Supporting Information for

Revealing the Intrinsic Peroxidase-Like Catalytic Mechanism of Heterogeneous Single-Atom Co-MoS₂

Ying Wang^{1, †}, Kun Qi^{1, 2, †}, Shansheng Yu¹, Guangri Jia¹, Zhiliang Cheng⁴, Lirong Zheng⁵, Qiong Wu¹, Qiaoliang Bao², Qingqing Wang⁶, Jingxiang Zhao^{3, *}, Xiaoqiang Cui^{1, *}, Weitao Zheng¹

¹Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China

²Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia

³Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, People's Republic of China

⁴Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA

⁵Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

⁶School of Chemistry and Chemical Engineering, MOE Key Laboratory of Micro-System and Micro-Structure Manufacturing, Harbin Institute of Technology, Harbin 150001, People's Republic of China

[†]Ying Wang and Kun Qi contributed equally to this work

*Corresponding authors. E-mail: <u>xqcui@jlu.edu.cn</u> (Xiaoqiang Cui); <u>xjz_hmily@163.com</u> (Jingxiang Zhao)

Supplementary Figures and Tables

Fig. S1 (a) TEM image of SA Co-MoS₂. No Co nanoparticles or clusters were observed. **(b)** XRD pattern of MoS₂ and SA Co-MoS₂. **(c)** The elemental mapping images of SA Co-MoS₂

Fig. S2 HRTEM images of (a) MoS₂ and (b) SA Co-MoS₂

Fig. S3 High-resolution (**a**) S 2p, (**b**) Mo 3d, (**c**) C 1s, (**d**) O 1s, and (**e**) Co 2p XPS spectra of SA Co-MoS₂

Fig. S4 (a) Normalized Co K-edge XANES spectra of Co foil, CoO, Co₂O₃, and SA Co-MoS₂. (b) Raman spectra of MoS₂ and SA Co-MoS₂

Fig. S5 (a) k space fitting curve and (b) FT-EXAFS fitting curves of the Co foil. (c) k space fitting curve and (d) FT-EXAFS fitting curves of the SA Co-MoS₂

Fig. S6 Effects of different (a) pH values of the acetate buffer (inset: Photograph of the corresponding samples), (b) incubation temperatures, (c) incubation times, and (d) concentrations of SA Co-MoS₂

Fig. S7 (a) CV curves and **(b)** chronoamperometric curves of 0.1 M pH 4.0 HAc-NaAc buffer containing 5.0 mM TMB and 1.0 mM H₂O₂ measured by a GCE, MoS₂/GCE and SA Co-MoS₂/GCE

Fig. S8 The typical UV-Vis spectra in different reaction systems with OPD (a) and ABTS (b) as peroxidase substrates: (1) substrate + H_2O_2 , (2) substrate + H_2O_2 + MoS₂, and (3) substrate + H_2O_2 + SA Co-MoS₂ (inset: optical image showing the corresponding colour changes)

Fig. S9 The comparison of the (a) pH, (b) temperature, and (c) H_2O_2 tolerances of SA Co-MoS₂ and HRP

Fig. S10 Kinetic analysis of the reaction of SA Co-MoS₂ with H_2O_2 (**a**) or TMB (**b**). The insets in panels (**a**) and (**b**) show the corresponding double-reciprocal plots for calculation of the enzyme kinetic parameters by the Michaelis-Menten equation. Double-reciprocal plots of the SA Co-MoS₂ activity with the concentration of one substrate (H_2O_2 (**c**) or TMB (**d**)) fixed and the other varied

Fig. S11 (a) The CV responses of the SA Co-MoS₂/GCE in N₂-saturated 0.01 M PBS (pH = 7.4) containing 3.0 mM H₂O₂ without and with 10 mM KSCN poison. The inset is an illustration showing the blocking of the cobalt centre by the SCN⁻ ion. (b) The calibration curves for H₂O₂ concentrations from 0.00 to 2.0 mM at -0.7 V

Fig. S12 Changes in the UV-Vis absorbance (**a**) and fluorescence spectra (**b**) when the MoS₂ catalyst was poisoned with 10 mM KSCN. (**c**) The CV response of the MoS₂/GCE in N₂-saturated 0.01 M PBS (pH = 7.4) containing 3.0 mM H₂O₂ without and with 10 mM KSCN poison. (**d**) The calibration curves for H₂O₂ concentrations from 0.00 to 2.0 mM at -0.7 V

Fig. S13 (a) Effect of dissolved oxygen. (b) Demonstration that the peroxidase-like activity of SA Co-MoS₂ does not result from cobalt ion leaching

Fig. S14 UV–Vis spectrum of origin Cyt c, Cyt c reacted with SA Co-MoS₂ and Cyt c reacted with SA Co-MoS₂ under deoxygenated condition

Fig. S15 The top views of H_2O_2 decomposition on the surface of distorted 1T MoS₂ slab with a single Co atom absorbed

Fig. S16 The comparation between the 2H MoS₂ and 1T MoS₂ for changes in (**a**) UV-Vis absorbance, (**b**) CV response in N₂-saturated 0.01 M PBS (pH = 7.4) containing 1.0 mM H₂O₂, and (**c**) the typical Nyquist plots in 5 mM [Fe(CN)₆]^{3-/4-} and 0.1 M KCl with frequency varied from 100 kHz to 0.1 Hz at open circuit potential

Fig. S17 DFT-calculated reaction energy diagram of H_2O_2 dissociation on 2H MoS_2 and 1T MoS_2

Fig. S18 The reproducibility of the method (a), samples (b), and catalyst (c). Long-term storage stability (d) of the SA Co-MoS₂ catalytic activity

Fig. S19 (a) The detection limit (S/N = 3) of the SA Co-MoS₂ composite material. The electrode reproducibility of (**b**) 9 consecutive current measurements by the same electrode and (**c**) the electrode-to-electrode reproducibility for five separate electrodes in 0.5 mM H₂O₂. (**d**) The long-term stability of the sensor at a H₂O₂ concentration of 1.0 mM

Fig. S20 SA Co-MoS₂ before and after the peroxidase-like catalytic reaction. (a) Co K-edge XANES spectra and (b) FT-EXAFS spectra

Sample	Path	Coordination Number	Bond length R (Å)	Bond disorder $\sigma^2 (\times 10^{-3} \text{\AA}^2)$	$\begin{array}{c} \Delta E_0 \\ (eV) \end{array}$	R (%)
Co foil	Co-Co	12*	2.50±0.01	6.4±0.3	7.8±0.4	0.001
SA Co- MoS ₂	Co-S	3.4±0.6	2.23±0.02	7.6±2.2	-1.5±1.6	0.001

 Table S1 Mo K-edge EXAFS curves fitting parameters

Table S2 Comparison of the apparent kinetic parameters of SA Co-MoS₂, MoS₂, and HRP

Catalyst	Substance	$K_{\rm m}~({ m mM})$	V _{max} (M s ⁻¹)	References	
SA C. M.S	TMB	5.870	5.44×10 ⁻⁷	This work	
SA CO-101052	H_2O_2	3.349	6.49×10 ⁻⁷		
M.C	TMB	1.531	4.61×10 ⁻⁸	This work	
W105 2	H_2O_2	5.430	2.70×10 ⁻⁷		
HRP	TMB	0.434	10.0×10 ⁻⁸	Nat. Nanotechnol.	
	H_2O_2	3.702	8.71×10 ⁻⁸	2007, 2, 577	

 $\begin{array}{c} \textbf{Table S3} \ \text{Comparison of different molybdenum disulphide-based electrochemical sensors for the} \\ & \text{determination of } H_2O_2 \end{array}$

Sensing platform	Linear range	LOD (nM)	References
SA Co-MoS ₂	50 nM – 5.845 mM 5.845 mM – 17.241 mM	10	This work
Pt/MoS ₂ /Ti	$10 \ \mu M - 160 \ \mu M$	870	J. Electroanal. Chem. 2018, 15, 274
MoS ₂ -ICPC	$20 \ \mu M - 300 \ \mu M$	11800	J. Electroanal. Chem. 2018, 15, 429
MoS ₂ /CC	5 μM – 235 μM 435 μM – 3000 μM	1000	Chem. Commun., 2019, 55, 9653
Pt-Pd/MoS ₂	$10 \ \mu M - 80 \ \mu M$	3400	Microchim. Acta, 2018, 185, 399
interlayer-expanded MoS ₂	0.23 μM – 2200 μM 2200 μM – 14220 μM	200	Nanoscale 2019, 11, 6644
MoS2-GSSG NSs	$0 \ \mu M - 50 \ \mu M$	510	Chem. Eur. J. 2018, 24, 15868
PtW-MoS ₂	$1 \ \mu M - 200 \ \mu M$	1710	Biosens. Bioelectron, 2016, 80, 601