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HIGHLIGHTS

• Nanocube‑like KNiFe(CN)6 and rugby ball‑like  NaTi2(PO4)3 are grown on carbon nanotube fibers via simple and mild methods.

• A quasi‑solid‑state fiber‑shaped aqueous rechargeable sodium‑ion battery based on all binder‑free electrodes is successfully assem‑
bled for the first time, delivering a high volumetric capacity of 34.21 mAh cm−3 and impressive volumetric energy density of 
39.32 mWh cm−3.

• The device delivers superior mechanical flexibility with only 5.7% of initial capacity loss after bending at 90° for over 3000 cycles.

ABSTRACT Extensive efforts have recently been devoted to the 
construction of aqueous rechargeable sodium‑ion batteries (ARSIBs) 
for large‑scale energy‑storage applications due to their desired proper‑
ties of abundant sodium resources and inherently safer aqueous elec‑
trolytes. However, it is still a significant challenge to develop highly 
flexible ARSIBs ascribing to the lack of flexible electrode materials. 
In this work, nanocube‑like KNiFe(CN)6 (KNHCF) and rugby ball‑
like  NaTi2(PO4)3 (NTP) are grown on carbon nanotube fibers via sim‑
ple and mild methods as the flexible binder‑free cathode (KNHCF@
CNTF) and anode (NTP@CNTF), respectively. Taking advantage of 
their high conductivity, fast charge transport paths, and large accessible 
surface area, the as‑fabricated binder‑free electrodes display admirable 
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electrochemical performance. Inspired by the remarkable flexibility of the binder‑free electrodes and the synergy of KNHCF@CNTF 
and NTP@CNTF, a high‑performance quasi‑solid‑state fiber‑shaped ARSIB (FARSIB) is successfully assembled for the first time. Sig‑
nificantly, the as‑assembled FARSIB possesses a high capacity of 34.21 mAh cm−3 and impressive energy density of 39.32 mWh cm−3. 
More encouragingly, our FARSIB delivers superior mechanical flexibility with only 5.7% of initial capacity loss after bending at 90° for 
over 3000 cycles. Thus, this work opens up an avenue to design ultraflexible ARSIBs based on all binder‑free electrodes for powering 
wearable and portable electronics.

KEYWORDS Carbon nanotube fiber; Binder‑free electrode; Flexibility; Aqueous rechargeable energy‑storage device; Sodium‑ion 
battery

1 Introduction

The ever‑increasing demand for next‑generation wearable 
electrical products has sparked a boom in the development 
of matched flexible energy‑storage devices with high safety, 
lightweight, and remarkable biocompatibility [1–15]. In the 
past decade, sodium‑ion batteries (SIBs) have emerged as a 
promising alternative to lithium‑ion batteries, with which they 
share similar physicochemical properties, for large‑scale elec‑
tricity storage applications due to their abundant resources and 
low cost [16–21]. However, the conventional SIBs using flam‑
mable and toxic organic electrolytes are not suitable as wear‑
able energy‑storage devices [5, 22]. Encouragingly, aqueous 
electrolytes offer the significant advantages of low cost, high 
ion conductivity, and outstanding safety. It is thus stimulat‑
ing intense studies on the development of aqueous recharge‑
able SIBs [5, 23–27]. Huang et al. developed an aqueous 
rechargeable SIB using flower‑like  K0.27MnO2 as the cathode 
and  NaTi2(PO4)3 (NTP) as the anode, exhibiting remarkable 
specific capacity and rate capacity [23]. Goodenough et al. 
reported a symmetric SIB with the sodium superionic conduc‑
tor (NASICON)‑structured  Na3MnTi(PO4)3 as both the anode 
and the cathode in an aqueous electrolyte, and it achieved a 
well‑defined voltage plateau of about 1.4 V and excellent per‑
formance stability [24]. Very recently, Peng et al. firstly assem‑
bled flexible fiber‑shaped ARSIBs (FARSIBs)  (Na0.44MnO2//
NTP@C) with  Na+‑containing aqueous electrolytes, which 
delivered remarkable energy density and power density as well 
as good flexibility [5]. Despite the great progress achieved, all 
previously reported ARSIBs are fabricated based on powder 
electrode materials, whose electrode preparation is employed 
conventional slurry‑casting techniques, thus leading to poor 
flexibility and inferior electrochemical performance [28, 
29]. Note that the construction of self‑standing active mate‑
rials has been demonstrated as an effective way to develop 

high‑performance binder‑free electrodes for energy‑storage 
devices, which could provide excellent physical and chemical 
properties and strong adhesion between active materials and 
substrates for remarkable flexibility [30–32]. Nevertheless, 
there are few reports focusing on the preparation of binder‑
free electrodes for ARSIBs, which is attributed to the fact that 
the most common electrode materials for ARSIBs, such as 
 MxMnO2 (M = K, Na), Prussian blue and its analogues (PBAs), 
and NTP, are unsuitable for direct growth on the collectors 
due to their preparation methods, including high‑temperature 
solid‑state, ball‑milling, and coprecipitation methods [5, 23, 
33–35]. Thus, developing effective and mild methods to fab‑
ricate binder‑free cathodes and anodes is necessary for high‑
performance flexible ARSIBs.

PBAs have drawn considerable attention as advanced cath‑
ode materials for SIBs due to their open framework structure 
and large interstitial sites [33, 34, 36–39]. These features are 
extremely conducive to the intercalation and deintercalation 
of alkali cations with large ionic radius. However, it is dif‑
ficult to form strong adhesion between the PBAs and cur‑
rent collectors by traditional coprecipitation methods. To 
address this problem, we adopt the chemical etching method 
to grow KNiFe(CN)6 (KNHCF) nanocubes on the surface of 
carbon nanotube fibers (CNTFs) by using nickel hydroxide 
as a nickel source, directly serving as the cathode (KNHCF@
CNTF) for aqueous SIBs. As expected, the KNHCF@CNTF 
delivers a high volumetric capacity of 58.54 mAh cm−3 at 
0.05 A cm−3 and outstanding rate performance (72.7% reten‑
tion after a 100‑fold increase in current density), demonstrat‑
ing a superfast charge–discharge characteristic.

Among various anode materials for SIBs, NTP, as a mem‑
ber of the NASICON family with an open framework and 
remarkable ionic conductivity, is considered as one of the most 
promising anode materials for SIBs because of its low cost and 
high theoretical capacity [40–45]. Despite these advantages, 
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the rate performance of NTP is limited by its poor electronic 
conductivity. High‑temperature carbon coating, adopted in 
most of the previously reported studies, has been regarded as 
an effective method to overcome this issue [40, 41]. Unfortu‑
nately, this method is complex and involves harsh conditions. 
Herein, we synthesized rugby ball‑shaped NTP on CNTFs by a 
one‑step hydrothermal method and directly used them as elec‑
trodes (NTP@CNTF), exhibiting a high volumetric capacity 
(98.4 mAh cm−3 at 0.2 A cm−3) and excellent rate performance 
(82.5% retention after a 40‑fold increase in current density).

As a proof‑of‑concept demonstration, we employ KNHCF@
CNTF and NTP@CNTF binder‑free electrodes to successfully 
fabricate the first paradigm of a quasi‑solid‑state FARSIB. Ben‑
efiting from the remarkable performance of the binder‑free elec‑
trodes, the device delivers a high capacity of 34.21 mAh cm−3 
and impressive energy density of 39.32 mWh cm−3.

2  Experimental Section

2.1  Preparation of KNHCF@CNTF

KNHCF@CNTF was prepared by a simple chemical bath 
deposition and subsequent chemical etching process. CNTFs 
were cleaned with ethanol and deionized water. After being 
dried at 70 °C overnight, the CNTFs were pretreated in  O2 
plasma for 8 min at 150 W. Firstly, 10 g of  NiSO4·6H2O and 
2 g  K2S2O8 were dissolved in 100 mL of  H2O under mag‑
netic stirring and 5 mL aqueous ammonia (28%) was added 
into the above solution. Then, the pretreated CNTFs were 
suspended into the reaction for 40 min under slowly stirring. 
After that, the obtained CNTFs were washed repeatedly with 
distilled water and dried at 60 °C to get Ni(OH)2@CNTFs. 
Next, the obtained Ni(OH)2@CNTFs were placed in a solu‑
tion of potassium ferricyanide at a certain concentration (1.5, 
3.0, and 6.0 mM) for 24 h at room temperature. Finally, the 
KNHCF@CNTFs were cleaned with deionized water and 
dried at 60 °C in a vacuum for 12 h. The mass loading of 
active material on the surface of CNTF (3.0 mM) is about 
2.42 mg cm−2. For comparison, the powder of KNHCF was 
obtained by the same method. Ni(OH)2 powder (100 mg) and 
excess potassium ferricyanide were mixed under continuous 
magnetic stirring at room temperature. After 24 h, the reac‑
tion products were collected by centrifugation and washed 
several times with deionized water. Finally, the KNHCF pow‑
der was obtained after vacuum drying at 60 °C overnight.

2.2  Preparation of NTP@CNTF

NTP@CNTF was prepared by a simple and mild solvothermal 
method. CNTFs were cleaned and dried as described above. 
Firstly, 1 mL of  TiCl3 solution (30 wt% HCl) was dropwise 
added into 30 mL of ethylene glycol under string and kept stir‑
ring for 0.5 h. Then, 1 mL of phosphoric acid was dropwise 
added into the above solution. Next, 1 g of  NaH2PO4·2H2O 
was added into it. After stirring for 0.5 h, the reaction solu‑
tion and pretreated CNTFs were placed into a 50‑mL reaction 
vessel to heat at 150 °C for 6 h. Finally, the obtained NTP@
CNTFs were rinsed with ethanol and distilled water and dried 
at 80 °C for 24 h. The mass loading of active material on the 
surface of CNTF is about 2.7 mg cm−2. For comparison, the 
powder product in Teflon‑lined stainless autoclave was col‑
lected by centrifugation and washed several times with deion‑
ized water and ethanol. After dried at 60 °C for 12 h, 0.1 g of 
obtained powder was added into 50 mL of glucose solution 
(0.04 M) under magnetic stirring. After stirring for 24 h, the 
glucose‑coated NTP powders were collected by centrifuga‑
tion and dried at 60 °C overnight. Finally, the NTP@C was 
obtained after annealing at 600 °C for 4 h in air atmosphere.

3  Results and Discussion

The fabrication procedure of the quasi‑solid‑state FARSIB 
is schematically represented in Fig. 1. First, KNHCF nano‑
cubes were synthesized on the surface of CNTFs directly 
as a binder‑free cathode via chemical bath deposition and 
subsequent chemical etching. The specific reaction process 

CNTF

CNTF Ni(OH)2@CNTF KNHCF@CNTF

Chemical etching
Chemical bath

deposition

Solvothermal
method

NTP@CNTF FARSIB

Fig. 1  Schematic illustration of the fabrication process of the quasi‑
solid‑state FARSIB
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is explained in Scheme S1. Simultaneously, the rugby ball‑
shaped NTP was grown on CNTFs by a mild solvothermal 
reaction to serve as an advanced anode for the FARSIB. 
Thereafter, both the as‑fabricated KNHCF@CNTF and 
NTP@CNTF were immersed in a gel electrolyte consisting 
of  Na2SO4 and carboxymethyl cellulose sodium (CMC) for 
a period of time and dried to form a thin layer of gel electro‑
lyte. Finally, the quasi‑solid‑state FARSIB was fabricated 
by twisting the cathode and anode together.

3.1  Morphology and Structure of the Cathode 
Materials

The scanning electron microscopy (SEM) image (Fig. 2a) 
exhibits a CNTF with a uniform diameter of about 100 μm, 

which is composed of intertwined carbon nanotubes. In 
Fig. 2b, c, the SEM images show that Ni(OH)2 nanosheet 
arrays were uniformly coated on the surface of the CNTF by 
the simple chemical bath deposition method. After chemical 
etching, the nanosheet arrays are transformed into nanocubes 
with large porous gaps (Fig. 2d). The internal free space can 
not only promote the diffusion of electrolyte ions for better 
rate performance, but also accommodate the volume change of 
the electrode materials during intercalation and deintercalation 
of alkali cations, resulting in long cycle life and high specific 
capacity. It is noted that the fiber‑shaped electrode still main‑
tains an admirable tensile strength of about 300 MPa after the 
active materials are coated on its surface (Fig. S1), which is of 
great significance for the application of fiber‑shaped energy‑
storage devices. The morphology of a nanocube with a side 
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length of about 160 nm was further investigated by low‑reso‑
lution transmission electron microscopy (TEM), as displayed 
in Fig. S2. Figure 2e, f exhibits the energy‑dispersive spectros‑
copy (EDS) spectrum and elemental mapping, suggesting the 
coexistence and homogeneous distribution of the elements K, 
Ni, Fe, C, and N. To study the effect of the concentration of 
potassium ferricyanide solution on morphology, SEM images 
of the corresponding products at various concentrations are 
shown in Fig. S3. As the concentration of the reaction solution 
increases, the nanocubes gradually tend toward regular cube 
shapes, whereas the free space between the cubes gradually 
decreases.

More evidence for the conversion of Ni(OH)2 to KNHCF 
was obtained by X‑ray diffraction (XRD). As shown in 
Fig. 2g, the characteristic peaks of the obtained nanosheets 
on CNTFs can all be indexed to those of α‑Ni(OH)2 (JCPDS 
No. 38‑0715) except for the background peaks of the CNTFs 
themselves. After chemical etching, the characteristic peaks 
located at 17.3°, 24.5°, 35.0°, and 39.3° are consistent with 
the (200), (220), (400), and (420) phases of KNHCF, while 
the peaks of Ni(OH)2 disappear, implying that the Ni(OH)2 
nanosheets are converted to KNHCF nanocubes. Figure S4 
exhibits the X‑ray photoelectron spectroscopy (XPS) survey 
spectra, further demonstrating the coexistence of the elements 

K, Ni, Fe, C, and N. The high‑resolution Ni 2p XPS spec‑
trum (Fig. 2h) exhibits two main peaks located at 856.4 and 
874.0 eV, respectively, consistent with the Ni  2p3/1 and Ni 
 2p1/2 states of  Ni2+, respectively [37]. In addition, the Fe 2p 
spectrum (Fig. 2i) of KNHCF contains two main peaks located 
at 709.8 and 723.6 eV, corresponding to those previously 
reported for  Fe3+ [46].

3.2  Electrochemical Characterization of the Cathode 
Materials

Benefiting from the absence of conductive additives and 
binders, the cathode material for the ARSIBs was expected 
to display more efficient charge transfer and ion diffu‑
sion. The galvanostatic charge–discharge (GCD) curves at 
0.05 A cm−3 of KNHCF@CNTF generated under different 
concentrations of the reaction solution are shown in Fig. S5, 
indicating that the volumetric capacity of KNHCF@CNTF is 
the maximum when the concentration is 3.0 mM. Figure 3a 
displays the cyclic voltammetry (CV) curves of Ni(OH)2@
CNTF, KNHCF powders, and KNHCF@CNTF at 5 mV s−1. 
Evidently, the Ni(OH)2@CNTF exhibits much less coverage 
than that of KNHCF@CNTF, implying that the untreated 
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Ni(OH)2@CNTF is virtually incapable of storing and releas‑
ing sodium ions. As revealed in Fig. S6, the pristine CNTF 
just provides little contribution to the volumetric capacity. 
In addition, compared with KNHCF powder, the KNHCF@
CNTF shows a much lower voltage hysteresis of 0.045 V 
and higher current, suggesting its faster reaction kinetics and 
larger capacity, which is further verified by the GCD curves at 
0.05 A cm−3 (Fig. S7) [11, 47]. As shown in Fig. 3b, the GCD 
curves at various current densities displayed a stable output 
voltage plateau of about 0.4 V. It is worth mentioning that the 
KNHCF@CNTF electrode displays negligible voltage hys‑
teresis at a range from 0.05 to 5.0 A cm−3 and only required 
21.1 s per discharge or charge at a large current density of 
5.0 A cm−3, indicating its superfast charge–discharge char‑
acteristic. More importantly, benefiting from the fast reaction 
kinetics, the KNHCF@CNTF electrode achieves a greater vol‑
umetric capacity (58.54 mAh cm−3 at 0.05 A cm−3) and better 
rate performance (72.7% retention after a 100‑fold increase 
in current density), whereas the KNHCF powder electrode 
possesses a small volumetric capacity of 48.60 mAh cm−3 at 
the same current density [calculated from the corresponding 
GCD curves (Fig. S8)] and poor capacity retention of 25.5% 
when the current density increases to 0.8 A cm−3 (Fig. 3c). 
Such improved rate performance was demonstrated by the 
electrochemical impedance spectroscopy measurement (Fig. 
S9). For KNHCF@CNTF, the diameter of the semicircle 
in the high‑frequency region was smaller and the slope of 
the line in the low‑frequency region was greater than that of 
KNHCF powder, corresponding to better electron conduc‑
tivity and ion diffusion [11, 48]. This demonstrates that the 
direct growth of active materials on the conductive substrates 
is beneficial to the electron transport and ion diffusion. The 
long‑term cyclability of the KNHCF@CNTF was investigated 
at 0.8 A cm−3, and an excellent capacity of 52.85 mAh cm−3 
was retained after 1000 cycles (Fig. 3f), with a low volumetric 
capacity decay of only 9.8% and high coulombic efficiency of 
about 100%, exhibiting outstanding cycle stability and reac‑
tion reversibility. The SEM images (Fig. S10) reveal that the 
free‑standing nanocubes with a porous structure are still pre‑
served even after long‑term  Na+ (de)intercalation (500 and 
1000 cycles, 0.8 A cm−3), further indicating the remarkable 
structural stability.

Electrochemical kinetic analysis was performed by plot‑
ting CV curves to gain further insight into the  Na+ storage 
process. Figure 3d shows the CV curves of the KNHCF@
CNTF cathode measured at different scan rates from 1.0 to 

5.0 mV s−1, in which two nearly symmetric redox peaks cor‑
respond to the intercalation/extraction of  Na+ in the KNHCF 
lattice. The proportion of diffusion‑controlled and capacitive 
contributions can be described by Eq. 1 [49, 50]:

where values of b close to 0.5 and 1.0 correspond to diffu‑
sion‑controlled and capacitive behavior, respectively. The 
values of b calculated from the redox peaks are 0.92 and 
0.87, respectively, implying a capacitor‑like process for the 
storage of  Na+. In addition, the percentages of capacitive 
and diffusion‑controlled contributions can be calculated by 
Eqs. 2 and 3 [51, 52]:

in which k1 and k2 are constants. Figure S11 exhibits the per‑
centage contributions of the two kinetic processes at various 
scan rates. The contributions of the capacitive process are 
76.7%, 81.4%, 84.4%, 86.7%, and 87.8% as the scan rates 
are increased from 1.0 to 5.0 mV s−1. Based on the above 
analysis, the large contribution of capacitive behavior can be 
responsible for the superfast charge–discharge characteristic 
and excellent rate performance [50].

To gain insight into the structural evolution of the KNHCF 
cathode during the charge–discharge process, ex situ XRD 
and XPS were performed in various states of  Na+ extraction/
insertion (Fig. S12). Clearly, no new characteristic diffraction 
peaks appear, suggesting that the charge–discharge process 
belongs to a solid‑solution reaction without the formation of a 
new phase [51]. Moreover, the characteristic (200) and (400) 
peaks slightly shift to larger angles with the insertion of  Na+ 
and returned to their original position after the subsequent 
charging process, suggesting that the insertion of  Na+ can 
lead to a volume decrease in the unit cell. This phenomenon 
is attributed to the attractive interactions of the inserted  Na+ 
with the surrounding C ≡ N groups [53]. In addition, Fig. S13 
displays the Na 2p and Fe 2p XPS regions for the fully charged 
and discharged states. In the Na 2p region, there is no intensity 
at the initial or the fully charged states, but a peak appears at 
1072.3 eV during the discharge process, implying the highly 
reversible insertion/release of sodium in the host material 
during the discharge/charge process. To further explore the 
storage mechanism of sodium ions, the valence states of Fe 
were measured in various states. Figure S13b shows the Fe 
2p XPS regions at the initial state, in which the main peaks 

(1)i = av
b

(2)i = k
1
v + k

2
v
1∕2

(3)i∕v1∕2 = k
1
v
1∕2 + k

2



Nano‑Micro Lett. (2019) 11:101 Page 7 of 12 101

1 3

at 709.8 and 723.6 eV correspond to the Fe  2p3/2 and Fe  2p1/2 
states of  Fe3+, respectively. After being discharged to 0 V, the 
location of the main peak transfers to 708.5 eV, indicating that 
 Fe3+ was reduced to  Fe2+ upon the insertion of sodium ions 
(Fig. S13a). The main peak then returns to its initial location 
after the subsequent charging process, further demonstrating 
the excellent reversibility. Based on the above analysis, the 
reversible electrochemical reaction of sodium insertion and 
extraction in the cathode material can be depicted as: xNa+ + 
KNi[Fe(CN)6] + xe− ↔ NaxKNi[Fe(CN)6].

3.3  Morphology and Structure of the Anode Materials

As a high‑performance anode material, rugby ball‑shaped 
NTP was synthesized by a one‑step solvothermal reaction on 
CNTFs. The SEM images in Fig. 4a, b show the surface of a 
CNTF uniformly coated by microparticles. The TEM image 
(Fig. 4c) reveals that the single active material consisted of 
rugby ball‑shaped micron‑scale particles with sizes of about 

1 μm. The high‑resolution TEM (HRTEM) image (Fig. 4d) 
reflects the high crystallinity of the rugby ball‑shaped NTP, 
wherein the lattice fringe spacing of 0.37 nm corresponds 
to its (113) plane. The EDS spectrum (Fig. 4e) and its cor‑
responding EDS mapping images (Fig. 4g) distinctly dem‑
onstrate the coexistence and uniform spatial distribution of 
Na, Ti, P, and O elements. XRD measurement was carried 
out to further confirm the composition and structure (Fig. 4f), 
in which all characteristic peaks are indexed to NTP (JCPDS 
No. 01‑085‑2265). The successful synthesis of NTP was like‑
wise verified by XPS as shown in Fig. S14, the results of 
which were consistent with those of XRD and TEM. For 
comparison, carbon‑coated NTP powders (NTP@C) were 
prepared and investigated by SEM and TEM (Fig. S15). The 
SEM and TEM images (Fig. S15a, b) show that the NTP@C 
powder retained the rugby ball‑shaped structure. The 
HRTEM image (Fig. S15c) clearly shows that the NTP sur‑
face is uniformly coated with an amorphous carbon shell with 
a thickness of about 4 nm, forming a core–shell structure.
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3.4  Electrochemical Characterization of the Anode 
Materials

The electrochemical properties of the obtained NTP@CNTF 
were investigated in a three‑electrode system under the same 
conditions as for the cathode. Figure 5a compares the CV 
curves of pristine CNTF, NTP powder, NTP@C powder, 
and NTP@CNTF measured at 2 mV s−1. Like the positive 
electrode, pristine CNTFs make little contribution to the 
volumetric capacity. In addition, compared with the NTP 
and NTP@C powders (same active materials loading with 
NTP@CNTF), the NTP@CNTF owns smaller separation 
of the redox peaks and a larger coverage area, indicating its 
smaller polarization and higher reversible capacity, which 
is further verified by their GCD curves at 1.6 A cm−3 (Fig. 
S16). As shown in Fig. 5b, the CV curves of NTP@CNTF 
measured at various scan rates show a pair of sharp redox 
peaks, corresponding to the characteristic potentials of a 
 Ti3+/Ti4+ redox couple [54]. Figure 5c shows that the b val‑
ues corresponding to the redox peaks are 0.76 and 0.71, 
respectively, from which it may be assumed that the sodium 
storage is a combination of surface‑controlled and diffusion‑
controlled processes [49]. The GCD curves (Fig. 5d) at vari‑
ous current densities demonstrate stable charge–discharge 

plateaus of about − 0.85/− 0.75  V, which is consistent 
with the CV results. Besides, Fig. 5e displays the specific 
capacities of NTP@CNTF at various current densities and 
its corresponding coulombic efficiency. Remarkably, the 
NTP@CNTF can achieve an excellent volumetric capac‑
ity of 98.4 mAh cm−3 at 0.2 A cm−3 and possess a high 
capacity retention of 82.5% as the current density increases 
to 8.0 mA cm−3, suggesting remarkable rate performance. 
The high coulombic efficiency implies the high reversibil‑
ity of sodium‑ion intercalation and deintercalation at the 
anode material. The electrochemical impedance spectrum 
(Fig. S17) indicates the remarkable electronic conductiv‑
ity and ion diffusivity of the anode. The long‑term cycling 
stability of NTP@CNTF was also explored (Fig. 5f), with 
87.6% retention after 3000 cycles at a current density of 
4.0 mA cm−3. As demonstrated in Fig. S18, the SEM images 
show that the free‑standing rugby ball‑shaped structure is 
well preserved after 1000 cycles and only partly disrupts 
even after 3000 cycles, suggesting strong adhesion between 
active material and CNTF. The outstanding electrochemical 
performance achieved in this work is superior to those of 
many previously reported NTP‑based materials that require 
high‑temperature heat treatment and binders (Table S1).
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3.5  Electrochemical Performance and Flexibility Test 
of as‑Prepared FARSIBs

Based on the above analysis, an aqueous Na‑ion full cell 
was fabricated using KNHCF@CNTF and NTP@CNTF 
as the cathode and anode, respectively. To achieve charge 
balance between them, the length ratio of the cathode and 
anode is set at about 2:1. Figure S19 shows the correspond‑
ing CV curves at 5 mV s−1. To verify the potential of the two 
binder‑free electrodes for wearable energy‑storage devices, 
a quasi‑solid‑state FARSIB was successfully assembled 
with a CMC‑Na2SO4 polymer electrolyte. A low‑resolution 
SEM image (Fig. S20) of the fiber‑shaped device displayed 
a twisted structure. Figure 6a shows the CV curves of this 
FARSIB, all of which exhibit a pair of apparent redox peaks 
at various scan rates from 1 to 5 mV s−1. The GCD curves 
(Fig. 6b) were measured at various current densities from 
0.2 to 4.0 A cm−3 and displayed a stable discharge plateau 
of ~ 1.15 V. Notably, the FARSIB delivers a volumetric 
capacity of 34.21 mAh cm−3 at 0.2 A cm−3 and can retain a 
high capacity of 24.23 mAh cm−3 at 4.0 A cm−3, implying 
its remarkable rate properties. The long‑term cycling stabil‑
ity and corresponding coulombic efficiency of the FARSIB 
were tested at 2.0 A cm−3 (Fig. 6c), still maintaining about 

84.7% of initial capacity after 500 cycles and high coulom‑
bic efficiency close to 100%. The volumetric energy and 
power density of our FARSIB are displayed in Fig. 6d. The 
FARSIB reaches a maximum volumetric energy density of 
39.32 mWh cm−3 and a maximum volumetric power density 
of 4.60 W cm−3, which considerably exceed the values previ‑
ously reported for other fiber‑shaped energy‑storage devices, 
such as Co//Zn battery [13], GO/MWCNT//MoS2‑rGO/
MWCNT [55], Ni//Zn battery [11], NiCo//Zn battery [56], 
titanium wire/Co3O4 nanowires//carbon fibers/graphene 
[57], and NIB [5]. In addition, based on the total mass of the 
fiber‑shaped cathode and anode (including active and inac‑
tive components), the specific energy/power densities were 
calculated as shown in Fig. S21. Thanks to the lightweight 
CNTFs, the assembled FARSIB exhibits a maximum specific 
energy density of about 27.72 Wh kg−1 and still maintains a 
high specific energy density of about 19.61 Wh kg−1 achiev‑
ing a maximum power density of about 3.24 KW kg−1. For 
fiber‑shaped energy‑storage devices, mechanical flexibility 
is of great significance for practical application as a power 
source for wearable electronic devices. As shown in Fig. 6e, 
there are negligible changes in capacity at 1.2 A cm−3 under 
various bending angles, exhibiting the excellent mechanical 
flexibility of the assembled device. Furthermore, the full 
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battery exhibits superior mechanical stability with only 5.7% 
of initial capacity loss after bending at 90° for 3000 cycles 
(Fig. S22), which can be attributed to the absence of bind‑
ers and strong adhesion between the active materials and 
CNTF. Figure S23 exhibits the electrochemical impedance 
spectroscopies of the assembled FARSIB before and after 
bending tests, indicating the slight increase in the contact 
resistance (Rs) and faradic charge‑transfer resistance (Rct) 
of the electrodes after the bending test. In addition, an LED 
could be powered by two of the assembled fiber‑shaped bat‑
teries connected in series (Fig. 6f), and the brightness of the 
LED barely changed when the devices were bent at various 
angles (Fig. S24). To further demonstrate the potential of the 
FARSIBs in wearable electronics, two assembled FARSIBs 
were woven into the flexible textile with an abbreviation 
(NB) of “Na‑ion battery” and powered for a red LED shown 
in Fig. S25, verifying the practicability and high flexibility 
of our FARSIBs.

4  Conclusion

In summary, a prototype FARSIB was fabricated for the first 
time by growing nanocube‑like KNHCF and rugby ball‑
shaped NTP on CNTFs directly as the cathode and anode, 
respectively. Benefiting from the absence of binders, both the 
cathode and anode exhibit remarkable electronic conductivity 
and ionic diffusion, accordingly delivering excellent capaci‑
ties and rate performance. More encouragingly, the assem‑
bled quasi‑solid‑state fiber‑shaped SIB could achieve a high 
capacity of 34.21 mAh cm−3 and impressive energy density 
of 39.32 mWh cm−3. Furthermore, due to the strong adhe‑
sion between the active materials and CNTFs, the capacity 
of our devices barely decayed when bent at a range of angles, 
displaying admirable mechanical flexibility. Thus, this work 
may be a stepping stone toward the development of all 
binder‑free electrodes for next‑generation wearable ARSIBs.
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