Supporting Information for

Interface Engineering of Fe₇S₈/FeS₂ Heterostructure *in-situ*

Encapsulated into Nitrogen-Doped Carbon Nanotubes for High

Power Sodium-Ion Batteries

Penghao Song¹, Jian Yang^{1, 3}, Chengyin Wang¹, Tianyi Wang¹, *, Hong Gao^{2, *}, Guoxiu Wang^{2, *}, Jiabao Li^{1, *}

¹College of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, P. R. China

²Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia

³Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China

*Corresponding authors. E-mail: <u>wangty@yzu.edu.cn</u> (Tianyi Wang); <u>hong.gao@uts.edu.au</u> (Hong Gao); <u>guoxiu.wang@uts.edu.au</u> (Guoxiu Wang); <u>jiabaoli@yzu.edu.cn</u> (Jiabao Li)

S1 Material Characterization

The phase structure of the as-prepared samples was investigated through X-ray powder diffraction (XRD, Holland Panalytical PRO PW 3040/60). Raman spectra were tested on RM-1000 (RENISHAW). The surface chemical composition was performed by X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250 XI). The morphology and microstructure of the as-prepared samples were investigated through field-emission scanning electron microscopy (FESEM, Hitachi-4800), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM, JEOL, JEM-2010).

S2 Electrochemical Test

Firstly, the as-prepared samples (Fe₇S₈/NCNT, Fe₇S₈/FeS₂/NCNT, and FeS₂/NCNT) were mixed with Super P and carboxymethylcellulose sodium in deionized water at a weight ratio of 7:2:1, respectively, and stirred to obtain a uniform slurry. Then the slurry was coated on copper foil, vacuum-dried at 60 °C overnight, and cut into 12 mm diameter disks to obtain the working electrodes. The average mass loading of the active material is around 1.2×10^{-3} g cm⁻². Then assembling the half cells in an argon-filled glovebox, with sodium foil and Whatman glass fiber as the reference electrode and

Nano-Micro Letters

separator, respectively. Ester-based electrolyte (1.0 M of NaPF₆ in ethylene carbonate and diethyl carbonate (EC/ DEC = 1/1 by volume)) and ether-based electrolyte (1 M NaPF₆ in diglyme (DME)) were employed. The galvanostatic cycle tests of half cells were conducted in the NEWARE battery test system with a wide voltage window of 0.01-3 V. To further investigate the Na⁺ storage kinetics, cyclic voltammetry (CV) curves were obtained using an electrochemical workstation (CHI 660D) at different scan rates. The electrochemical impedance spectroscopy (EIS) measurements were carried out on the same electrochemical workstation (CHI 660D).

S3 Supplementary Figures and Table

Fig. S1 SEM images of a Fe/NCNT, b Fe₇S₈/NCNT, and c FeS₂/NCNT

Fig. S2 Crystal plane spacing periodogram of Fe₇S₈/ FeS₂/NCNT

Fig. S3 SEAD pattern of Fe₇S₈/ FeS₂/NCNT

Fig. S4 XRD pattern of Fe/NCNT

Fig. S5 TG curves of Fe₇S₈/FeS₂/NCNT and Fe/NCNT in air

For the Fe/NCNT, the content of Fe in Fe/NCNT is calculated to be 54.1 wt% based on the remaining 77.3 wt% of Fe₂O₃ after the TG test. Similarly, the the content of Fe in the Fe₇S₈/FeS₂/NCNT is calculated to be 35.8 wt%. Besides, since the sulfidation process will not change the mass ratio of Fe element to NCNT from Fe/NCNT to Fe₇S₈/FeS₂/NCNT, thus the content of NCNT in Fe₇S₈/FeS₂/NCNT is calculated to be 30.4% based on the following relationship:

$$W_{1\,Fe}/_{W_{1\,NCNT}} = \frac{W_{2\,Fe}}{W_{2\,NCNT}}$$

where the $W_{1 Fe}$ and $W_{1 NCNT}$ correspond to the mass ratio of Fe element and NCNT in Fe/NCNT, $W_{2 Fe}$ and $W_{2 NCNT}$ correspond to the mass ratio of Fe element and NCNT in Fe₇S₈/FeS₂/NCNT.

Fig. S6 XPS survey spectra of the Fe₇S₈/NCNT, Fe₇S₈/FeS₂/NCNT, and FeS₂/NCNT

Fig. S7 High-resolution XPS spectra of Fe₇S₈/NCNT: **a** Fe 2p, **b** S 2p, **c** C 1s, and **d** N 1s

Fig. S8 High-resolution XPS spectra of FeS₂/NCNT: **a** Fe 2p, **b** S 2p, **c** C 1 s, and **d** N 1 s

Fig. S9 CV curves of a $Fe_7S_8/FeS_2/NCNT$, b $Fe_7S_8/NCNT$, and c $FeS_2/NCNT$ for the first four cycles at a scan rate of 0.2 mV s⁻¹. Charge/discharge voltage profiles of d $Fe_7S_8/FeS_2/NCN$, e $Fe_7S_8/NCNT$, and f $FeS_2/NCNT$ for the first three cycles at a current density of 1.0 A g⁻¹

Fig. S10 Charge/discharge voltage profiles of a $Fe_7S_8/FeS_2/NCNT$, b $Fe_7S_8/NCNT$, and c $FeS_2/NCNT$ at various current densities

Fig. S11 CV curves of a Fe₇S₈/NCNT and b FeS₂/NCNT at scan rates ranging from 0.2 to 0.8 mV s⁻¹

Fig. S12 Ex-situ XRD pattern of the $Fe_7S_8/FeS_2/NCNT$ electrode at various charging/discharging states within the 2 θ range from 20° to 40°

Fig. S13 Coulombic efficiency of electrodes circulating in **a** ether- and **b** ester- based electrolytes at 5 A g^{-1}

Fig. S14 Charge/discharge voltage profiles at various current densities of $Fe_7S_8/FeS_2/NCNT$ in the ether-based electrolyte

Fig. S15 Discharge/charge profiles at 1 A g^{-1} of Fe₇S₈/FeS₂/NCNT in the ether-based electrolyte

Fig. S16 Capacity contributions of the capacitive and diffusion-controlled behaviors at different scan rates in ester-based electrolyte

Fig. S17 Capacitive and diffusion-controlled contributions from 0.2 to 0.8 mV s⁻¹ in ether-based electrolyte

Fig. S18 Capacitive and diffusion-controlled contributions from 0.2 to 0.8 mV s⁻¹ in ester-based electrolyte

Fig. S19 Calculated Na⁺ diffusion coefficients upon the second **a** discharge and **b** charge in two different electrolytes

	Cycling stability					Rate capability		
Sample	Cut-off voltage (V) electrolyte		Current density (A g ⁻¹)	Cycle number	Capacity retention (mAh g ⁻¹)		c Capacity retention (mAh g ⁻¹)	Refs.
Fe ₇ S ₈ /FeS ₂ /NCNT	0.01-3.0	1 M NaPF ₆ in diglyme	5.0	1000	466.7	10/20	556/537	This work
Fe ₇ S ₈ @C NCs	0.08-3.0	1 M NaPF ₆ in diethylene glycol dimethyl ether	0.18	1000	447	2.7	552	[S1]
Fe ₇ S ₈ @HD-C	0.01-3.0	1 m NaPF6 solution in DEGDME	2.0	320	480	5/10	401/326	[S2]
Fe ₇ S ₈ /N-C	0.01-3.0	1.0 M NaClO ₄ in ethylene carbonate/propylene carbonate	0.2	500	451	1.6/3.2	353/328	[\$3]
Fe ₇ S ₈ @C	0.01-3.0	1.25 M NaPF ₆ in ethylmethyl carbonate	1.0	1000	531	2.0/5.0	558/537	[S4]
Fe ₇ S ₈ @C-G	0.01-3.0	1.0 M NaClO ₄ in ethylene carbonate/propylene carbonate	0.1	100	478	1.0/2.0	332/306	[\$5]
FeS ₂ @NC	0.5-3.0	1 M NaClO ₄ in propylene carbonate	5.0	1000	375	5.0/10	407/307	[S6]
FeS ₂ /rGO	0.01-2.3	1 M NaClO ₄ in ethylene carbonate/propylene carbonate	0.1	100	610	10	426/344	[S7]
FeS2@C yolk-shell	10.1-2.0	1 M NaSO ₃ CF ₃ in diethylene glycol dimethyl ether	2.0	800	330	2.0/5.0	470/403	[S8]
FeS ₂ /CNS	0.01-3.0	1 M NaCF ₃ SO ₃ in diglyme	1.0	350	577	2.0/5.0	585/400	[S9]
FeS ₂ / NHCFs	0.005-3.0	1 M NaPF ₆ in diglyme	1.0	400	414	10/20	320/280	[S10]

Table S1 Comparison of electrochemical performance of the as-fabricated $Fe_7S_8/FeS_2/NCNT$ with other related electrode materials reported in the literature

Supplementary References

- [S1] M. J. Choi, J. Kim, J. K. Yoo, S. Yim, J. Jeon et al., Extremely small pyrrhotite Fe₇S₈ nanocrystals with simultaneous carbon-encapsulation for highperformance Na-ion batteries. Small 14(2), 1702816 (2018). <u>https://doi.org/10.1002/smll.201702816</u>
- [S2] H. Li, Y. Ma, H. Zhang, T. Diemant, R. J. Behm et al., Metal-organic framework derived Fe₇S₈ nanoparticles embedded in heteroatom-doped carbon with lithium and sodium storage capability. Small Methods 4(12), 2000637 (2020). https://doi.org/10.1002/smtd.202000637
- [S3] A. Jin, M.-J. Kim, K.-S. Lee, S.-H. Yu, Y.-E. Sung. Spindle-like Fe₇S₈/N-doped carbon nanohybrids for high-performance sodium ion battery anodes. Nano Res. 12(3), 695-700 (2019). <u>https://doi.org/10.1007/s12274-019-2278-y</u>
- [S4] L. Shi, D. Li, J. Yu, H. Liu, Y. Zhao et al., Zhu. Uniform core–shell nanobiscuits of Fe₇S₈@C for lithium-ion and sodium-ion batteries with excellent performance. J. Mater. Chem. A 6(17), 7967-7976 (2018). <u>https://doi.org/10.1039/c8ta00985f</u>

- [S5] W. Huang, H. Sun, H. Shangguan, X. Cao, X. Xiao et al., Three-dimensional iron sulfide-carbon interlocked graphene composites for high-performance sodium-ion storage. Nanoscale 10(16), 7851-7859 (2018). <u>https://doi.org/10.1039/c8nr 000 34d</u>
- [S6] R. Zang, P. Li, X. Guo, Z. Man, S. Zhang et al., Yolk-shell N-doped carbon coated FeS₂ nanocages as a high-performance anode for sodium-ion batteries. J. Mater. Chem. A 7(23), 14051-14059 (2019). https://doi.org/10.1039/C9TA03917A
- [S7] Q. Wang, C. Guo, Y. Zhu, J. He, H. Wang. Reduced graphene oxide-wrapped FeS₂ composite as anode for high-performance sodium-ion batteries. Nano-Micro Lett. 10(2), 30 (2018). <u>https://doi.org/10.1007/s40820-017-0183-z</u>
- [S8] Z. Liu, T. Lu, T. Song, X.-Y. Yu, X. W. Lou et al., Structure-designed synthesis of FeS₂@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Enviro. Sci. 10(7), 1576-1580 (2017). <u>https://doi.org/10.1039/c7ee01100h</u>
- [S9] Z. Lin, X. Xiong, M. Fan, D. Xie, G. Wang et al., Scalable synthesis of FeS₂ nanoparticles encapsulated into N-doped carbon nanosheets as a highperformance sodium-ion battery anode. Nanoscale **11**(9), 3773-3779 (2019). <u>https://doi.org/10.1039/c8nr10444a</u>
- [S10] C. Zhang, D. Wei, F. Wang, G. Zhang, J. Duan et al., Highly active Fe₇S₈ encapsulated in N-doped hollow carbon nanofibers for high-rate sodium-ion batteries. J. Energy Chem. **53** 26-35 (2021). <u>https://doi.org/10.1016/j.jechem.2020.05.011</u>