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S1 Calculation of b Value 

The b value is applied to evaluate the pseudocapacitive behavior of electrode. 

According to the power-law relation between the sweep scan rate (v) and the peak 

current (i), Eqs. S1 and S2 can be provided: 

i = avb (S1) 

log(i) = blog(v) + log(a) (S2) 

in which the b-value of 0.5 or 1.0 indicates a fully diffusion-dominated or surface-

capacitive process, respectively. 

S2 Calculation of Capacitive Contribution 

Quantitatively, the capacitive-dominated contribution can be separated based on the 

current response (i) at a fixed voltage (v), according to the Eqs. S3 and S4: 

i(V) = k1v + k2v1/2 ( S 3 ) 

i(V)/v
1/2

 = k1v1/2 + k2 ( S 4 ) 

where k1 and k2 are adjustable parameters, the k1v stands for capacitive-controlled 

process, and the k2v
1/2 represents ionic-diffusion controlled process. 
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S3 Calculation of Na+ Diffusion Coefficient (DNa+) 

Galvanostatic intermittent titration technique (GITT) measurement during the 10th 

cycle is utilized to reveal the Na+ diffusion coefficient (DNa+) in the WS2/C@CNTs 

cathode. By virtue of the linear relationship of the voltage variation (ΔEτ) and τ1/2 (Fig. 

S27), the DNa+ can be determined based on the following Eq. S5: 

DNa+=
4

πτ
(
nmVm

S
)

2

(
∆Es

∆Eτ

)

2

 (S5) 

where τ is the duration of the current pulse; nm and Vm are the mole number (mol) and 

molar volume (cm3 mol−1); S is the total contacting area between electrode and 

electrolyte; ΔEs is the voltage change between two adjacent equilibrium states; and ΔEτ 

is the voltage change induced by the galvanostatic charge/discharge. 

S4 Calculation of the Specific Energy and Power (based on the total mass 

of both anode and cathode materials):  

The cell-level specific energy E and specific power P are calculated according to the 

following Eqs. S6, S7: 

 E = ∫ VI

t2

t1

dt =
Vmax+Vmin

2
 × It × 

1

3600
 (S6) 

P = 
3600 × E

t
 (S7) 

where t (s) is the discharge time, I (A g-1) is charge/discharge current, Vmax (V) is the 

discharge potential excluding the IR drop and Vmin (V) is the potential at the end of 

discharge voltages, E is the specific energy (Wh kg-1) and P is the specific power (W 

kg-1). 

Table S1 Contents of Nb, Se, S, and C in NbSSe/NC and NbS2/NC 

Element 
NbSSe/NC 

(wt%) 

NbS2/NC 

(wt%) 

Nba) 42.5 51.2 

Sea) 32.7 / 

Sb) 13.5 34.5 

Cb) 11.3 14.3 

a) The element results were analyzed by ICP-AES. 

b) The element results were analyzed by EA. 

S5 Supplementary Figures and Tables 
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Fig. S1 Top and side view of the optimized structure of (a) NbSSe and (b) NbS2 

 

Fig. S2 Top illustration of simulations for one adsorbed Na+ in the (left) NbSSe and 

(right) NbS2 

 

Fig. S3 The adsorption energy (ΔEa) for Na+ ions in the NbSSe and NbS2 
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Fig. S4 The SEM images of NbS2-OA 

 

Fig. S5 The HRTEM images of NbSSe/NC 

 

Fig. S6 The SEM images of NbS2/NC 
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Fig. S7 The SEM images of NbS2 

 

Fig. S8 The EDS data of NbSSe/NC 

 

Fig. S9 The Raman spectroscopy of NbSSe/NC and NbS2/NC 
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Fig. S10 The survey XPS spectrum of NbSSe/NC and NbS2/NC 

 

Fig. S11 The Nb 3d high-resolution XPS spectrum of NbSSe/NC 

 

Fig. S12 The Se 3d high-resolution XPS spectrum of NbSSe/NC 
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Fig. S13 The C 1s XPS spectrum of NbSSe/NC (a) and NbS2@NC (b) 

 

Fig. S14 The N 1s XPS spectrum of NbSSe/NC 

 

Fig. S15 (a) Electrical conductivity of the two materials (NbSSe/NC and NbS2/NC) and 

(b) digital photography of four-point probe testing instrument 
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Fig. S16 Thermogravimetric analysis curves of NbSSe/NC 

Based on the transformation of NbSSe/NC after the TGA test as shown below, 

10NbS0.9Se0.9 + 30.5O2 = 5Nb2O5 + 9SO2↑ + 9SeO2↑ 

The carbon content in NbSSe/NC is calculated by equation： 

c=9. 82% 

m represents the total mass of NbSSe/NC, c is the percentage composition of carbon in 

the NbSSe/NC. 

 

Fig. S17 Nitrogen adsorption-desorption isothermal curves for NbSSe/NC (a) and 

NbS2@NC (b)  
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Fig. S18 The CV curves of 2nd cycle for NbSSe/NC (a) and NbS2@NC (b) 

 

Fig. S19 The CV curves of initial 3 cycles for NbSSe/NC (a) and NbS2@NC (b) 

 

Fig. S20 The dQ/dV plots of NbSSe/NC and NbS2/NC 

https://www.springer.com/journal/40820


Nano-Micro Letters 

S10/S19 

 

Fig. S21 The GCD profiles of different rates for NbSSe/NC and NbS2/NC 

 

Fig. S22 The comparison of rate performance between the NbSSe/NC and reported Nb-

based anode 

 

Fig. S23 The GCD profiles at different cycles for NbSSe/NC at 1 A g-1 
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Fig. S24 The rate performance of NbSSe/NC and NbS2/NC electrodes 

 

Fig. S25 Log (i) versus log (v) plots at different redox peaks of the NbSSe/NC 

 

Fig. S26 (a, b) CV curves at various scan rates from 0.2 to 1.2 mV s-1, (c, d) Capacitive 

contribution at 1.0 mV s-1, (e, f) the percentages of capacitive and diffusion-controlled 

capacities at different scan rates of the NbSSe/NC (a, c, e) and NbS2@NC (b, d, f) 
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Fig. S27 Several key parameters for ion diffusion coefficient calculation according to 

GITT curves 

 

Fig. S28 Electrochemical impedance spectra of both Nb-based samples after 50 cycles 

 

Fig. S29 Side illustration of simulations for the diffusion path of Na+ in the NbSSe and 

NbS2 
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Fig. S30 The SEM images and XRD data of EG cathode 

 

Fig. S31 The electrochemical performance of EG//Na half-cell 
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Fig. S32 CV and charge/discharge profiles (b,c) of the NbSSe/NC and EG half-cells 

In order to obtain the optimized electrochemical performance, it was a key factor to 

balance the capacity between cathode and anode. The NbSSe/NC anode showed a 

specific capacity of around 420 mAh g-1, and the EG cathode exhibited a specific 

capacity of around 100 mAh g-1, thus the mass ratio of the EG cathode to NbSSe/NC 

anode was optimized to be 4:1 according to the charge balance Eq. S8: 

Ccathode×mcathode = Canode×manode (S8) 

where C (mAh g-1) and m (mg) are the specific capacity of both electrodes and the mass 

of active materials, respectively. Therefore, the mass ratio between cathode and anode 

was calculated to be 4:1. 
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Fig. S33 Average discharge voltage of the SDIB at 0.05 A g-1 over 200 cycles 

 

Fig. S34 Galvanostatic charge/discharge curves of NbSSe/NC//EG SDIBs in the fifth 

cycle at 0.05 A g-1 
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Table S2 Comparison of electrochemical performances of anodes for Na-DIBs (the 

capacity is calculated based on the mass of cathode) 

Branches Materials 

Current  

(mA g-1) 

/Cycle number 

Capacity  

(mAh g-1) 

Average 

discharge 

voltage (V) 

ma/mc Refs. 

Carbon 

materials 

Soft carbon||graphite 333/800 18 3.5 
1.5/2.5-

3.0 
(S1) 

Porous N-doped CNF||graphite 28.5/346 18.6 4.4 0.5/3-4 (S2) 

P-doped hollow carbon||EG 125/1500 30.25 3.5 1/4 (S3) 

P-doped soft carbon||graphite 

166.6/100 36.6 

3.5 1/3 (S4) 

333/900 27 

Soft carbon nanosheets||EG 100/350 56.3 4.2 1.5/2 (S5) 

Alloy Phosphorus||EG 50/140 26.5 4,1 1/10 (S6) 

Metal-

oxides 

TiO2||Graphite 500/1400 33.8 3.2 1/3 (S7) 

Na2Ti3O7||Coronene 111/5000 17.3 2.4 0.9/4.5 (S8) 

Metal-

sulfides 

N,S-doped C@MoS2 

nanosheets||EG 

74.6/300 44.7 

2.9 1.5/2 (S9) 

746/5000 29.3 

MoS1.5Te0.5@C nanocables||EG 250/1500 36.4 3.31 1/4 (S10) 

MoS2||Graphite 600/5000 11.5 2.75 1.5/6 (S11) 

WS2/C@CNTs||EG 250/500 34.2 3.4 1/4 (S12) 

NbSSe/NC||EG 

(This work) 

50/100 62 3.69 

1/4 / 
500/1000 57 3.45 
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Table S3 Comparison of the rate performance of the NbSSe/NC//EG full-cell with 

recent reported SDIBs 
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