Supporting Information for

Self-Generated Buried Submicrocavities for High Performance Near-

Infrared Perovskite Light-Emitting Diode

Jiong Li¹, Chenghao Duan^{1, 3}, Qianpeng Zhang², Chang Chen¹, Qiaoyun Wen¹, Minchao Qin³, Christopher C. S. Chan⁴, Shibing Zou¹, Jianwu Wei⁵, Zuo Xiao⁶, Chuantian Zuo⁶, Xinhui Lu³, Kam Sing Wong⁴, Zhiyong Fan^{2, *}, Keyou Yan^{1, *}

¹School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, P. R. China

²Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China.

³Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, P. R. China

⁴Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China.

⁵School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China

⁶Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, P. R. China

*Corresponding authors. E-mail: <u>kyyan@scut.edu.cn (</u>Keyou Yan), <u>eezfan@ust.hk</u> (Zhiyong Fan)

Supplementary Figures

Fig. S1 SEM image of perovskite film (FAI: PbI₂ = 1.8:1)

Fig. S2 SEM images of perovskite films. a 5AVA. b 5AVA/PEAI

Fig. S3 Schematic diagram of PEAI post-processing

Fig. S4 XRD patterns of the perovskite films

Fig. S5 2D GIWAXS patterns of perovskite films. a Pristine. b β -Alanine. c β -Alanine/PEAI

Fig. S6 AFM measurements of perovskite films. a Pristine. b β -Alanine. c β -Alanine/PEAI

Fig. S7 The water contacts angle measurements of perovskite films. a Pristine. b β -Alanine. c β -Alanine/PEAI

Fig. S8 XPS spectra of perovskite films. a Pb 4f peak. b I 3d peak

Fig. S9 FTIR spectra of perovskite films

Fig. S10 Simulation models. a Planar-structure. b Holo-structure

Fig. S11 UPS spectra of perovskite films

Fig. S12 a EQE diagram of pristine PeLED. b The Current density-voltage-radiance curves of pristine PeLED

Fig. S13 EL spectra of the PeLEDs without and with PEAI post-treatment

Fig. S14 EL spectra of the PeLED with PEAI post-treatment under different bias voltages

Fig. S15 ToF-SIMS of depth profiles of anion distribution within full PeLED

Fig. S16 The effect of β -Alanine concentration on EQE of PeLEDs

Fig. S17 The effect of PEAI concentration on EQE of PeLEDs

Fig. S18 J-V characteristic curves of the PeLEDs

Fig. S19 V_{OC} losses caused by nonradiative recombination of devices without and with PEAI post-treatment

Fig. S20 a The changes of V_{OC} against light intensity of the devices. b The changes of current density against light intensity of the devices