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HIGHLIGHTS 

• The basic theory, key merits and potential development of direct current triboelectric nanogenerator (DC-TENG) from the aspect of 
mechanical rectifier, tribovoltaic effect, phase control, mechanical delay switch and air-discharge are discussed in detail.

• This review provides a guideline for future challenges of DC-TENGs, and a strategy for improving the output performance for com-
mercial applications.

ABSTRACT As hundreds of millions of distributed devices appear in every corner 
of our lives for information collection and transmission in big data era, the biggest 
challenge is the energy supply for these devices and the signal transmission of sen-
sors. Triboelectric nanogenerator (TENG) as a new energy technology meets the 
increasing demand of today’s distributed energy supply due to its ability to convert 
the ambient mechanical energy into electric energy. Meanwhile, TENG can also be 
used as a sensing system. Direct current triboelectric nanogenerator (DC-TENG) 
can directly supply power to electronic devices without additional rectification. It 
has been one of the most important developments of TENG in recent years. Herein, 
we review recent progress in the novel structure designs, working mechanism and 
corresponding method to improve the output performance for DC-TENGs from the 
aspect of mechanical rectifier, tribovoltaic effect, phase control, mechanical delay 
switch and air-discharge. The basic theory of each mode, key merits and potential 
development are discussed in detail. At last, we provide a guideline for future chal-
lenges of DC-TENGs, and a strategy for improving the output performance for commercial applications.
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1 Introduction

In the era of big data, how to meet the power supply of bil-
lions of distributed sensors is still a great challenge [1, 2]. 
The currently used traditional battery with limited life span 
is unlikely to meet the demand of such huge numbers and it 
is also one of the greatest threats to ecological environment. 
Therefore, finding out a new clean energy source technol-
ogy is the most important challenge of our time [3–5]. The 
triboelectric phenomenon has been known for 2600 years 
[6, 7], but its mechanism was not clear enough to turn it 
into an available electric output until Wang [8] invented 
the triboelectric nanogenerator (TENG) in 2012. As a new 
energy harvesting technology, TENG is regarded as a prom-
ising energy technology in the twenty-first century because 
of its environmental friendliness [9, 10], lightweight [11, 
12], small size [13–16], simple fabrication [17, 18], rich 
application scenarios [19–21]. Numerous studies have dem-
onstrated that TENG can convert low frequency ambient 
energy including rain energy [22, 23], wind energy [24, 25] 
and water flow energy [26–28] to electric energy. Further-
more, with its self-powered characteristics, TENG exhibits 
significant potentials in biomedical [29, 30], artificial intel-
ligence [31], human–machine interface [32, 33], and high 
voltage applications [34, 35].

TENG has two basic output modes, direct current (DC) 
and alternating current (AC) [36, 37]. DC TENG does not 
change the magnitude and direction periodically over time 
[38, 39]. In AC TENG, a bidirectional pulse and fixed pulse 
width can be obtained by reciprocating the rubbing with 
opposite polarity dielectric materials [40, 41]. AC TENG 
needs rectification to be utilized by electronic devices, which 
greatly limits the convenience of the device [42, 43]. Com-
pared with DC-TENG, higher crest factor of output per-
formance of AC TENG should be reduced referring to the 
energy utilization efficiency [44]. Considering the surface 
charge density and average power density of TENGs, many 
methods have been employed to improve the output perfor-
mance of AC-TENG, such as charge excitation [45], space 
charge accumulation [40], high-k material [46] and interface 
lubrication [47]. However, due to inherent triboelectrifica-
tion properties of the materials and the negative impact of 
air breakdown, the development of TENG seems to have 
reached a bottleneck [48].

To address these problems, many attempts have been car-
ried out and DC-TENG is considered as a novel next genera-
tion TENG to generate unidirectional flow of charges in the 
external circuit [54]. Various DC-TENGs based on different 
structures and materials have been invented in recent years. 
Although DC TENG has made a great progress, achieving 
high output and high stability at the same time are still a prob-
lem to be solved. Therefore, we should clarify the category 
and mechanism to get a better understanding of the physics 
behaviors in DC TENG for the future development. Herein, 
we review recent progress in the novel structure designs, 
working mechanism and corresponding method to improve 
the output performance for DC-TENGs. We focus on DC 
TENG based on tribovotaic effect [49, 50], mechanical recti-
fier [57, 58], decay switch [51, 52], air-discharge [53, 54] and 
phase control [55, 56], as shown in Fig. 1. At last, each type of 
DC-TENG is highlighted by systematic comparison, and we 
also propose strategies for future development of DC-TENG.

2  Development of DC‑TENG

Figure 2 shows representative devices in various types of 
DC TENG from 2014 to 2022. The first DC TENG was 
invented in 2014 [59], which can be used as a continuous 
DC source to power electronic devices without a rectifier 
bridge, opening a new direction in the development of 
TENG. Then, open-circuit voltage larger than 3200 V is 
achieved by rotational motion based on corona discharge 
in 2014 [60]. The first DC-TENG in tribovoltaic effect is 
developed in 2017 [61], which achieved a maximum current 
density of 10.6 A  m−2. With a symmetrical design, the first 
phase control DC-TENG was reported in 2018 [62]. In a 
combination of mechanical delay switch and air breakdown 
induced ionized air channel, which is the first contact sepa-
ration mode DC TENG developed in 2018 [63]. In 2019, a 
metal-dielectric tribo-layer DC-TENG was developed, which 
realized a constant current based air-breakdown effect [64]. 
Starting from the design of dielectric-dielectric tribo-layer, 
an average power density of 3 W  m−2 was reported in 2022 
[54]. In order to meet practical applications, DC TENG with 
higher output performance, optimized device structure and 
more durable material needs to be developed.
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2.1  Mechanical Rectifier Based DC‑TENG

Using flexible design of mechanical structure, AC output 
generated by electrostatic induction is converted into DC 
output to power electronic devices without diodes, which 
is called mechanical rectification. By employing two elec-
tric brushes on tribo-materials of opposite polarity, each 
electric brush is forced to transport only unidirectional 
charge, forming a stability DC output. Wang et al. first 
invented liquid–solid DC-TENG by mechanical rectifica-
tion [65], including FEP tube with water in it, where the 
copper electrode with a ring structure and two electric 

brushes fixed at one end of the copper electrode. Similar to 
the free-standing mode, under the stimu of external forces, 
water as a sliding friction layer moves inside FEP tube 
and closely contacts it, forming a complete power gen-
eration cycle. The detailed working mechanism is shown 
in Fig. 3a. In the initial state, the FEP tube is negatively 
charged and the water is positively charged due to tribo-
electrification effect. When the upper electrode enters the 
liquid covered area and the original liquid covered area 
leaves the liquid, an output is produced in the external 
circuit. Because of the two electric brushes, the charge is 
transported from the upper electrode to the lower electrode 

Fig. 1  Schematic illustration of all kinds of DC-TENGs. Tribovoltaic Effect based DC-TENG, using rigid inorganic semiconductor (reproduced 
with permission [49]. Copyright 2020, Elsevier), and flexible organic semiconductor (reproduced with permission [50]. Copyright 2022, Royal 
Society of Chemistry). Delay switch based DC-TENG, using opposite-charge enhancement effect (reproduced with permission [51]. Copyright 
2021, Springer Nature), and mechanical time-delay switch design (reproduced with permission [52]. Copyright 2022, Wiley–VCH). Air-dis-
charge based DC-TENG, using metal-dielectric tribo-layer (reproduced with permission [53]. Copyright 2020, Springer Nature) and dielectric-
dielectric tribo-layer (reproduced with permission [54]. Copyright 2022, Wiley–VCH). Phase control based DC-TENG, using specific phase 
difference (reproduced with permission [55]. Copyright 2022, Elsevier) and asymmetrical design (reproduced with permission [56]. Copyright 
2018, Elsevier). Mechanical rectifier based DC-TENG, using charge unidirectional transportation (reproduced with permission [57]. Copyright 
2020, Royal Society of Chemistry) and electric brush (reproduced with permission [58]. Copyright 2021, Elsevier)
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through the load in the tube’s rotation process, creating 
a steady DC output. He et al. reported an hourglass DC 
TENG with an electric brush [66]. Through a unique elec-
tric brush design, the PTFE and Al ball mixture during the 
fall form a DC signal output in the absence of a rectifier 
bridge. As shown in Fig. 3b, a bidirectional DC TENG is 
firstly proposed by Qiao et al. [58]. The TENG are divided 
into three parts, the mechanical structure component, the 
triboelectric power-generation unit, and the mechanical 
rectifier. As the key to producing DC output, the mechani-
cal rectification part consists of a rolling brush and a com-
mutator to switch current reversion. Moreover, the TENG 
can power calculator directly with 0.96 W  m−2 maximum 
power density. TENG is known for its high voltage output, 
however, it is not easy to reach the high voltage in tens 

of kilovolts volts. Therefore, the exploration of a sustain-
able and stable high-voltage TENG structure has attracted 
attention of many researchers.

An ultrahigh voltage output direct current TENG with 
charge accumulation strategy is proposed by Lei et al. 
[57], as shown in the Fig. 3c. The TENG consists of a 
polarizer, disk, transmission bridge and a pair of accumu-
lators, and with the rotation of the disk, a continuous DC 
output is generated. Nylon and kapton with super positive 
and super negative triboelectrification polarity properties 
are rubbed with the tribo-electrode as polarizers to cre-
ate a strong electric field. Unlike the tribo-electrode, the 
transport electrode serves to transfer the charge induced 
by the polarizer to the accumulators. During the rotation 
of the disk, the charges induced by nylon and kapton of 

Fig. 2  Timeline of milestones of DC-TENGs in various output modes. Reproduced with permission [59]. Copyright 2014, Wiley–VCH; repro-
duced with permission [60]. Copyright 2014, Wiley–VCH; reproduced with permission [61]. Copyright 2017, Springer Nature; reproduced with 
permission [62]. Copyright 2018, Royal Society of Chemistry; reproduced with permission [64]. Copyright 2019, Springer Nature; and repro-
duced with permission [54]. Copyright 2022, Wiley–VCH
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opposite triboelectrification polarity accumulate to the 
transporting-electrodes through the transport bridge. 
Finally, new charges continuously accumulate through 
the transporting-electrodes to the accumulator until the 
end of a period. When the transporting-electrodes and the 
accumulator completely coincide, the electrostatic charges 
are fully stored into the accumulator, reaching a high out-
put voltage.

2.2  Tribovoltaic Effect Based DC‑TENG

Tribovoltaic effect refers to a situation when semiconduc-
tor contact with metal or semiconductor and slip relatively, 
electron hole pairs will be excited on the interface, thereby 
generating a DC output in directional separation under 
action of the electric field. Because conventional TENGs 
used insulating polymer material as the tribo-layer, their 
development were limited by high matching impedance and 
low current output. Thus, the researchers invented a type of 

DC-TENG based on the tribovoltaic effect using metal–sem-
iconductor or semiconductor–semiconductor, whose struc-
ture achieved high output direct current [67–69]. According 
to different application scenarios, we will review this part 
through rigid inorganic semiconductors and flexible organic 
semiconductors.

2.2.1  Rigid Inorganic Semiconductors

Although the tribovoltaic effect nanogenerator has a high 
output current density, it is difficult to operate for a long 
term because the output plummets due to severe wear on 
semiconductor materials. In recent years, several lubrica-
tion types have been reported, among which the DC-TENG 
proposed by Yang et al. [49]. With ball-on-flat configuration 
controlled performance by contact pressure, wear is effec-
tively reduced by using polyalphaolefin SpectraSyn 4 (PAO 
4) as a lubricant and achieved stable DC output, as shown 
in Fig. 4a. The effect of PAO 4 on the TENG was verified 

Fig. 3  Mechanical rectifier strategy for DC-TENG. a Structure and working mechanism of DC-TENG with solid–liquid tribo-layer. Reproduced 
with permission [65]. Copyright 2019, American Chemical Society. b 3D structure diagram and device photograph of DC-TENG with electric 
brush design. Reproduced with permission [58]. Copyright 2021, Elsevier. c Schematic diagram of the charge unidirectional transportation DC-
TENG and its application demonstration. Reproduced with permission [57]. Copyright 2020, Royal Society of Chemistry



 Nano-Micro Lett.          (2023) 15:127   127  Page 6 of 24

https://doi.org/10.1007/s40820-023-01115-4© The authors

by the grinding depth curve. It can be seen that the wear 
depth of the silicon wafer ranges from 5.5 µm to 84.1 nm 
with the lubrication after 20,000 cycles. The water-based 
graphene oxide solution can also be used as a metal–semi-
conductor lubricant to improve output performance by 

improving sliding surface carriers and increase the lifetime 
of the TENG, which is first invented by Qiao et al. [70]. 
The TENG consists of copper-based monolayer graphene 
lubrication film, water-based GO solution, Si wafer, Cu and 
Au access output ports, as shown in Fig. 4b.

Fig. 4  Schematic diagram of tribovoltaic effect based-DC-TENG with rigid semiconductor materials. Structure and output curves of a tribo-
logical-behaviour-controlled DC TENG. Reproduced with permission [49]. Copyright 2022, Elsevier. b Tribovotaic nanogenerator via interface 
sliding. Reproduced with permission [70]. Copyright 2022, Elsevier. c Contact-electrification-dominated TENG. Reproduced with permission 
[71]. Copyright 2022 Wiley–VCH. d TENG via Conjunction of Tribovoltaic Effect and Photovoltaic Effect. Reproduced with permission [72]. 
Copyright 2021, American Chemical Society
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These results show that interfacial lubrication can 
effectively improve the output of TENG. If deionized 
water is used as the interfacial lubricant between Si 
and copper-based monolayer graphene film, the current 
increases by an order of magnitude to 18 µA. Moreover, 
if the water-based graphene instead of water is used as a 
lubricant, the output current can be twice as high because 
of its better conductivity compared to water. Finally, 
under the action of interfacial lubrication, TENG can 
reach 155 µA peak current and maintain the output stabil-
ity of 92–95% after 30,000 cycles. P–N type semiconduc-
tor is also one of the important methods to improve the 
tribovoltaic effect. Xu et al. reported a DC TENG with a 
p- and n-type doped semiconductor as the tribo-material, 
in which the current direction is determined by the built-
in electric field in the p–n junction [73]. Zhang et al. dis-
played a high average power density direct current TENG 
with gallium nitride (GaN) and bismuth telluride  (Bi2Te3) 
for the first time [71] (Fig. 4c). GaN, acting as a slider, is 
rubbed over  Bi2Te3 at a contact pressure of 4 N, produc-
ing an open-circuit voltage of 40 V and a short-circuit 
current of 0.34 mA DC output. Contrary to previously 
reported work, the authors of this paper reported that 
the direction of current is not dominated by the built-in 
electric field between semiconductors, and that there are 
other causes for  Bi2Te3 and GaN. By experiments, it is 
proved that the current of the junction always moves from 
 Bi2Te3 to GaN, which indicates that the interface electric 
field comes from the CE process of the two tribo-layers, 
rather than the semiconductor’s built-in electric field. In 
addition, the work by Li et al. [74] indicated that high 
operation frequency (f > 100 Hz) and large external load 
resistance (R > 10 MΩ) generate DC output, which pro-
posed a strategy for harvesting extraordinary mechanical 
energy. Ren et al. reported a semiconductor-based DC 
TENG coupled with photovoltaic effect and tribovoltaic 
effect [72], as shown in Fig. 4d. This TENG contains P-Si 
and N-GaN as the tribo-layer, on the back of which there 
are electrodes as the output of the external circuit. When 
the silicon wafer moves onto the GaN, a dynamic p–n 
junction is formed to generate charge carriers on the inter-
face. The direction of direct current is along the direction 
of built-in electric field. More importantly, ultraviolet 
light can regulate the output of the TENG. Based on the 
photovoltaic effect, when the ultraviolet light at 365 nm 

irradiates the interface between Si and GaN, the current 
and voltage of the TENG increase by 13 times and 4 times 
respectively, which has a great guiding role for the future 
development of the TENG.

2.2.2  Flexible Organic Semiconductors

With development of wearable electronics, not only the out-
put performance of TENG needs to be improved, but the 
flexibility of devices is also required. Organic semiconductor 
devices have attracted most attention for their flexibility and 
embedded ability in devices. Devices based on the sliding 
mode are known to have a lot of wear on semiconductors, 
although the current density is somewhat improved with tri-
bovoltaic effect. Meng et al. demonstrated a durable flexible 
direct current TENG based on tribovoltaic effect in contact-
separation mode [50], as shown in Fig. 5a. In order to form a 
flexible Schottky junction, polypyrrole (PPy) was chosen as 
an organic semiconductor due to its small bandgap structure 
and excellent flexibility. The authors explored the optimal 
output modes of TENG, including sliding, compression and 
contact-separation modes. The results show that those three 
modes produce DC output, but the contact separation mode 
has a better charge and peak current output than the other 
two modes, and reaches a 16.00 A  m−2 current density and 
98.72 mC  m−2 charge density. The author used the non-con-
tact mode to verify the influence of electrostatic induction on 
the output. As expected, the output in the non-contact mode 
was much smaller than that in the contact separation mode. 
Although this variable condition could not be the same as 
that in the contact mode, it was proved that the electrostatic 
charge was negligible and the tribovoltaic effect played a 
dominant role in this work. Similarly, a metal–semiconduc-
tor TENG demonstrated by You et al. [75] with ultrahigh 
short-circuit current is shown in Fig. 5b, because the metal 
material with an appropriate work function rubbed against 
the flexible PEDOT:PSS. The authors proved that a larger 
work function difference between the metal and semiconduc-
tor produces a better output performance. The work function 
of the two materials is the basis that determines the electron 
direction. If the work function of the friction electrode is 
greater than that of the semiconductor, electrons will flow 
from the semiconductor to the friction electrode. The experi-
mental results show that the TENG output is also affected 
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by the pressure, sliding speed, and device size, and it can 
achieve the optimal voltage output of 1 V and current output 
309 µA under certain parameters. Thanks to its flexibility, 
high electric conductivity and low bandgap, PEDOT:PSS is 
again selected as a tribo-material of flexible Schottky TENG 
for organic semiconductors to produce DC output, which 

was proposed by Liu et al. [76]. In order to demonstrate the 
basic mechanism of metal-conductive polymers during con-
tact, Al probe is used to slide over PEDOT:PSS to produce a 
DC output, as shown in Fig. 5c. The authors have confirmed 
that the current and polarity of the sliding Schottky junction 
are dependent on the interfacial electric field compared to 

Fig. 5  Schematic diagram of tribovoltaic effect based-DC-TENG using flexible semiconductor materials. Structure and working mechanism of 
a the flexible DC generator at different motion modes, sliding, compression and contact-separation mode TENG. Reproduced with permission 
[50]. Copyright 2022, Royal Society of Chemistry. b PEDOT: PSS/Al alloy DC TENG. Reproduced with permission [75]. Copyright 2022, 
Elsevier. c Flexible Al/PEDOT:PSS sliding contact system and corresponding open-circuit voltage and short-circuit current. Reproduced with 
permission [76]. Copyright 2021, Wiley–VCH
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the compression type Schottky barrier. With long-chain pol-
ymer concept, flexible Schottky DC generator demonstrates 
excellent performance. Under single contact geometry, the 
current density can reach up 20 A  m–2. Metal/conducting 
polymer devices have lower internal resistance than tra-
ditional inorganic devices, generating peak power density 

at low resistance, which is an advantage of semiconductor 
based TENG.

2.3  Multiple Phase Coupling DC‑TENG

The crest factor is the ratio of the peak value of pulse out-
put to the effective value, which is one of the important 

Fig. 6  Phase control DC-TENG. a Structure, working mechanism and output characteristic of soft-contact mode DC-TENG. Reproduced with 
permission [55]. Copyright 2022, Elsevier. b Schematic diagram of rotating multi-phase TENG. Reproduced with permission [77]. Copyright 
2021, Royal Society of Chemistry. c Working principle of Water-based DC-TENG. Reproduced with permission [56]. Copyright 2018, Else-
vier. d Structure and output curve with different speeds of parallel multiple rectifier TENG. Reproduced with permission [44]. Copyright 2020, 
Wiley–VCH
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indicators to measure the output performance of the 
TENG. The closer this value is to 1, the better the perfor-
mance of the TENG will be. However, the crest value of 
traditional AC output TENG can be up to 6, which greatly 
limits the TENG as an energy source for practical applica-
tions. The multiphase coupling strategy not only reduces 
the crest factor to approach 1, but also solves the electric 
loss in the simple parallel output state of traditional multi-
unit TENG, which has become one of the hot topics in DC 
TENG nowadays. A novel soft contact design was first 
reported by Jiang et al. [55], as shown in Fig. 6a, where 
multi-phase TENG consists of three independent rotating 
devices with a certain angle difference. For a single-phase 
TENG, the flexible FEP film first contacts electrode 1, 
and the two tribo-layers have the same amount of dissimi-
lar charges. Under the action of external force, the FEP 
film rotates and completely coincides with electrode 2. 
At this time, electrons flow from electrode 2 to electrode 
1, generating output in the external circuit. Subsequently, 
the authors demonstrate the basic principle of multiphase 
TENG by three TENG units and six pairs of electrodes. 
The Angle difference between the stator positions of adja-
cent single-phase can be defined as:

 Δθ is determined by the number of phase (P) and electrode 
pairs (E):

 The experiment shows that the crest factor decreases from 
1.31 to 1.05 with the increase of the number of phases 
and electrode pairs, achieving continuous DC output. 
This TENG achieves an ultra-high output current density 
of 3021 μA  m−2, 6.93% higher than that of a single-phase 
TENG without phase difference. The degree of contact is 
one of the important factors affecting the output perfor-
mance of the TENG. This elastic FEP film design not only 
reduces the friction and torque forces, but also improves the 
output performance relative to the hard friction.

Chen et  al. invented the soft contact multiphase DC 
TENG based on the friction layer of rabbit fur, as displayed 
in Fig. 6b [77]. Based on the electrode misalignment and 
circuit connection strategies, this TENG achieves ultra-low 
crest factor of 1.05 and ultra-high average power compared 
with traditional single-phase devices. The TENG consists 
of two parts: the rotor and the stator. The lower part of the 

(1)Δ� = �3 − �2 = �2 − �1

(2)Δ� =
360

◦

2 × P × E

stator consists of 32 independently separate electrodes con-
structed by printed circuit board (PCB) technology, which 
was covered by PTFE film. The rotor is fabricated by four 
fan-shaped friction layers of rabbit fur, each of which covers 
four electrode regions. The tribo-layer area of the traditional 
free-standing mode is the same as that of an independent 
electrode. The difference for this TENG is that a pair of elec-
trodes separated by three electrodes is an energy output unit, 
which has two electrodes of the same color in the diagram. 
Due to the triboelectrification effect, in the contact process 
of PTFE and rabbit fur, rabbit fur is positively charged, while 
PTFE is negatively charged, when the rotor rotates an elec-
trode region. In order to achieve potential balance, electrons 
flow between the same color electrodes. Thereby, the exter-
nal circuit produces output. The author investigates the effect 
of a number of phases on the output performance. When 
adjusting phase from 1 to 9, the crest factor, charge trans-
fer and RMS current are greatly improved. This indicates 
that the fabrication of super multiphase output structure is 
a future trend for multiphase coupling DC-TENG. At the 
same time, it will also face complex manufacture process. 
Ryu et al. designed a novel asymmetrical DC-TENG based 
regularly shifted phases [62]. The rotor part of the TENG is 
composed of the same number of alternately arranged PTFE 
and nylon. The PTFE layer is attached to the top of scattered 
electrodes as the stator part. Dividing the entire circular area 
into several small areas of the same size has proven to be a 
method to change the TENG output. Based on this design, 
the value of the current generated by each of the two elec-
trodes is the same, but each current has a certain phase dif-
ference. The AC output of the multiple phases can be formed 
a constant DC output through full wave rectification. The 
success of this multiphase coupling brings the TENG’s crest 
factor to 1.26, along with high output of 3.6 mA  m−2 current 
density and 4.9 W  m−2 power density.

Considering durable properties of the tribo-materials, 
Kim et al. proposed a phase-controlled water triboelec-
trification DC TENG [56], as shown in Fig. 6c. Take the 
individual TENG as an example, the authors constructed a 
pair of PTFE attached to the electrode on both sides of the 
acrylic disc with a phase difference of 180°. Half of the disk 
is always in water, and because of this clever design, two 
electric potential sources are generated on both side of the 
disk during a single rotation. With n disks and 360°/n phase 
difference, the multiphase TENG has better output perfor-
mance. The authors fabricated a 3 disks with 120° phase 
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difference TENG, realizing a 3 power output source, which 
can light LEDs without any flickering. Wang et al. reported 
a multiple phases and multiple groups coupling low crest 
factor (1.08) direct current TENG with cylindrical structure 
design [78]. 3P3G is taken as an example to analyze the 
mechanism, that is, the multiphase TENG contains three 
TENG units, and each TENG contains three groups. In the 
process of rotor rotation, the FEP rubs with the copper elec-
trode, and the external circuit generates AC signals. Since 
the contact positions of FEP and electrode are different in 
the initial stage, each TENG unit has a different AC phase. 
Finally, rectifier bridges are used to integrate the three phase 
outputs together, resulting in a continuous high-performance 
DC output. The rotating contact-separation mode proved to 
be an effective measure for increasing TENG lifetime by 
Li et al. [44], and benefiting from the phase difference of 
each TENG, multiple TENGs are connected in parallel. As 
a result, an ultra-low crest factor is achieved (Fig. 6d). The 
stator part of the TENG consists of 24 copper electrodes and 
FEP films, and the kapton serves as supporting layer located 
between the electrodes and FEP films. Each two adjacent 
electrodes serve as an output unit, and the electrode and FEP 
realizes periodic contact-separation under the rotor push rod. 
Due to different sites generated by each output TENG, mul-
tiple AC outputs with phase differences are formed at the 
output end. Subsequently, the author proves the superiority 
of multiphase TENG in parallel through different connec-
tion methods. Based on the conventional connection mode, 
multiple electrode connections achieve high crest factor AC 
output without a rectifier bridge. When each TENG unit 
is connected with a rectifier bridge and these outputs are 
connected together, a continuous DC output with a higher 
current density is formed compared with only one rectifier 
bridge connected to the output end of the electrode. It should 
be noted that although the rectifier bridges might be used in 
multiphase coupling DC-TENG, its output has much lower 
crest factor and becomes continuous DC output.

2.4  DC‑TENG Using the Mechanical Delay Switch

When two electrodes contact at a certain moment during the 
operation, the current becomes a single-channel DC output 
using mechanical delay switch, which reduces the energy 
loss caused by the rectifier circuit used in a traditional 
TENG. Inspired by the working principle of transistors, 

Wu et al. designed a TENG based on the opposite charge 
enhancement effect [51], as shown in Fig. 7a. The stator part 
of the TENG contains FEP and PC tribo-layers with oppo-
site polarity, and there are two electrodes E1 and E2 below 
them. Different from the traditional TENG, there is a switch 
electrode in the upper left of FEP and the upper right of PC 
to form a transistor like structure, and the slider is the FEP 
film and the E3 electrode is located above it. When the slider 
sides from left to right side, that is, the time before the E3 
makes contact with ER, the transistor is off and the switch 
is on. Similarly, the transistor is on and only E3 is in contact 
with El, making the charge transfer from the source E1 or 
E2 to the drain E3. At this time, there is an output imped-
ance close to 0, thus forming an ultra-high charge transfer. 
For this design, the TENG achieves a current of 2.7 mA at 
a load of 1 MΩ, 300 times that of the traditional TENG. 
When the load is 12 ohms, an instantaneous power density 
of 10 mW  m−2 is achieved and 100 W commercial bulbs 
can be lighted. In 2022, Fu et al. delivered an ultra-durable 
DC TENG based on primary Cell mechanism using motion 
mechanical switch [79]. The device structure and working 
mechanism is shown in the Fig. 7b. The mechanical switch 
of this device is designed at one end of electrodes which are 
covered with alternating FEP and nylon film and the cop-
per electrode serves as the slider. When the sliding block 
of copper electrode is in nylon film or FEP film, the switch 
is closed. The slider with negative charges moves onto the 
next blank electrode, and the switch between copper foil and 
aluminium electrode on the back of the PA film is open. As 
electrons are transferred between the blank electrode and 
the electrode covered by the tribo-layers, the external cir-
cuit produces a DC output. Similarly, Du et al. developed 
a double dielectric tribo-layers with space accumulation 
effect based DC-TENG [52], as shown in Fig. 7c. Under the 
mechanical delay switch, the TENG finally realizes unidirec-
tional DC output characteristics. Thanks to the space charge 
accumulation effect, the friction layer blank region without 
the back electrode enables the TENG to achieve an aver-
age power density of 4.2 W  m−2 and maintain a mechanical 
stability of 92% after 120,000 cycles. More importantly, in 
the rotating state, the TENG can supply power to 24 hygro-
thermographs in parallel, which demonstrates superb per-
formance of the mechanical time-delay switch TENG. The 
unidirectional switch DC-TENG is proposed by Qin et al. 
[80], with the help of PMC, realizing 75.8% energy storage 
efficiency under theoretical calculation, as shown in Fig. 7d. 



 Nano-Micro Lett.          (2023) 15:127   127  Page 12 of 24

https://doi.org/10.1007/s40820-023-01115-4© The authors

Using a freestanding mode, the stator of the TENG consists 
of two electrodes and four contact electrodes attached to 
the electrodes on both sides. The slider is PTFE attached 
to the bottom of the acrylic substrate and has two moving 
electrodes on its epitaxial. Only when the slider moves to 
the far left or far right of the stator, the two point electrodes 
contact and the switch closes, meanwhile the charge trans-
fer reaches the maximum, and the pulse output in the same 
direction is generated.

Based on the solid–liquid structure, Song et al. reported a 
water droplet based high voltage direct current TENG [22], 

and Fig. 8a shows the water droplet as the charge shuttle, which 
can deliver positive charges to the top electrode and negative 
charge to the bottom electrode. Different from the previously 
reported water droplet structure [81], the bottom electrode of 
this TENG is very narrow in width and located above PTFE. 
Only tens of circulating water drops are needed to achieve the 
optimal output, which also has better triboelectrification prop-
erty than that of the reported TENG [81], which requires tens 
of thousands of drops to reach the maximum output. As soon 
as a drop falls, the top and bottom electrodes act as a reser-
voir, accumulating charge continuously. Each drop can transfer 

Fig. 7  Mechanical switch based DC-TENG. a Comparison of device and output performance between opposite-charge enhanced transistor-like 
TENG and traditional sliding TENG. Reproduced with permission [51]. Copyright 2021, Springer Nature. b Schematic diagram and working 
mechanism of primary cell structure TENG. Reproduced with permission [79]. Copyright 2022, Springer Nature. c 3D structure diagram and 
working mechanism of mechanical time-delay switch and charge space accumulation DC-TENG. Reproduced with permission [52]. Copyright 
2022, Wiley–VCH. d Structure diagram of unidirectional switch DC-TENG. Reproduced with permission [80]. Copyright 2018, Wiley–VCH
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4.5 nC charges, and generate 1600 V voltage that can light 
up 400 LEDs. Another important work in contact-separation 
mode TENG with DC output is reported by Luo et al. [63] as 
shown in Fig. 8b, The TENG contains three Al electrodes, 
named Al-III, and Al-II is placed nearby Al-I as a prominent 
design of the DC output, connecting Al-III with Al-II for the 
output of the external circuit. Thanks to the synergistic action 
of the foam buffering and Al-III electrode, Al-I and Al-III are 
cut off earlier than the separation of Al-I and PTFE during the 

operation to the separation stage, which prevents the charge 
from returning to the original direction under the action of 
potential difference. Thereby, the gap between Al-I and Al-II 
generates a high electric field, ionizing the air to form an ion 
channel that carries back a positive charge from Al-I to Al-II, 
thus creating unidirectional current output under both contact 
and separation states. In this way, the TENG achieves a peak 
power of 1.83 mW and a peak current output of 30 μA with a 
relatively low matched resistance (2 MΩ).

Fig. 8  Schematic diagram with mechanical switch strategy of a droplet-based electricity generator, Reproduced with permission [22]. Copyright 
2021, Elsevier. and b contact-separation mode TENG. Reproduced with permission [63]. Copyright 2018, Wiley–VCH
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2.5  Air Discharge

In addition to the above DC generation strategies, the mode 
by combining air discharge with the triboelectrification 
effect is considered to be an effective output way to generate 
high surface charge density, average power density, and out-
put voltage compared with traditional output modes based 
on triboelectrification effect and electrostatic induction. A 
micron or millimeter-scale air gap between the dielectric 
tribo-layer and the metal electrode is a necessary condition 
to generate a high electric field that ionizes the air to form 
an air channel. According to different material properties 
of the two tribo-layers, the air-discharge TENG is divided 
into two categories: metal-dielectric mode and dielectric-
dielectric mode. And the structure, mechanism and output 
performance of the devices are compared.

2.5.1  Metal‑Dielectric DC‑TENG

Liu et al. first invented the TENG that can produce con-
tinuous DC output based on the triboelectric effect and air 
breakdown [64]. The TENG contains two electrodes: one 
is a friction electrode (FE) as a friction layer of the TENG, 
and the other is a charge collecting electrode (CCE) attached 
to the side of the slider acrylic, which has a certain air gap 
to the stator PTFE. As FE is in contact with the stator, FE 
performs positively while PTFE carries the same amount 
of negative charges. Under the action of external forces, the 
slider will move from left to right. And benefiting from the 
intrinsic characteristics of the electret in PTFE, negative 
charges accumulate in PTFE surface, forming a strong elec-
tric field between PTFE and CCE. As long as the electric 
field strength exceeds 3 kV  mm−1, the air is ionized and the 
charge is transferred in the air gap, producing a DC output 
in the external circuit. The authors prove that only there is 
output in the outer circuit in one sliding direction. Because 
the surface of PTFE is continuously covered by FE when the 
slider moves towards CCE direction, and the electric field 
cannot reach the threshold of air breakdown. Although the 
output is improved to some extent, reaching 430 µC  m−2 and 
the crest factor is close to 1, the planar friction layer wastes 
some space efficiency, for the output charge of such TENG 
is related to its sliding distance.

Subsequently, Zhao et  al. reported that the pattern 
electrode structure achieved a surface charge density of 

5.4 mC  m−2 [53], 2 times higher than that of the traditional 
AC TENG. As shown in Fig.  9a, 250  µm wide copper 
wire and 150 µm wide steel wire are wound on an acrylic 
substrate as FE and CCE respectively, where the distance 
between each pair of FE is 1000 µm. There is an air gap 
between CCE and PTFE while FE and PTFE are in close 
contact. Through the electrode microstructure strategy, the 
authors propose that the limiting factor of the surface charge 
density of the metal dielectric DC TENG can be described 
as:

 The integration of more electrode units’ k in the slider of 
the same area will result in higher surface charge density. 
Based on basic normalized properties of the material includ-
ing charge density, friction coefficient, electric field and sta-
bility, PVC is regarded as the most suitable friction material 
for the microstructure of DC TENG [84]. By designing the 
pattern structure to 50 units, Wang et al. achieved a surface 
charge density of 8.80 mC  m−2 that exceeds all kinds of pre-
vious TENGs. However, the output voltage is not in propor-
tion to charge density due to its multichannel output mode. 
The researchers explored a number of strategies to improve 
the output performance of the metal-dielectric mode TENG, 
including interface lubrication, vacuum environment and 
gas atmosphere. Interface lubrication is considered to be an 
effective way to improve the maximum power output and 
durability of the DC-TENG due to the tiny gap between the 
two friction layers which limits the interface breakdown 
[85]. The experiment confirmed that high temperature and 
low pressure environment is more conducive to the occur-
rence of air breakdown, and achieved the improvement of 
power density compared with that in normal atmospheric 
pressure and room temperature conditions [86]. Similarly, 
the current output of the TENG can be increased threefold 
when oxygen is used instead of air as the device’s operating 
environment [87]. High humidity is generally considered to 
be a negative factor for TENG output performance because 
it affects the electrification characteristics of the tribo-layer. 
Recently, Liu et al. reported that humidity as a positive factor 
improved the performance of the DC-TENG [82] as shown 
in Fig. 9b. By integrating 20 electrode units, the charge 
density reached 2.97 mC  m−2 even at 90 percent humidity. 
Compared with sliding friction, rolling friction can reduce 
material wear and improve energy conversion efficiency 
which is considered as a method to improve the stability 
of DC-TENG. Gao et al. designed a metal-dielectric DC-
TENG containing a support structure and a variable number 
of rolling friction electrodes, which achieved 96% stability 

(3)
�DC - TENG = k ×min

(

�triboelectrification, �c,electrostatic breakdown

)
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in 90,000 cycles [88]. By coupling triboelectrification and 
air discharge effects, Shan et al. designed an inverting TENG 
from DC to AC with opposite electrical polarity properties 
(kapton and nylon) as tribo- layer, which is also used as a 

self-powered sensor [38]. A symmetry output mechanism 
for the TENG, from AC to DC, and from DC to AC, or even 
hybrid DC and AC in one TENG is realized for the first 
time. Considering the lightness, flexibility and power supply 

Fig. 9  Metal-dielectric air-discharge DC-TENG. Improving output performance of a patterned electrodes units design, Reproduced with permis-
sion [53]. Copyright 2020, Springer Nature. b High humidity, Reproduced with permission [82]. Copyright 2022, Wiley–VCH. c Flexible tribo-
materials structure. Reproduced with permission [83]. Copyright 2022, Wiley–VCH
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of wearable clothing in practical applications, the flexible 
fabric TENG has been mentioned in previous reports. How-
ever, it is a challenge for the development of fabric TENG 
because the AC TENG requires rectification for electronic 
devices. Cheng et al. reported a fabric based DC TENG [83], 
whose output maintains a record in the current fabric TENG 
(Fig. 9c). By combining with efficient energy management 
(EEM), the TENG successfully demonstrated the ability to 
power popular electronics and its superiority as a wearable 
fabric device. The TENG contains a friction electrode, a 
breakdown electrode and a PTFE yarn. In particular, air gap 
between the breakdown electrode and the friction layer can 
be adjusted by PTFE yarn, which surrounds the breakdown 
electrode and can be sewn on ordinary clothing. Under the 
action of EEM, the matching impedance of the TENG is 
reduced from 200 to 1.6 MΩ, maintaining a high average 
power of 0.365 mW for long-distance wireless transmission, 
which provides a basic guarantee for wild survival through 
the wearable fabric TENG.

2.5.2  Dielectric–Dielectric DC‑TENG

Although the surface charge density of metal-dielectric DC 
TENG based on air discharge has achieved a breakthrough 
achievement, the development of the discharge type TENG 
is still a challenge due to its low average power density and 
the complex preparation process and material wear of metal-
dielectric mode TENG. Based on the triboelectrification 
effect and corona discharge [54], Shan et al. designed a die-
lectric- dielectric DC TENG as shown in Fig. 10a. Through 
the electrode structure on both sides of the substrate, a bi-
directional dual-output channel DC TENG is realized. In the 
case of one of the left electrode, a bidirectional DC output is 
formed in the external circuit when the slider slides periodi-
cally left and right. It is confirmed by theories and experi-
ments that a large amount of negative charges accumulates 
on the nylon surface when the slider moves rightward. As 
long as a strong electric field is formed between the nylon 
film and the left electrode over 3 kV  mm−1, the left electrode 
produces a positive output. When the slider moves from the 
right to the left, a large number of negative charges accumu-
late on the PTFE surface and meanwhile corona discharge 
forms between the left edge of PTFE and left electrode. 
Thereby, the external circuit has a negative output. In addi-
tion, the spark is captured by a high-speed camera between 

the electrode and the tribo-layer, even if the electrode is 
placed at a distance of 10 mm, the discharge path can be 
clearly seen. By combining the space charge accumulation 
effect with local discharge [89], He et al. successfully pro-
posed a novel DC and AC dual mode TENG coupling based 
on electrostatic induction and air breakdown effect as shown 
in Fig. 10b. Charge dissipation in air is inherent properties 
of materials. The introduction of corona discharge output 
channel reduces the charge loss and improves the energy 
utilization efficiency compared with the traditional single 
output mode TENG. In this way, the dual-output channel 
TENG achieves 5.74 W  m–2  Hz–1 and powers high-power 
devices such as wireless optical sensors and electronic tablet. 
Considering the flexible and wearable electronics, flexible 
TENG has become a development trend. Shan et al. reported 
a dual DC output mode for TENG with flexible lint-free 
cloth [90]. The electrodes on the slider and stator are called 
as corona discharge electrodes and electrostatic induction 
electrodes respectively, which serve to collect corona dis-
charge and collect trapped charge (not involved in corona 
discharge) on the surface of the lint-free cloth. By effectively 
utilizing triboelectric charge, the total output of two channels 
is greater than the single channel output, finally achieving a 
maximum output power density of 9.2 W  m−2, which holds 
the highest record in the fabric TENG field. By coupling of 
triboelectrification, electrostatic induction and electrostatic 
discharge, Zeng et al. proposed a novel energy conversion 
mechanism to produce AC/DC convertible outputs TENG 
with wide material selectivity including polymers, fabrics, 
and semiconductors [91].

Different from the placement of the traditional DC-TENG 
electrodes, a pair of electrodes of TENG were placed on both 
sides of the back of a 2 mm PU film as the slider, and PTFE 
was used as the stator to be rubbed with the PU as shown in 
Fig. 10c. A large number of visible sparks can be observed 
in the air gap between tribo-layers. During the process of PU 
sliding on the PTFE layer, the air discharge forms a charge-
transfer channel, generating a single-direction DC output. 
Moreover, the current value decreases by only 0.4% even if 
the load reaches up to 100 MΩ, indicating that this TENG is 
an excellent constant DC output source. Recently, Sun et al. 
[92] invented a rolling mode DC-TENG based on charge 
pump and air ionization, including a PTFE roller, PMMA 
roller, a rubber belt and two electrodes located on the side 
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Fig. 10  Dielectric-dielectric air-discharge DC-TENG. Schematic diagram and working mechanism of a bidirectional and double-channel corona 
discharge TENG, Reproduced with permission [54]. Copyright 2022, Wiley–VCH. b DC and AC double output TENG, Reproduced with per-
mission [89]. Copyright 2022, Wiley–VCH. c AC/DC convertible output DC-TENG, Reproduced with permission [91]. Copyright 2022, Wiley–
VCH d Rolling-mode DC-TENG, Reproduced with permission [92]. Copyright 2022, Elsevier. e Synergistically enhanced dual-breakdown DC-
TENG. Reproduced with permission [93]. Copyright 2022, Elsevier
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of the roller as shown in Fig. 10d. In this design, charges 
accumulate on the roller, and as long as the electrostatic field 

between the roller and the electrode is large enough to ionize 
air, some air ions are collected by the electrode while some 

Table 1  Comparison for output current I, voltage U and power density P of different types of DC-TENGs

Materials I (µA) U (V) P (W  m−2) References

P-Si/N-Si 0.05 0.31 [73]
Au-PPy-TiO2 572.7 0.84 0.62 [94]
Steel-Si 0.25 0.65 0.0037 [49]
GaN-Si 0.154 3.35 [72]
Water-based GO 45 0.08 0.00543 [70]
Metal-Si 20 0.02 0.15 ×  10–3 [95]
Bi2Te3-GaN 340 40 11.85 [71]
Au–Si 0.9 0.01 [74]
Al-PPy 1300 3.5 5.4 [50]
PEDOT:PSS-Al 200 0.8 0.67 [76]
PEDOT:PSS-Al 309 1 11.67 ×  10–3 [75]
FEP-Cu 12 480 0.96 [58]
PMMA/PVC-Cloth 0.075 210 [96]
Kapton/Nylon-cloth 10.1 25,000 0.24 [57]
PTFE/Water 6 50 [56]
FEP/electrodes 97 2.5 [55]
FEP/Kapton 200 1100 [44]
Nylon/PTFE 380 4.9 (Average) [62]
FEP/Copper 7.3 149.5 [78]
Rabbit fur-PTFE 21.28 1.11 (Average) [77]
Cu-PTFE 2.5 720 0.01 [97]
Water/PTFE-Cu 0.45 1600 [22]
PTFE-Cu 17.5 350 [80]
FEP-Nylon 104.3 4500 4.2 (Average) [52]
PVC-Al 25 ×  10–3 [59]
FEP-Al 30 150 2.03 [63]
FEP/Nylon-Cu 56 2800 3.1 [79]
FEP/PC 2700 0.01 [51]
Kapton/Cu 150 82.25 [85]
Yarn-PTFE 40 4500 [98]
Yarn-PTFE 6.52 1229 0.18 [83]
PTFE/Nylon-Cu 1.9 460 0.095 [38]
PTFE-FE 7 500 0.20 [86]
PVC-Cu 2.1 260 0.95 W  m−2  Hz−1 [82]
PTFE-Cu 65 33 [53]
PTFE-Cu 17 120 [64]
PI-Paper 600 [99]
PMMA/PTFE-Rubber 4.5 9000 7.9 [92]
Lint free cloth-PTFE 9.5 4800 9.8 [90]
PTFE-rubber 370 3200 [60]
PTFE-nylon 7 6200 5.74  Wm–2  Hz–1 (Average) [89]
PTFE-nylon 3.8 6000 3 (Average) [54]
PU-PTFE 3.9 3800 0.398  Wm−2  Hz−1 (Average) [91]
BMF/PTFE-Rubber 197 1300 10.6 [100]
Nylon/PTFE-HDPE 2 27,000 2.83 [93]
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weaken the electric field of the drum. The continuous move-
ment of the conveyor belt produces a unidirectional charge 
flow between the left and right electrodes, forming a steady 
DC output. Current researches have proved that both dura-
bility and output performance of TENGs can be improved 
by the rolling design. Zheng et al. has invented a rolling DC 
TENG for cleaning indoor air pollution [93], which relies 
on a high voltage output of 27 kV. In order to collect tri-
boelectric charge by corona discharge strategy to prevent 
the cancellation of positive and negative charges during the 
discharge, nylon and PTFE with high electron-affinity dif-
ference were used as polarizer for the stator (Fig. 10e). The 
high density polyethylene (HDPE) material with interme-
diate electric properties was attached to the rotor. As the 
rotor moves clockwise, the positive or negative charges 
accumulate along with a strong electric field. Subsequently, 
the charges are collected in the region where the electrode 
is located and the DC output is generated in the external cir-
cuit. HDPE as a tribo-material has better output of both the 
current and voltage relative to PET or Kapton in this work, 
because of similar electronegativity with PTFE. However, 
triboelectrification is poor during the friction process, which 
affects the overall output.

3  Conclusions and Prospective

In recent years, the DC-TENG has been rapidly developed 
to become a promising branch of TENGs. Aiming to clearly 
sort out the types of DC-TENG and the limitations of output 
performance, we have made a review of DC-TENG based 
on the structure design, working mechanism and output per-
formance as shown in Table 1. The current classification 
of DC-TENGs are divided into pulse current and constant 
current, which are derived from mechanical decay switch, 
tribovoltaic effect, and phase control, mechanical rectifier, 
air discharge, respectively.

Despite much attention to DC-TENG, there are still wide 
space for their development, and certain challenges still hin-
der their practical applications. More efforts are needed to 
break these limitations by scientists. (1) It is necessary to 
develop new DC output modes with portability, flexibility 
and simplicity of manufacture. In terms of phase control for 
DC-TENGs, continuous DC output requires multiple device 
units or multiple electrode units integrated in a TENG. Strict 
phase difference control increases the errors during device 

operation and reduces the stability of the power supply. (2) 
An excellent DC-TENG with overall high output perfor-
mance is an essential condition for its commercial applica-
tions. Though this review does not focus on the development 
of power management system related with DC-TENG, it is 
worth discussing the attempts on output source and elec-
tric device development. Besides, power management is an 
indispensable part of TENG output, and power management 
circuit has achieved significant improvements in back-end 
resistance mismatches of AC-TENG. In particular, there is 
a lack of energy management for high voltage, low current 
(corona discharge) or high current, low voltage (tribovoltaic 
effect) problems of DC-TENGs. Next, the primary goal is 
to conduct point-to-point post-processing for various DC-
TENGs to achieve high efficiency energy transfer. (3) TENG 
is regarded as a new type of sensor due to its sensitive sig-
nal, stable output and self-powered characteristics. The AC-
TENG based on contact separation mode has made some 
achievements in self-powered sensors. However, as DC-
TENG is in its infancy and lacks related sensor applications, 
development goes slowly and application fields are limited. 
Due to unique nature of the air breakdown DC-TENG, the 
current pulse width is dependent on the sliding distance, 
and displacement and velocity sensors can be designed and 
applied. Besides, an inverting TENG (from DC to AC) is 
reported, which can be integrated into self-powered sensors 
such as trigger switch and signal conversion. (4) Because of 
the nearly unlimited durability in all kinds of DC-TENGs, 
interfacial lubrication, dielectric-dielectric friction with 
thick dielectric material, flexible bent blade slider design, 
and non-contact mode should be employed to achieve the 
most promising wear cycles.
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