Supporting Information for

# A Rational Design of Metal-Organic Framework Nanozyme with High-Performance Copper Active Centers for Alleviating Chemical Corneal Burns

Yonghua Tang<sup>1, #</sup>, Yi Han<sup>2, #</sup>, Jiachen Zhao<sup>1</sup>, Yufei Lv<sup>4</sup>, Chaoyu Fan<sup>1</sup>, Lan Zheng<sup>2</sup>, Zhisen Zhang<sup>1</sup>, Zuguo Liu<sup>2, 4, \*</sup>, Cheng Li<sup>2, 4, \*</sup>, and Youhui Lin<sup>1, 3, \*</sup>

<sup>1</sup> Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China

<sup>2</sup> Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361102, P. R. China

<sup>3</sup> National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, P. R. China

<sup>4</sup> Postdoctoral mobile station of Basic Medical Sciences, Hengyang Medical School; Department of Ophthalmology, the First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, 421001, P. R. China

<sup>#</sup>Yonghua Tang and Yi Han contributed equally to this work.

\*Corresponding authors. E-mail: linyouhui@xmu.edu.cn (Youhui Lin), <u>cheng-li@xmu.edu.cn</u> (Cheng Li), <u>zuguoliu@xmu.edu.cn</u> (Zuguo Liu)

# **Supplementary Figures and Tables**

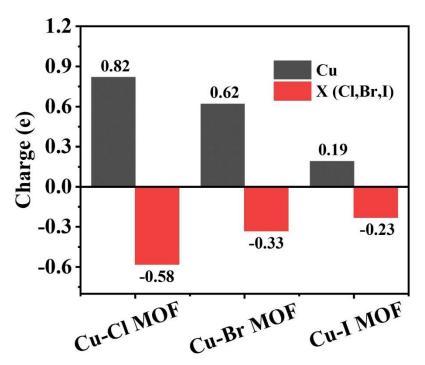
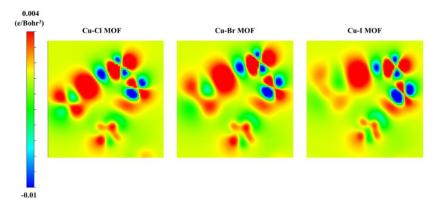
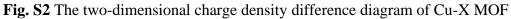
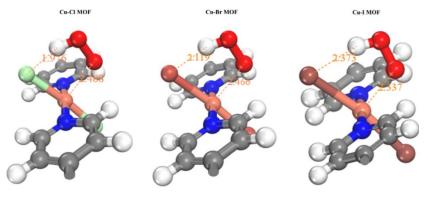






Fig. S1 Bader charge of Cu and X in Cu-X MOF







**Fig. S3** The conformation of adsorbed •OOH on the Cu-X MOF model and the distances of Cu from O and X from H. (Unit: Å)

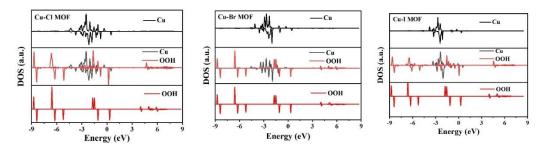
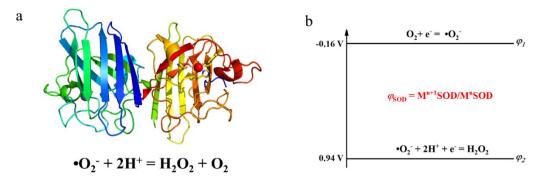




Fig. S4 Projection density of states of adsorbed •OOH on the Cu-X MOF model



**Fig. S5 a** Superoxide dismutase (SOD) scavenges  $\cdot O_2^-$  through a catalytic delocalization reaction. **b** A reduction potential model to predict the catalytic activity of SOD

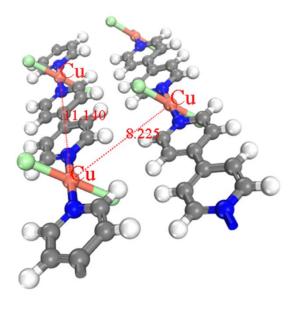
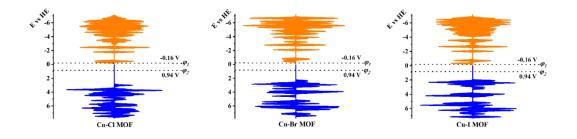




Fig. S6 Distance between the two nearest copper active sites. (Unit: Å)



**Fig. S7** Energy level of the Cu-X MOFs surface relative to the hydrogen electrode (HE) potential

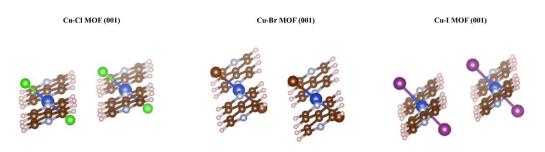



Fig. S8 Structures of Cu-X MOFs (001) surfaces

Nano-Micro Letters

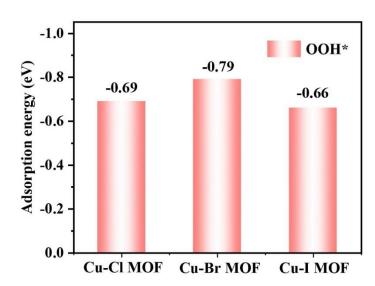
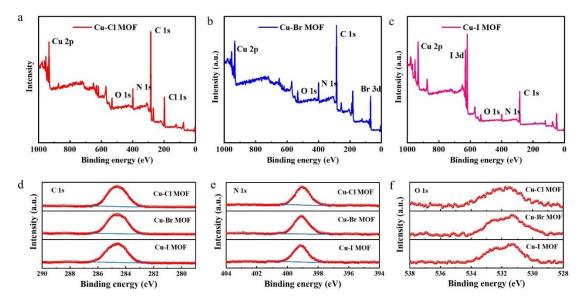




Fig. S9 Adsorption energy of •OOH on the surface of Cu-X MOFs



**Fig. S10 a-c** The XPS survey spectrum of different Cu-X MOFs. **d-e** The high-resolution C 1s, N 1s and O 1s XPS spectra of Cu-X MOFs

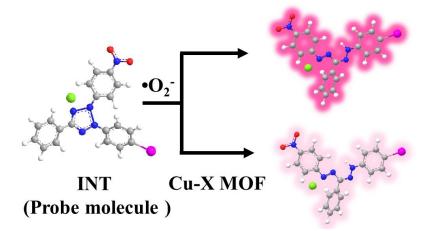



Fig. S11 Diagram of the superoxide radical (• $\mathfrak{G}$ ) capture mechanism by iodonitrotetrazolium chloride (INT)

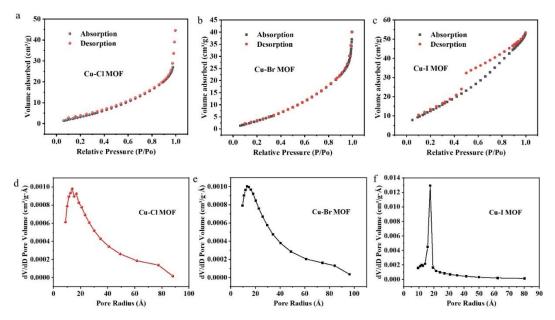



Fig. S12  $N_2$  adsorption-desorption isotherms **a-c** and pore size distribution **d-f** of Cu-X MOFs

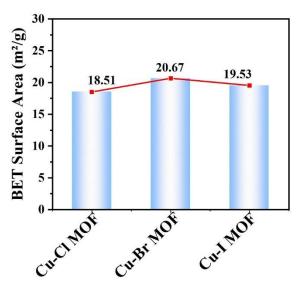
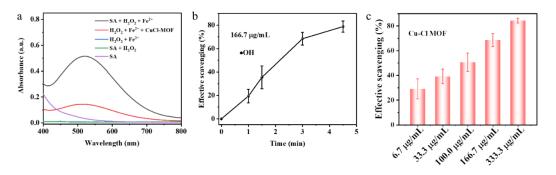




Fig. S13 Specific surface area data of Cu-X MOFs



Fig. S14 Photograph of the catalytic formation of oxygen bubbles after incubation with and without Cu-Cl MOF (50  $\mu$ g/mL) in a 100 mM H<sub>2</sub>O<sub>2</sub> solution for 2 h



**Fig. S15 a** Absorption spectra of salicylic acid after reaction with  $Fe^+$  /H<sub>2</sub>O<sub>2</sub> in the absence and presence of Cu-Cl MOF nanozyme. **b** Hydroxyl radical removal efficiency curve with time. **c** The removal efficiency of •OH different masses of Cu-Cl MOF

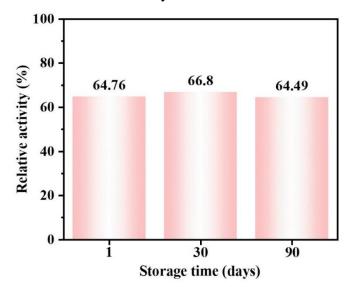



Fig. S16 SOD-like activity of Cu-Cl MOF at different storage times

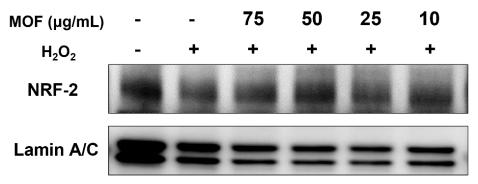



Fig. S17 Nuclear protein levels of NRF2 after incubation with varying concentrations of Cu-Cl MOF

# CONTROL

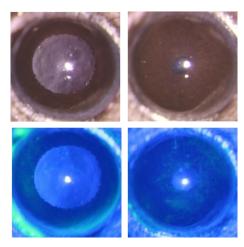
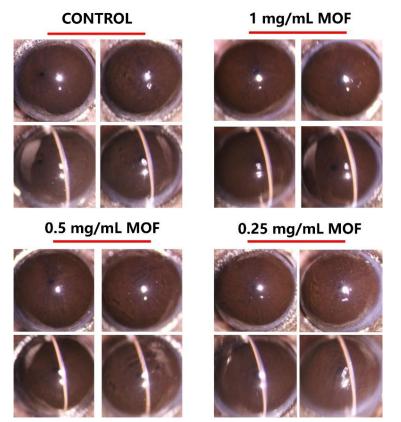
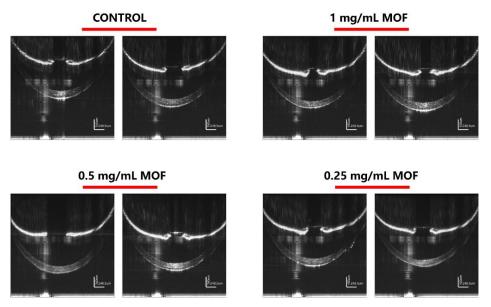




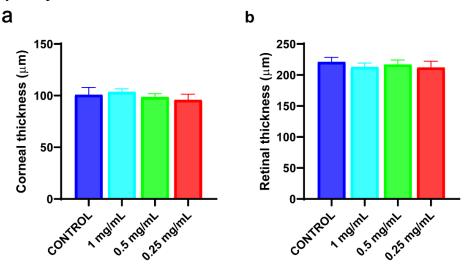
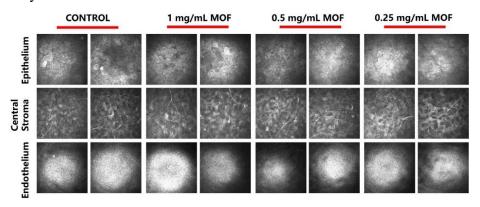
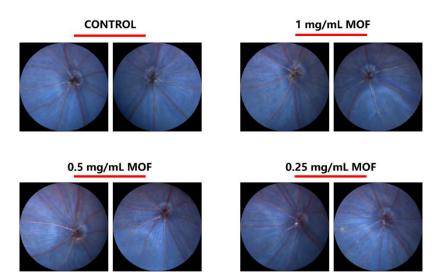

Fig. S18 Broad beam lighting and fluorescein staining images of the ocular surface of an alkali-burned control

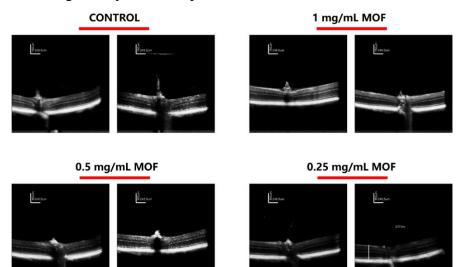


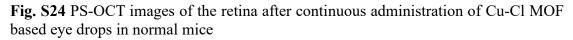
**Fig. S19** Broad beam lighting and fluorescein staining images of the ocular surface after continuous administration of Cu-Cl MOF based eye drops in normal mice



**Fig. S20** AS-OCT images of the retina after continuous administration of Cu-Cl MOF based eye drops in normal mice



Fig. S21 Quantitative statistics of corneal thickness and retinal thickness measured and analyzed by OCT




**Fig. S22** *In vivo* confocal microscopy images of corneal epithelium, central corneal stroma, and corneal endothelium of ocular surface after continuous Cu-Cl MOF based eye drops in normal mice



**Fig. S23** After continuous administration of Cu-Cl MOF based eye drops in normal mice, fundus images of eyes were captured





| Table S1 Comparison of the specific activities of the Cu-Cl MOF and other Cu-based |
|------------------------------------------------------------------------------------|
| nanozymes                                                                          |

| Sample                          | Specific activities<br>(U/mg, SOD) |
|---------------------------------|------------------------------------|
| Cu-Cl MOF (This work)           | -63.5                              |
| CuWK <sup>1</sup>               | -4.1                               |
| CuSF <sup>1</sup>               | -2.2                               |
| Commercial Cu <sub>2</sub> O    | -1.6                               |
| Commercial CuO                  | ~0                                 |
| Commercial Cu (OH) <sub>2</sub> | ~0                                 |

Specific activities =V/( $\mathcal{E}\times l$ ) ×( $\Delta A/\Delta t$ )/m, V is the total volume of the reaction solution ( $\mu L$ );  $\varepsilon$  is the molar absorption coefficient of the colorimetric substrate; l is the path length of light travelling in the cuvette (cm); A is the absorbance after subtraction of the maximum absorbance, and  $\Delta A/\Delta t$  is the initial rate of change in absorbance; m is the nanozyme weight (mg) of each assay. The "-" represents the reduction of  $\cdot O_2^{-}$ .

# **Supplementary References**

[1] F. Xu, Y.H. Tang, H. Wang, H.B. Deng, Y.Y. Huang et al., Using wool keratin derived metallo-nanozymes as a robust antioxidant catalyst to scavenge reactive oxygen species generated by smoking. Small 18 2201205 (2022). <u>https://doi.org/10.1002/smll.202201205</u>