Supporting Information for

Regulating the Electrical and Mechanical Properties of TaS₂ Films via van der Waals and Electrostatic Interaction for High Performance Electromagnetic Interference Shielding

Fukang Deng¹, Jianhong Wei^{1, 2}, Yadong Xu¹, Zhiqiang Lin¹, Xi Lu¹, Yan-Jun Wan¹, Rong Sun^{1, *}, Ching-Ping Wong³, and Yougen Hu^{1, *}

¹ Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China

² Shenzhen Geim Graphene Center, Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China

³ School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

*Corresponding authors. E-mail: <u>yg.hu@siat.ac.cn</u> (Yougen Hu); <u>rong.sun@siat.ac.cn</u> (Rong Sun)

Supplementary Figures and Tables

Fig. S1 The Zeta potential of TaS_2 nanosheets aqueous dispersions (~0.1 mg mL⁻¹), showed a value of -27.4 mV

Fig. S2 a-d SEM images of bulk 2H-TaS₂. e, f EDS elemental mapping of bulk 2H-TaS₂.

Fig. S3 Calculation of lateral size of 2H-TaS₂ nanosheets. **a-c** SEM images of 2H-TaS₂ nanosheets. **d** Lateral size distribution of 2H-TaS₂ nanosheets indicates that the average lateral size of 2H-TaS₂ nanosheets is roughly 1.5 μ m

Fig. S4 Thickness of 2H-TaS₂ nanosheets. **a-c** AFM images of 2H-TaS₂ nanosheets. **d** Height distribution of 2H-TaS₂ nanosheets, indicating that the average thickness of 2H-TaS₂ nanosheets is roughly 1.74 nm

Fig. S5 Morphology of TaS₂ freestanding film. **a** Photograph of TaS₂ freestanding film exhibiting its flexibility. **b** SEM image of the fracture surface of the TaS₂ freestanding film. **c**, **d** EDS mapping of elements Ta and S for the area outlined in figure S5b

Fig. S6 FIB/SEMT cross-sectional of TaS₂, TaS₂/BC (10:1), and TaS₂/ANFs (10:1) films. A cross-sectional derived from FIB/SEMT for **a** TaS₂ freestanding film, **d** TaS₂/BC (10:1) composite film, and **g** TaS₂/ANFs (10:1) composite film. The volumes of **b** voids and **c** TaS₂ derived from FIB/SEMT for TaS₂ freestanding film are 33.8162 μ m³ and 563.087 μ m³ respectively, with a porosity of 6.01%. The volumes of **e** BC and **f** TaS₂ derived from FIB/SEMT for TaS₂/BC (10:1) composite film are 410.809 μ m³ and 1334.81 μ m³ respectively, with a volume rate of 30.78%. The volumes of **h** ANFs and **i** TaS₂ derived from FIB/SEMT for TaS₂/ANFs (10:1) composite film are 640.916 μ m³ and 1609.96 μ m³ respectively, with a volume rate of 39.81%

Fig. S7 Volume distribution of 3D reconstructed voids derived from FIB/SEMT for TaS_2 freestanding film

Fig. S8 Digital photographs and SEM, 3D, and AFM images for the top surface for **a** TaS_2 freestanding film, **b** TaS_2/BC (10:5) composite film, **c** $TaS_2/ANFs$ (10:5) composite film

Fig. S9 SEM and 3D images for the top surface for a the pure BC and b ANFs films

Fig. S10 TGA curves. **a** TaS₂ freestanding film and TaS₂/BC composite films **b** TaS₂/ANFs composite films. The TGA characterizations were performed from 30 to 700 °C at a temperature rising rate of 10 °C/min under a nitrogen atmosphere

Fig. S11 The images of TaS₂/BC and TaS₂/ANFs dispersion a before and b after acid treatment

Fig. S12 Morphology of TaS_2/BC and $TaS_2/ANFs$ films without acid treatment

SEM image of the section of **a** the TaS₂/BC and **d** TaS₂/ANFs films. Corresponding EDS mapping of elements Ta and C for the area outlined in **a**, **d** for **b**, **c** TaS₂/BC and **e**, **f** TaS₂/ANFs composite films.

Fig. S13 Morphology of TaS₂/BC and TaS₂/ANFs composite films with HCl treatment. SEM images of the section of the **a** TaS₂/BC and **c** TaS₂/ANFs films. Corresponding EDS mapping of elements Ta and C for the area outlined in **a**, **c** for **b** TaS₂/BC and **d** TaS₂/ANFs films

Fig. S14 Raman spectra of a TaS₂/BC and b TaS₂/ANFs composite films

Fig. S15 Tensile stress–strain curves of the films. **a** TaS₂ freestanding film, **b-f** TaS₂/BC (10:1) to TaS₂/BC (10:5) composite films, **g-h** TaS₂/ANFs (10:1) to TaS₂/ ANFs (10:5) composite films

Fig. S16 A radial plot comparing the tensile strength, Young's modulus, toughness, electrical conductivity, and EMI SE of TaS_2 freestanding film, TaS_2/BC (10:5) composite film, and $TaS_2/ANFs$ (10:5) composite film

Fig. S17 Photographs of the films during ultrasonication (using a 500 W, 40 kHz sonicator) in water. **a** TaS₂ freestanding film, **b** TaS₂/BC (10:5) composite film, **c** TaS₂/ANFs (10:5) composite film. The TaS₂ freestanding film, TaS₂/BC (10:5) composite film, and TaS₂/ANFs (10:5) composite film begin to disintegrate after ultrasonication for 1, 30, and 30 min, respectively

Fig. S18 Wettability of TaS_2 freestanding film, TaS_2/BC composite films, and $TaS_2/ANFs$ composite film toward water. The possible reason for the increase of the contact angle of the composite films is the change of the films surface structure

Fig. S19 XRD curves using Cu-K α radiation. Normalized XRD patterns of a TaS₂/BC composite films and b TaS₂/ANFs composite films, Zoom-in of the XRD patterns in the range of 5-40 deg

Fig. S20 Inclined-view SEM images of the fracture surface of the composite films. **a-d** TaS/BC (10:1) to (10:4), and **e-h** TaS₂/ANFs (10:1) to (10:4). The TaS₂/BC and TaS₂/ANFs films have fiber distribution at the fracture edge

Fig. S21 The electrical conductivity of 2H-TaS₂ powder corresponding to the pressure. The electrical conductivity of 2H-TaS₂ powder increases with the increase of pressure and reaches 2,067 S cm⁻¹ at a high pressure of 120 MPa

Fig. S22 EMI SE of the multi-level superimposed of TaS₂ films. 2P (~16 μ m) indicated the superposition of two 8- μ m-thick TaS₂ films; 3P (~36 μ m) indicated the superposition of 10- μ m-thick and two 13- μ m-thick TaS₂ films; 4P (~42 μ m) indicated the superposition of two 8- μ m-thick and two 13- μ m-thick TaS₂ films; 5P (~52 μ m) indicated the superposition of two 8- μ m-thick and 10- μ m-thick and two 13- μ m-thick TaS₂ films; 5P (~52 μ m) indicated the superposition of TaS₂ films thick and 10- μ m-thick and two 13- μ m-thick TaS₂ films. The average EMI SE of TaS₂ film thickness of 2P, 3P, 4P, and 5P are 68.0 dB, 87.2 dB, 96.4 dB, and 105.2 dB respectively

Fig. S23 a, **b** EMI SE_T, SE_A, and SE_R of 7.5- μ m-thick TaS₂ film, TaS₂/BC composite film, and TaS₂/ANFs composite film. **c**, **d** The transmission (T), absorption (A), and reflection (R) coefficient of 7.5- μ m-thick TaS₂ film, TaS₂/BC composite film, and TaS₂/ANFs composite film. (Note: TaS₂ content is the same)

Table S1 Chemical compositions of the LixTaySz nanosheets

	X	У	Z	Chemical formula
$Li_{x}Ta_{y}S_{z}$	0.051599	0.287759	0.592451	Li _{0.18} TaS ₂

Table S2 BC and ANFs content in TaS_2/BC and $TaS_2/ANFs$ composite films, determined by TGA measurements

Sample	BC content (wt%)	ANFs content (wt%)
TaS ₂ /BC (10:1)	9.44	-
TaS ₂ /BC (10:2)	16.21	-
TaS ₂ /BC (10:3)	23.95	-
TaS ₂ /BC (10:4)	29.15	-
TaS ₂ /BC (10:5)	33.22	-
TaS ₂ /ANFs (10:1)	-	5.27
TaS ₂ /ANFs (10:2)	-	15.06
TaS ₂ /ANFs (10:3)	-	21.27
TaS ₂ /ANFs (10:4)	-	26.91
TaS ₂ /ANFs (10:5)	-	33.01

Table S3 Thinkness and mechanical properities of the TaS_2 freestanding, TaS_2/BC and $TaS_2/ANFs$ films

Sample	Thickness (µm)	Tensile strength (MPa)	Strain to failure (%)	Young's modulus (GPa)	Toughness (MJ m ⁻³)
TaS ₂ film	3.1	23.3±4.8	0.21±0.07	14.9±6.2	0.033±0.018
TaS ₂ /BC (10:1)	9.9	31.7±2.8	0.45 ± 0.08	8.7±0.9	0.066±0.017
TaS ₂ /BC (10:2)	10.2	58.7±7.7	0.72±0.17	12.9±3.8	0.19±0.02
TaS ₂ /BC (10:3)	15.6	74.5±3.3	0.76±0.16	15.5±2.4	0.31±0.05
TaS ₂ /BC (10:4)	17.8	105.5±7.9	1.29±0.41	14.0±4.8	0.83±0.25
TaS ₂ /BC (10:5)	24.18	87.9±8.1	5.48±0.19	4.9±0.6	3.25±0.45
TaS ₂ /ANFs (10:1)	10.0	40.7 ± 0.8	0.63±0.02	8.09±0.31	0.134±0.009
TaS ₂ /ANFs (10:2)	13.3	68.2±5.8	1.68±0.22	7.11±0.43	0.72±0.19
TaS ₂ /ANFs (10:3)	15.2	81.9±1.0	1.94 ± 0.42	8.10±0.98	1.02±0.23
$TaS_2/ANFs$ (10:4)	22.4	121.4±8.8	3.39±0.61	9.60±1.04	2.93±0.85
TaS ₂ /ANFs (10:5)	25.5	134.13±1.4	4.84±0.27	8.0±1.46	4.52±0.07

Sample	Tensile strength (MPa)	Strain to failure (%)	Young's modulus (MPa)	Toughness (MJ m ⁻³)	Refs.
TaS ₂ HA _{0.371} NMF _{0.135}	9.16	-	-	-	[S1]
PEO/TaS ₂ (0.5 wt%)	11.27±1.72	4.17±0.57	632.30±22.45	-	[S2]

Table S4 The mechanical properities of the TaS2-based films

Table S5 Interlayer diffraction spacing of TaS_2 freestanding film, TaS_2/BC and $TaS_2/ANFs$ composite films

Sample	d (nm)
TaS ₂	0.933
TaS ₂ /BC (10:1)	0.599
TaS ₂ /BC (10:2)	0.600
TaS ₂ /BC (10:3)	0.600
TaS ₂ /BC (10:4)	0.600
TaS ₂ /BC (10:5)	0.599
TaS ₂ /ANFs (10:1)	0.604
TaS ₂ /ANFs (10:2)	0.604
TaS ₂ /ANFs (10:3)	0.605
TaS ₂ /ANFs (10:4)	0.604
TaS ₂ /ANFs (10:5)	0.604

Table S6 Thickness, density, sheet resistance, electrical conductivity, average EMI SE between 8.2 and 12.4 GHz, and absolute EMI SE (SSE/t) for the TaS₂ freestanding film, TaS₂/BC, and TaS₂/ANFs composite films

Sample	Thickness (µm)	Density (g cm ⁻³)	Sheet resistance (Ω sq ⁻¹)	Electrical conductivity (S cm ⁻¹)	Average EMI SE (dB)	SSE/t (dB cm ² g ⁻¹)
TaS ₂	3.1	4.84	1.21	2666	41.8	27,859
TaS ₂ /BC (10:1)	9.9	3.52	0.704	1435	48.0	13,774
TaS ₂ /BC (10:2)	10.2	3.44	0.725	1352	47.4	13,509
TaS ₂ /BC (10:3)	15.6	2.41	0.724	886	46.9	12,527
TaS ₂ /BC (10:4)	17.8	2.58	0.723	777	46.9	10,213
TaS ₂ /BC (10:5)	24.18	2.56	0.617	670	46.8	7,560
TaS ₂ /ANFs (10:1)	10.0	3.30	0.659	1517	46.8	14,182

TaS ₂ /ANFs (10:2)	13.3	3.09	1.13	665	44.6	10,852
TaS ₂ /ANFs (10:3)	15.2	2.75	1.94	339	41.6	9,952
TaS ₂ /ANFs (10:4)	22.4	2.57	2.29	195	40.1	6,966
TaS ₂ /ANFs (10:5)	25.5	2.66	4.55	86	39.2	5,779

Table S7 Comparison on electrical conductivity of TaS₂ samples.

Sample	Conductivity (S m ⁻¹)	Refs.
TaS ₂	6.18×10^{3}	[62]
Pd _{0.1} TaS ₂	1.36×10^{4}	[33]
single-crystal 2H-TaS ₂	$6.8 imes 10^4$	[S4]
2H-TaS flakes	3.33×10^{6} (in-plane)	[\$5]
$211 \operatorname{Tub}_2 \operatorname{Hakes}$	12.5 (out-of-plane)	[35]
Li _{0.2} TaS ₂	>10 ⁵	
Li _{0.2} (PEO) _{1.36} TaS ₂	1,900	
Li _{0.2} (PEO) _{1.68} TaS ₂	300	[S6]
Li _{0.2} (PVP) _{0.95} TaS ₂	3,100	
Li _{0.2} (PEI) _{0.82} TaS ₂	12,500	
TaS ₂ HA _{0.371} NMF _{0.135}	1.1738×10^{5}	[S1]
TaS ₂ freestanding film	2.666×10^{5}	This work

Table S8 Thickness, EMI SE, and absolute EMI SE (SSE/t) of TaS₂-based films and other solid shielding films, including graphene, CNT, metal foils, MXene, TMTs, and TMDs

Туре	Materials	Thickness (mm)	EMI SE (dB)	SSE/t (dB cm ² g ⁻¹)	Refs.
	Graphene foam	0.027	68	14,309.8	[S7]
Crombono boood	Graphene film	0.0084	20	13,200	[S8]
Graphene-based	Graphene paper	0.05	62	18,235	[S9]
	Graphene membrane	1.5	38	70,371	[S10]
	CNT	0.00185	51	199,100	[S11]
CNT-based	CNT/Aramid Nanofiber	0.568	41.9	18,304.6	[S12]
	CNT/Graphene Edge hybrid foam	1.6	47	33,005.6	[\$13]

	CNT sponge	1.8	54.8	30,444	[S14]	
	Al Foil	0.008	66	30,555	[017]	
Mental-based	Cu Foil	0.001	70	7,812	[515]	
	AgNWs/EPM	1	111.5	13,433	[S16]	
	MXene film	0.011	68	25,863	[015]	
MXene-based	MXene/SA	0.008	57	30,830	[313]	
	MXene	0.006	32	137,000	[S17]	
	MXene	0.0034	60.9	60,309	[S18]	
TMTs-based	SA/TaSe ₃	0.027	21	4,115	[S19]	
	TaS ₂	0.022	31	~1,200	[S1]	
TMDs-based	TaS ₂ film	0.0031	41.8	27,859	This work	

Supplementary References

[S1] P. A. Zong, D. Yoo, P. Zhang, Y. Wang, Y. Huang et al., Flexible foil of hybrid TaS₂ /organic superlattice: Fabrication and electrical properties. Small **16**(15), e1901901 (2020). <u>https://doi.org/10.1002/smll.201901901</u>

[S2] J. Shen, J. Wu, M. Wang, P. Dong, J. Xu et al., Surface tension components based selection of cosolvents for efficient liquid phase exfoliation of 2D materials. Small 12(20), 2741-2749 (2016). <u>https://doi.org/10.1002/smll.201503834</u>

[S3] D. Wang, X. Wang, Y. Lu, C. S. Song, J. Pan et al., Atom-scale dispersed palladium in a conductive Pd_{0.1}TaS₂ lattice with a unique electronic structure for efficient hydrogen evolution. J. Mater. Chem. A 5(43), 22618-22624 (2017). <u>https://doi.org/10.1039/c7ta06447k</u>

[S4] L. Li, X. Deng, Z. Wang, Y. Liu, M. Abeykoon et al., Superconducting order from disorder in 2H-TaSe_{2-x}S_x. npj Quantum Mater. **2**(1), (2017). <u>https://doi.org/10.1038/s41535-017-0016-9</u>

[S5] Y. Y. Liu, J. J. Wu, K. P. Hackenberg, J. Zhang, Y. M. Wang et al., Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy 2(9), 17127 (2017). <u>https://doi.org/10.1038/nenergy.2017.127</u>

[S6] L. Wang, M. G. Kanatzidis, Laminated TaS₂/polymer nanocomposites through encapsulative precipitation of exfoliated layers. Chem. Mater. **13**(10), 3717-3727 (2001). <u>https://doi.org/10.1021/cm011025f</u>

[S7] E. Zhou, J. Xi, Y. Liu, Z. Xu, Y. Guo et al., Large-area potassium-doped highly conductive graphene films for electromagnetic interference shielding. Nanoscale **9**(47), 18613-18618 (2017). <u>https://doi.org/10.1039/c7nr07030f</u>

[S8] B. Shen, W. T. Zhai, W. G. Zheng, Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24(28), 4542-4548 (2014). <u>https://doi.org/10.1002/adfm.201400079</u>

[S9] L. Zhang, N. T. Alvarez, M. X. Zhang, M. Haase, R. Malik et al., Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon 82, 353-359 (2015). <u>https://doi.org/10.1016/j.carbon.2014.10.080</u>

[S10] X. M. Yin, H. J. Li, L. Y. Han, J. C. Meng, J. H. Lu et al., Lightweight and flexible 3D graphene microtubes membrane for high-efficiency electromagnetic-interference shielding. Chem. Eng. J. 387, 124025 (2020). <u>https://doi.org/10.1016/j.cej.2020.124025</u>

[S11] Y. J. Wan, X. Y. Wang, X. M. Li, S. Y. Liao, Z. Q. Lin et al., Ultrathin densified carbon nanotube film with "metal-like" conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness. ACS Nano 14(10), 14134-14145 (2020). https://doi.org/10.1021/acsnano.0c06971

[S12] P. Hu, J. Lyu, C. Fu, W. B. Gong, J. Liao et al., Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano **14**(1), 688-697 (2020). <u>https://doi.org/10.1021/acsnano.9b07459</u>

[S13] Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. **29**(31), 1701583 (2017). <u>https://doi.org/10.1002/adma.201701583</u>

[S14] D. W. Lu, Z. C. Mo, B. H. Liang, L. L. Yang, Z. F. He et al., Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon **133**, 457-463 (2018). <u>https://doi.org/10.1016/j.carbon.2018.03.061</u>

[S15] F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science **353**(6304), 1137-1140 (2016). <u>https://doi.org/10.1126/science.aag2421</u>

[S16] J. Wei, Z. Lin, Z. Lei, Y. Xu, Z. Zhao et al., Lightweight and highly compressible expandable polymer microsphere/silver nanowire composites for wideband electromagnetic interference shielding. ACS Appl. Mater. Interfaces **14**(4), 5940-5950 (2022). https://doi.org/10.1021/acsami.1c20593

[S17] J. Liu, H. B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). <u>https://doi.org/10.1002/adma.201702367</u>

[S18] S. Wan, X. Li, Y. Chen, N. Liu, Y. Du et al., High-strength scalable mxene films through bridging-induced densification. Science **374**(6563), 96-99 (2021).

S17/S18

https://doi.org/10.1126/science.abg2026

[S19] Z. Barani, F. Kargar, Y. Ghafouri, S. Ghosh, K. Godziszewski et al., Electrically insulating flexible films with quasi-1D van der waals fillers as efficient electromagnetic shields in the ghz and sub-thz frequency bands. Adv. Mater. **33**(11), e2007286 (2021). https://doi.org/10.1002/adma.202007286