patterns and b corresponding contour plot showing the phase evolution of the  Al98Cu2 precursor during dealloying in the 
0.5 M NaOH solution. c Macrophotographs of the  Al98Cu2 alloy foil dealloyed for different durations. The red dashed boxes represent the size of 
the pristine precursor. XPS spectra of d Cu 2p, e Al 2p and f O 1s of the  Al98Cu2 foils dealloyed for 3 and 10 min
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images in Figs. 4c and S6d–f show that the channels run 
through the whole section of NP-Cu and can serve as effec-
tive paths for water transport. Figure 4d displays a typical 
3D bicontinuous ligament-channel structure of the NP-Cu 
film with the average ligament size of 21.9 ± 3.6 nm (Fig. 
S7a). The representative TEM images (Fig. 4e, f) reveal the 
typical nanoporous structure of NP-Cu, and nanoscale pores/
ligaments can be visualized. The selected-area electron dif-
fraction (SAED) pattern of NP-Cu (inset of Fig. 4e) reveals 
polycrystalline rings which can be indexed as (111), (200), 
(220) and (311) planes of the f.c.c. Cu (in agreement with 
the XRD result in Fig. 1d). Figure 4g illustrates the high-
resolution TEM (HRTEM) image with lattice fringes of 
Cu (111). Based on the TEM results, the average ligament 
size of NP-Cu was further determined to be 24.2 ± 4.4 nm 
(Fig. 4h). Noticeably, the NP-Cu film possesses an ultrahigh 
porosity of 94.8% (Section S2), which is caused by a large 

number of microscale channels and nanoscale pores pro-
duced by the dealloying of the dilute solid solution  Al98Cu2 
(Fig. 4i). The volume shrinkage is about 59.4%, which is 
compatible with the obvious area shrinkage and huge thick-
ness shrinkage (Figs. 3c and S7b). In addition, the density 
of the NP-Cu film is only 0.4679 g  cm–3, much lower than 
that of bulk Cu (8.960 g  cm–3).

XPS was applied to further analyze the chemical valences 
of the NP-Cu film (Figs. 4j and S8) and the  Al98Cu2 precur-
sor (Fig. S9). In the NP-Cu film, the binding energies at 
932.2 and 952.1 eV are assigned to  Cu0, while the peaks 
located at 935.2 and 945.0 eV are attributed to the  Cu2+ 
and corresponding satellite peak, respectively (Fig. 4j) [62, 
63]. The weak peaks of  Cu2+ indicate that the NP-Cu film 
was slightly oxidized. However, the signal of Cu 2p in the 
 Al98Cu2 precursor is weak, and only weak peaks of  Cu0 at 
932.6 and 952.5 eV can be observed (Fig. S9a). This is due 

Fig. 4  a–d SEM images, e, f TEM images (Inset: SAED pattern), g HRTEM image, and h ligament size distribution of the NP-Cu film. i Sum-
mary of porosity, volume shrinkage and density, j XPS spectrum of Cu 2p, and k photograph of the NP-Cu film
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to the extremely low Cu content in the dilute solid solution 
alloy. The XPS spectrum of Al 2p in Fig. S8b also con-
firms the minor residual of Al in the NP-Cu film in the state 
of  Al3+  (Al2O3) [64]. In the  Al98Cu2 precursor, the peaks 
of metallic state  (Al0) and oxidation state  (Al3+) of Al are 
located at 73.1 and 74.7 eV, respectively (Fig. S9b) [64]. 
In contrast, the peak intensity of  Al3+ is higher, indicating 
that Al on the surface of the  Al98Cu2 precursor is easy to be 
oxidized in air. The XPS spectrum of O 1s in Figure S8c 
shows two peaks at 530.2 and 531.9 eV in the NP-Cu film, 
corresponding to CuO [63] and  Al2O3 [65, 66], respectively. 
Compared with the scenario of 3 and 10 min of dealloying, 
the relative peak intensity of CuO is further increased. This 
is the result of the thorough dealloying, which leads to a 
great decrease in Al content and a significant increase in 
Cu content. While in the  Al98Cu2 precursor, only the peak 
associated with  Al2O3 at 531.8 eV can be observed (Fig. 
S9c). Notably, dandelion fluff can support the NP-Cu film 
(Fig. 4k), which intuitively shows the advantages of light 
weight. Additionally, the NP-Cu-500 film is still composed 
of f.c.c. Cu, and the color changed from black to dark red 
and the size obviously shrank after annealing (Fig. S10a). 
The nanoporous structure coarsened to 47 ± 11 nm (Fig. 
S10b, c).

3.2  SSG Performance of NP‑Cu Films

The SSG performance of the NP-Cu and NP-Cu-500 films 
was thus evaluated and the evaporator schematic is shown 
in Fig. 5a. The NP-Cu film can not only absorb sunlight 
and release heat through the LSPR effect, but also trans-
port water through internal multi-scale channels. The PS 
foam with low thermal conductivity (0.04 W  m–1  K–1) can 
isolate the unnecessary heat exchange between the SSG 
system and the surrounding environment. Figure 5b–h 
shows the water evaporation performance of the NP-Cu 
film, with the NP-Cu-500 film as the benchmark. Infrared 
images (Fig. 5b) show the surface temperature distribu-
tion of the NP-Cu film under various illuminations and 
times. Regardless of the light intensity, the surface tem-
perature of NP-Cu rapidly rises and remains stable there-
after. Figure 5c illustrates the time-dependent tempera-
ture changes. The surface temperature of NP-Cu increases 
sharply within 5 min and then reaches the plateau with 

slight temperature fluctuation under various illuminations. 
This phenomenon suggests that the NP-Cu film possesses 
good photothermal conversion capability. Specifically, the 
maximum surface temperatures of NP-Cu can reach up to 
42.4, 62.3 and 71.6 °C under 1, 3 and 5 sun illumination, 
respectively. In comparison, the surface temperature of 
the NP-Cu-500 film can also increase rapidly and then 
keep a stable plateau of 39.1, 57.5 and 68.1 °C under 1, 
3 and 5 sun illumination, respectively, lower than that of 
NP-Cu at the same illumination. This difference can be 
attributed to the fact that the smaller ligaments of NP-Cu 
can enrich more free electrons on the surface, thus enhanc-
ing the LSPR effect [67]. Figure 5d illustrates the mass 
change curves of the two films. The final mass changes 
of NP-Cu are 1.41, 4.31 and 7.18 kg  m–2 under 1, 3 and 
5 sun illumination respectively. Meanwhile, the mass 
changes of NP-Cu-500 are slightly smaller than those of 
NP-Cu under different illuminations. Figure 5e displays 
the curves of evaporation rate with time of NP-Cu. Appar-
ently, the evaporation rate rises rapidly within 5 min and 
then remains stable. Figure 5f compares the evaporation 
rates of the NP-Cu and NP-Cu-500 films. The evaporation 
rate of NP-Cu is 1.47 kg  m–2  h–1 under 1 sun illumination, 
slightly greater than that of NP-Cu-500 (1.43 kg  m–2  h–1). 
Under the light intensity (5 sun), the NP-Cu film shows the 
highest evaporation rate (7.47 kg  m–2  h–1), still higher than 
that of NP-Cu-500 (7.29 kg  m–2  h–1). The evaporation effi-
ciency (η) was calculated by the following equation [68]:

where ṁ represents the evaporation rate in equilibrium, 
h
LV

 is the total enthalpy of liquid-vapor phase change 
(2260 kJ  kg–1) [69], I represents the power density of inci-
dent light. Figure 5g shows the evaporation efficiencies 
of the NP-Cu and NP-Cu-500 films. The evaporation effi-
ciencies of the two films slightly fluctuate under different 
light intensities. The evaporation efficiencies of NP-Cu are 
92.9%, 93.5% and 93.7% under 1, 3 and 5 sun illumination 
respectively, higher than those (89.6%, 90.6% and 91.6%) 
of NP-Cu-500. The evaporation efficiencies of NP-Cu and 
NP-Cu-500 films fluctuate little in 30 cycles (Figs. 5h and 
S11), indicating that the SSG system has good stability and 
durability. Moreover, there is no obvious change in the liga-
ment size of NP-Cu after the cycling test (Fig. S12), sug-
gesting the good structural stability of NP-Cu even under 
the irradiation of sunlight.

(1)𝜂 =

ṁh
LV

I
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3.3  Seawater Desalination Property

In order to verify the seawater desalination performance of 
NP-Cu, a simple condensation recovery device was made 
for water purification (Fig. 6a). Water vapor escaping from 

the surface of the SSG system can condense on the inclined 
plane and then be collected. As observed in Fig. 6b, the 
ion concentration of  Ca2+,  K+,  Mg2+ and  Na+ in the seawa-
ter (Yellow Sea) decreases from 298.7, 307, 716, 6765 to 
1.3, 2.9, 0.6, 9.9 mg  L–1 respectively, which is noticeably 

Fig. 5  a Schematic illustration of water evaporation process and mechanism. b Infrared images, c surface temperature changes, d mass changes, 
e evaporation rate with time, f evaporation rate and g evaporation efficiency of the NP-Cu and NP-Cu-500 films under different illuminations. h 
Cycling test of the NP-Cu film under 1 sun illumination
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reduced after desalination and completely satisfies drinking 
water standards of the World Health Organization (WHO) 
[70]. Meanwhile, the NP-Cu film exhibits high ion rejections 
of more than 99.1% (Fig. 6c). Moreover, desalination experi-
ments of different seawater (Bohai Sea and South China Sea) 
further prove the compatibility and adaptability of NP-Cu 
(Fig. 6d). These results jointly indicate the potential of the 
present NP-Cu film for seawater desalination applications. 
Similarly, the NP-Cu-500 film also shows good seawater 
desalination ability (Fig. S13). In order to study the influ-
ence of salt accumulation on the NP-Cu film, the seawater 
was used for solar evaporation cycle tests under 1 sun illu-
mination. As shown in Fig. S14a, the evaporation efficiency 
of the NP-Cu film decreases slightly from 92.1% after 1 h of 
illumination to 87.9% after 7 h of illumination. The evapora-
tion rate of the NP-Cu film has a similar downward trend. 

Obviously, compared with the initial state (Fig. S14b), salt 
accumulation appeared on the surface of the NP-Cu film 
after 7 h of illumination (Fig. S14c). The salt accumulation 
can block the porous structure of the surface, thus hinder 
water transfer and reduce light area, resulting in the decrease 
of the SSG performance of the NP-Cu film [71]. However, 
some salt crystals re-dissolved without illumination for 1 h 
(Fig. S14d), indicating the NP-Cu film has a certain anti-salt 
fouling ability.

3.4  Mechanism Analysis

The intrinsic mechanism of good SSG performance of 
NP-Cu was further explored. Excellent hydrophilicity is an 
important condition for efficient evaporation of photother-
mal materials [72, 73]. The contact angle will be affected by 

Fig. 6  a Schematic illustration of steam condensation recovery device. Inset: photograph of the device. b Concentrations of four metal ions in 
Yellow Sea and the collected clean water after desalination by the NP-Cu film. c Ion rejection of real seawater sample after desalination. d  Na+ 
concentrations in seawater (South China Sea and Bohai Sea) and the collected clean water after desalination by the NP-Cu film and correspond-
ing rejection. e, f Contact angles of the e NP-Cu and f NP-Cu-500 films. g UV-vis-NIR absorption spectra of the NP-Cu and NP-Cu-500 films. h 
Summary of thermal conductivities for some related materials. i Schematic diagram of heat losses
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the surface pore structure and its distribution [74]. The con-
tact angles of NP-Cu and NP-Cu-500 are 12.3° and 20.6°, 
respectively (Fig. 6e, f), indicative of their excellent wetta-
bility and good water storage capacity. This means that water 
supply is not the key factor causing the difference of their 
SSG performance. To evaluate the light absorption capacity 
of the NP-Cu film and the NP-Cu-500 film, Fig. 6g shows 
the UV-vis-NIR spectra of NP-Cu and NP-Cu-500 in the 
wavelength range of 200–2500 nm. As seen in the whole 
spectra, the light absorption of NP-Cu is higher than that 
of NP-Cu-500. The high light absorption of NP-Cu-500 is 
mainly concentrated in the visible light region. In compari-
son, the NP-Cu film exhibits the good broadband absorp-
tion across the whole spectrum range. Especially in the 
wavelength range of 276–1039 nm, its absorption is more 
than 95%. The 3D bicontinuous ligament-channel structure 
as well as the fine ligaments (24.2 ± 4.4 nm) of NP-Cu is 
beneficial to increase the scattering path, thus enhancing 
light absorption [75]. Low thermal conductivity is a nec-
essary condition for an ideal SSG system [26, 76], which 
can effectively reduce heat loss. The thermal conductivity 
of the NP-Cu film (1.001 W  m–1  K–1) or the NP-Cu-500 
film (1.315 W  m–1  K–1) is much smaller than that of bulk 
Cu (401 W  m–1  K–1) and slightly larger than that of water 
(0.60 W  m–1  K–1) (Fig. 6h). The low thermal conductivity 
can efficiently localize the generated heat at the evaporation 
surface of the SSG system and avoid the rapid heat loss to 
the environment [77]. And the PS foam and cotton pillar 
with extremely low thermal conductivity (0.04 W  m–1  K–1) 
are beneficial to reduce the downward heat loss. Figure 6i 
reveals three main ways of heat loss, including conduction, 
convection and radiation [17, 78]. The heat conduction loss 
only accounts for 0.13% (Section S3), which further illus-
trates that the SSG system owns good thermal management 
and can make full use of heat to improve the evaporation 
efficiency.

Thus the excellent SSG performance of NP-Cu can be 
rationalized as follows. The unique 3D bicontinuous network 
structure of the NP-Cu film, coupled with multi-scale local 
structures (such as nano-ligaments and micro-channels), can 
effectively achieve broadband absorption of light [79–83]. 
The rough surface and the porous structure can enable multi-
ple reflections, so as to improve light absorption. The gener-
ated steam can quickly escape from the porous structure of 
the NP-Cu film. Besides, the fine nano-ligament structure 
is beneficial to enhance the LSPR effect, thus achieving 

favorable photothermal conversion ability. The low thermal 
conductivity of each part of the SSG system contributes to 
realizing a stable heat concentration, limiting the converted 
heat to the photothermal layer and reducing heat loss. The 
good hydrophilicity makes the NP-Cu film have excellent 
water storage and delivery capability. Due to these good 
properties, the NP-Cu film possesses excellent SSG perfor-
mance, coupled with low metal cost (Table S1), which has 
great development potentials as benchmarked with noble 
metals-based photothermal materials.

4  Conclusions

In summary, the self-supporting NP-Cu film with high 
porosity (94.8%) can be fabricated by one-step dealloying 
of the dilute solid  Al98Cu2 precursor in the alkaline solution. 
The in-situ XRD and ex-situ SEM/XPS results well reveal 
the phase/microstructure/composition evolutions during the 
dealloying of  Al98Cu2. The unique 3D network structure 
and multi-scale channels endow the NP-Cu film with good 
broadband absorption capability. The NP-Cu film exhibits 
excellent SSG performance (evaporation rate, efficiency and 
stability) and seawater desalination capability, which is asso-
ciated with its broadband light absorption, enhanced LSPR 
effect by the nanoscale ligaments and good hydrophilicity. 
Due to the low price of Cu compared with precious metals 
like Au and Ag, this work provides a new approach to the 
design and fabrication of low-cost metal-based photothermal 
conversion materials for SSG systems.
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