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HIGHLIGHTS

• The classification of 2D perovskite is summarized, and the preparation methods of 2D perovskite according to the requirements of 
X-ray detection materials are introduced.

• We analyzed the advantages and insufficiency of different devices and introduced improvement measures, including ion migration, 
charge transfer performance, stability, and 2D/3D heterojunctions.

• Finally, we introduced the potential preponderances of 2D perovskite in the scintillation detection field; meanwhile, the main chal-
lenges facing the practical application of 2D perovskite X-ray detectors are analyzed.

ABSTRACT Metal halide perovskites have recently emerged as promising candi-
dates for the next generation of X-ray detectors due to their excellent optoelectronic 
properties. Especially, two-dimensional (2D) perovskites afford many distinct proper-
ties, including remarkable structural diversity, high generation energy, and balanced 
large exciton binding energy. With the advantages of 2D materials and perovskites, 
it successfully reduces the decomposition and phase transition of perovskite and 
effectively suppresses ion migration. Meanwhile, the existence of a high hydrophobic 
spacer can block water molecules, thus making 2D perovskite obtain excellent stabil-
ity. All of these advantages have attracted much attention in the field of X-ray detec-
tion. This review introduces the classification of 2D halide perovskites, summarizes 
the synthesis technology and performance characteristics of 2D perovskite X-ray 
direct detector, and briefly discusses the application of 2D perovskite in scintillators. 
Finally, this review also emphasizes the key challenges faced by 2D perovskite X-ray 
detectors in practical application and presents our views on its future development.
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1 Introduction

The powerful penetrating capability of ionizing radiation 
has led to X-ray detection and imaging being used in a 
wide range of applications, including medical diagnosis, 
safety inspections, non-destructive testing, and scien-
tific research [1–5]. At present, X-ray detection is mainly 
focused on direct current–current detection based on semi-
conductor materials and indirect detection based on the 
light–current of scintillators [6–13]. Scheme 1 shows the 
mechanism between X-rays and particles and the operating 
illustration of indirect detectors (scintillators) and direct 
detectors. Indirect detection typically uses scintillators to 
convert X-rays into visible light, which is then further col-
lected and converted into an electric current by means of 

a photodiode or charge-coupled device. In contrast, direct 
detection converts X-rays directly into electrical charges 
and then stores and processes the collected charges into 
signals via a complementary metal oxide semiconductor 
(CMOS) array or a thin-film transistor (TFT). Direct detec-
tion avoids the scattering effect during visible light conver-
sion and therefore offers the advantages of high detection 
sensitivity, excellent resolution, and rapid response speed. 
Hence in this mini-review, we primarily focus on direct 
detectors.

With the development of X-ray detection reaching its 
maturity, the performance requirements of detection mate-
rials have become more stringent. For the application of 
direct X-ray detection, although conventional semiconduc-
tors such as cadmium telluride (CdTe), amorphous selenium 

Scheme 1  a Mechanism of indirect detectors and direct detectors for X-ray and particles; b Illustration of direct X-ray detection work; c Illustra-
tion of indirect X-ray detection work
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(α-Se), and silicon (Si) have been widely used, they suffer 
from problems such as insufficient mobility lifetime (μτ), 
poor absorption coefficient, and expensive manufacturing 
costs [14–16]. In this context, metal halide perovskite has 
arisen as an emerging alternative material in the field of 
superior performance X-ray detectors owing to its advan-
tages such as large radiation absorption coefficients (con-
taining heavy elements Pb, Bi, I, etc.) [17–20], high defect 
tolerance [21–23], large non-equilibrium carrier diffusion 
distances [24–26], and resistance to irradiation [27, 28].

For metal halide perovskites, the control of appropriate 
organic and inorganic components enables the adjustment of 
the dimensionality of the structure, resulting in the prepara-
tion of 3D, 2D, 1D and 0D perovskites. 3D perovskites are 
inherently environmentally sensitive and readily decompose in 
humidity, light and heat [29–33]. Furthermore, the lattice of 3D 
perovskite is relatively soft, which allows easy ion migration 
at low activation energy (Eg) through the net of corner-sharing 
octahedra [34]. Meanwhile, compared to others perovskites, ion 
migration in 3D perovskites is not much of a hindrance. High 
ion migration will limit the charge extraction in the detector, 
thus affecting the device’s performance. At the same time, the 
ions at the interface will launch electrochemical reactions that 
lead to the irreversible degradation of the material, which will 
seriously damage the stability of the device [35, 36]. Relatively 
speaking, the relatively isolated structure of low-dimensional 
perovskites such as 0D can disrupt the channels for ion migra-
tion, while in-plane ion migration can be greatly restricted due 
to dielectric and quantum confinement. Hence 0D perovskites 
are usually considered to be stable [37]. However, the sensi-
tivity of X-ray detectors derived from these 0D perovskites is 
noticeably lower than that of 3D perovskite because of their low 
charge mobility, which is particularly obvious in polycrystal-
line devices [38–40]. Fortunately, the presence of 2D perovs-
kites provides an option to do both. The lead halide octahedral 
sheets in 2D perovskites are segregated by organic spacers, and 
the arrangements of alternating organic and inorganic layers 
produce a particular electronic structure called a 2D multiple 
quantum well (MQW) [41–43]. Compared with others perovs-
kite, due to the existence of a large hydrophobic ammonium salt 
organic layer and MQW, 2D perovskite has natural advantages 
in the area of X-ray detection, such as high carrier mobility, 
suppressed ion migration for stable current output, excellent 
operation stability, flexible and adjustable structure [44]. There-
fore, 2D perovskite has become one of the most bright materials 
for the next generation of X-ray detector technology.

In this mini-review, we introduce and enumerate the clas-
sification of 2D perovskite, summarize the manufacturing 
methods of 2D perovskite X-ray direct detectors, highlight 
their unique performance characteristics, and briefly discuss 
the application of 2D perovskite in scintillators. Finally, we 
analyze the problems it faces and present some of our insights.

2  Classification of 2D Metal Halides

According to the binding mode of interlayer spacer cati-
ons, 2D perovskites can usually be classified into three 
types: The Ruddlesden-Popper (RP) type (structure of 
 R2An − 1BnX3n + 1), The Dion-Jacobson type (DJ) (structure 
of  RAn − 1BnX3n + 1) and the alternating cation in interlayer 
space type (ACI) ((GA)AnBnX3n + 1, GA-guanidinium) [45]. 
The n indicates the number of inorganic octahedral layers, 
and R denotes the interlayer spacer cations. A is a monova-
lent small radius cation, B is a metal ion such as  Pb2+, and 
 Sn2+, and X denotes a halogen ion  (X− =  Br−/I−). The spacer 
cation R in RP phases is monovalent, such as phenethylam-
monium (PEA), and butylamonium (BA) [31, 46, 47]. For DJ 
phases, the R ions are divalent, mainly 1,3-propanediamine 
(PDA) or 3-(aminomethyl)piperidinium (3AMP), etc. [48]. 
And for ACI phases 2D perovskites, guanidine  (GA+) is the 
only reported cation that can form ACI (2D) structures [49].

Crystal structures of different 2D structure types and a 
comparison of 2D and 3D structures are shown in Fig. 1a, 
b [50]. In layered 2D perovskite, the inorganic octahedral 
layer serves as the potential well, and the number n dic-
tates the width of the well and the band gap. In contrast, the 
large organic layer operates as the potential barrier, and its 
ionic radius can determine the width of the potential barrier 
(Fig. 1c) [42, 43]. Under this unique structure, RP-type, DJ-
type, and ACI-type 2D perovskite have significant optical 
band gaps and small exciton binding energy to be used as 
active materials for optical detection [51].

In recent years, double perovskite structures have gradually 
entered the limelight owing to their low toxicity and excel-
lent stability. The  Cs2AgBiBr6 3D double perovskite has well 
demonstrated the potential of lead-free perovskite in X-ray 
detection [52]. Thanks to the versatility and tunability of the 
double perovskite structure, the construction of 2D double per-
ovskite becomes possible. In this context, an interesting 2D 
double perovskite structure comes into view. Z. Xu et al. [53] 
grew large-sized environmentally friendly 2D halide double 
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perovskite (BA)2CsAgBiBr7 (BA =  C4H11N) single crystals 
with the crystal structure shown in Fig. 1d. Two inhomogene-
ous octahedra of  BiBr6 and  AgBr6 are arranged alternately and 
orderly. The presence of the heavy element Bi ensures suffi-
cient absorption of X-rays by the active layers, making it easier 
for carriers to be collected. Thus the X-ray detector derived 
from (BA)2CsAgBiBr7 single crystal achieves excellent sensi-
tivity. It should be mentioned that compared to the three types 
of 2D perovskites, RP, DJ and ACI, 2D double perovskites are 
equivalent to modifying them to suit the environmental and 
other special requirements of perovskite X-ray detectors, rather 
than a completely new class of 2D perovskites.

3  Preparation of 2D Metal Halide X‑ray 
Detectors

In contrast to conventional semiconductors manufactured 
at elevated temperatures, 2D perovskites can be more eas-
ily manufactured at room temperature due to the relatively 
weak ionic bonding, effectively reducing the cost [54–58]. 

X-ray detection requires high photon attenuation and carrier 
mobility lifetime (μτ) product, so the preparation of materials 
is strict and harsh. To meet the requirements, many material 
preparation technologies have been developed lately. In this 
section, we review and summarize the processing technolo-
gies of 2D perovskites, mainly including the growth of per-
ovskite single crystals and polycrystalline films’ preparation 
strategies, such as the hot-casting process, low-temperature 
blade-coating, and mechanical sintering process. In addition, 
we elaborate on some properties of perovskite materials in 
Table 1.

3.1  Single Crystals

Perovskite single crystals have received publicity owing to 
their excellent properties, such as lower bulk defect density 
of states, longer carrier lifetime and diffusion length, and 
higher carrier mobility [59, 60]. 2D perovskite single crys-
tals are generally grown by changing the process conditions 
to induce a change in solubility.

Fig. 1  a n = 3 Schematic of crystal structure between RP phase, DJ phase, and ACI phase: (BA)2(MA)2Pb3I10; (3AMP) (MA)2Pb3I10; and (GA)
(MA)3Pb3I10; Reproduced with permission [50]. Copyright 2019, American Chemical Society Publications; b Schematic diagram of the struc-
ture of 3D and 2D perovskites; c Quantum well structure of 2D perovskite; d Structural configuration of 2D double perovskite (BA)2CsAgBiBr7. 
Reproduced with permission [53]. Copyright 2019, Wiley–VCH Publications



Nano-Micro Lett.          (2023) 15:128  Page 5 of 18   128 

1 3

The cooling crystallization method is a common strategy 
for the preparation of single crystals, which can change the 
solubility by cooling and thus induce nucleation crystal-
lization of the solution. Simultaneously, the nucleus for-
mation triggers a decrease in solution concentration and 
inhibits further nucleation. Therefore, uniform nucleation 
can be easily achieved by reasonably controlling the cool-
ing rate, which can grow large single crystals. For exam-
ple, Y. Shen et al. [61] successfully prepared centimeter-
sized  BDAPbI4 single crystals by cooling the precursor 
solution from 90 °C to room temperature at a rate of 1 °C 
 h−1 by a modified cooling crystallization method (Fig. 2a). 
The evaporation crystallization is very similar to cooling 
crystallization, only differing in the scope of applications 
and operational steps. Evaporation crystallization mainly 
applies to materials whose solubility does not vary much 
with temperature. Zhang et al. [62] achieved the nucleation 
growth of crystals by evaporating the solvent to super-
saturate the solute and preparing large-size (> 200  mm2) 
2D (PEA)2PbBr4 perovskite single crystals (Fig. 2b). The 
anti-solvent method has attracted wide attention owing 
to its low cost and simple operation. It can manufacture 
high-quality single crystals through tuned nucleation and 
growth. The solvents used for antisolvent-assisted crys-
tallization include one-component chlorobenzene (CB), 
toluene (TL), and ether, as well as mixed antisolvent sys-
tems, which help to regulate the crystal growth dynam-
ics by optimizing the mixing ratio of the system. H. Tian 
et al. [63] synthesized 2D (PEA)2PbBr4 perovskite single 

crystals at room temperature using a modified anti-solvent 
vapor crystallization method (Fig. 2c). The anti-solvent 
CB vapor dispersion into the solution effectively reduces 
the solubility, resulting in easier nucleation and crystal-
lization. The space-constrained method is a novel prepara-
tion method that can regulate the thickness of crystals to 
a certain extent and achieve large-area preparation. Xiao 
et al. [64] synthesized large-area 2D  BA2MA2Pb3I10 per-
ovskite single crystals using a space-constrained method. 
They used two non-wetting substrates to construct the con-
fined space and inserted a saturated perovskite solution 
into the space (Fig. 2d). The single crystals were grown 
by the cooling-induced supersaturation method.

Notably, although the preparation of 2D perovskite crys-
tals has made good progress nowadays, they are often pre-
pared by controlling the molar ratios of different precursor 
substances. The molar ratios between different ions in the 
final formulation may be far from the stoichiometric ratios 
of the desired phases for pure phase substances with high n 
values. So it requires constant trial and error, which is rather 
tricky. Solving this problem by regulating the deposition 
process and optimising the preparation process may be a 
good option to stop multiphase formation [65, 66].

3.2  Polycrystalline Films

Although 2D perovskite single crystals have demonstrated 
superior optoelectronic properties in the X-ray detection 

Table 1  Parameters of various 2D metal halides based direct X-ray detectors

Materials Size μτ product  (cm2  V−1) Sensitivity (μC 
 Gy−1  cm−2)

Detection limit 
(μGy  s−1)

References

(BDA)PbI4 SC – 4.43 ×  10–4 242 0.43 [61]
(BA)2PbI4 SC  − 15 × 5  mm2 4.5 ×  10–4 148 0.241 [77]
BA2PbBr4 SC 160 μm thick 1.1 ×  10–5 726.18 0.0082 [78]
(BA)2CsAgBiBr7 SC 10 × 10 × 3  mm3 1.21 ×  10–3 4.2 – [53]
(F-PEA)2PbI4 SC 10 × 10 × 2  mm3 5.1 ×  10−4 3402 0.023 [79]
(BA)2CsPb2Br7 (ab plane) – – 13,260 0.0725 [31]
BA2EA2Pb3Br10 SC 2 mm thick 1.0 ×  10−2 6800 5.5 [80]
(DFPIP)4AgBiI8 SC 6–10  mm2 × 2 mm 1.1 ×  10–5 188 3.13 [81]
(DGA)PbI4 SC – 4.12 ×  10–3 4869 0.0954 [44]
(3AP)PbCl4 SC 5.2 × 2.6 × 1.4  mm3 2.74 ×  10–3 791.8 1.54 [82]
PEA2PbBr4 film 1.9 ± 0.8 µm thick 1.09 ×  10–5 806 0.042 [83]
(BA)2(MA)2Pb3I10 film 470 nm thick – 2.76 ×  105 10 [84]
PEA2MA8Pb9I28 film – 2.6 ×  10–5 10,860 0.069 [36]
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area, the preparation and processing of large-area single 
crystals are still challenging due to their brittleness. At the 
same time, single crystal cannot meet the needs of flexible 
devices because of its poor mechanical flexibility, which 
deprives it of the ability to adapt to non-planar and lim-
its its application scenarios. Therefore, people have turned 
their attention to the preparation of thin films. Compared to 

single crystals, polycrystalline thin films offer the advan-
tages of large-area fabrication, flexible applications and 
substrate integration [67, 68]. The spin-coating strategy to 
obtain large-area absorption layers is a conventional means 
of preparing thin films. Lai et al. [69] successfully pre-
pared EDA(MA)3Pb4I13 flexible films by a simple one-step 
spin-coating process (Fig. 2e). The 2D perovskite device 

Fig. 2  Methods for preparing 2D perovskite: a Photograph of (BDA)PbI4 crystals grown by the temperature crystallization method; Reproduced 
with permission [61]. Copyright 2020, Wiley–VCH Publications; b Schematic diagram of the process of growing (PEA)2PbBr4 single crystals 
by controlled evaporation; Reproduced with permission [62]. Copyright 2019, The Royal Society of Chemistry; c Schematic diagram of the pro-
cess of growing 2D (PEA)2PbBr4 perovskite single crystals by modified anti-solvent vapor crystallization method; Reproduced with permission 
[63]. Copyright 2017, American Chemical Society Publications; d Schematic diagram of the synthesis of large-area 2D  BA2MA2Pb3I10 (n = 3) 
perovskite single crystals by the space-constrained method; Reproduced with permission [64]. Copyright 2018, American Chemical Society 
Publications; e Optical image of the EDA(MA)3Pb4I13 flexible film under mechanical bending. Reproduced with permission [69]. Copyright 
2020, American Chemical Society Publications; f Images and SEM cross-section of the sintered  MAPbI3 wafer. Reproduced with permission 
[72]. Copyright 2017, Springer Nature Publications; g Schematic illustration of hot-casting process; Reproduced with permission [70]. Copy-
right 2022, Wiley–VCH Publications; h Schematic of the fabrication process of the perovskite thick film-based device through the low-tempera-
ture blade-coating method. Reproduced with permission [36]. Copyright 2021, Wiley–VCH Publications
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can be bent down to a radius of 2 mm, and after 10,000 
cycles of bending tests, there was no significant performance 
degradation.

The absorption coefficient and thickness are key fac-
tors affecting the absorption of X-rays by the material, and 
thicker absorption layers are often required for ionizing 
radiation with strong penetrating capabilities. Therefore, for 
X-ray detection applications, thick, large absorption layers 
are often required to obtain sufficient X-ray absorption and 
to achieve imaging of large-area objects. The usual poly-
crystalline films are difficult to meet, hence the research on 
thick films is urgent and relevant for X-ray detection. The 
improvement based on spin coating is a popular method to 
prepare 2D perovskite thick film. At present, the common 
improvement measures are heating, ion engineering, addi-
tives, and so on. Tsai et al. [70] introduced n-butylamine 
iodide into methylammonium lead iodide precursor and 
cast it at elevated temperatures. Cation engineering by 
incorporating BAI in the perovskite precursor can enhance 
the degree of crystallinity. The elevated temperatures allow 
rapid solvent discharge during film formation, eliminat-
ing the solvent trapping problem. As a consequence, they 
achieved the preparation of dense polycrystalline 2D per-
ovskite thick films of 10 μm on both rigid and flexible sub-
strates (Fig. 2g). Due to the benefits of low-priced and great 
compatibility with substrate materials, the blade coating 
method is also a powerful tool for thick film preparation 
[71]. As shown in Fig. 2h, He et al. [36] prepared quasi-2D 
 PEA2MA8Pb9I28 perovskite polycrystalline thick films using 
the low-temperature blade-coating method, which possesses 
the advantages of large grain size and inferior defect den-
sity. The X-ray detector based on it demonstrates a sensi-
tivity of 10,860 µC  Gyair

−1  cm−2 with steady dark current 
and photocurrent response. Shrestha et al. [72] proposed a 
mechanical sintering process to prepare perovskite wafers 
with millimeter thickness (Fig. 2f). This method guides 
the preparation of efficient and low-priced 2D perovskite 
wafer X-ray detectors. Moreover, the development of strate-
gies such as vacuum vapor deposition and composite films 
will also bring stronger competitiveness to thick film X-ray 
detectors [73–76].

The preparation of 2D perovskite thick film is an essential 
means to improve the photoelectric conversion efficiency of 
detectors, which is of great significance to its development. 
However, an increased thickness is often accompanied by 
an increased defect density and a reduced carrier diffusion 

length. Optimizing or achieving the balance between the two 
remains a challenge to be solved.

4  Performance Characteristics of 2D Metal 
Halide X‑ray Detectors

4.1  Low Ion Migration

There are shallow electron and hole traps in the band gap of 
3D perovskite, which can trap free carriers. When the bias 
voltage is applied, these trapped charges may release and 
induce field-driven ion migration. The accumulation of ion 
migration can directly cause changes in the built-in electric 
field of the perovskite and even the local crystal structure, 
which in turn can seriously affect the stability and optoelec-
tronic performance of the device. So, higher ion migration 
has been a notorious problem in 3D perovskites [52, 85, 86]. 
For perovskite optoelectronic devices, a large number of ions 
will diffuse in 3D perovskite under the effect of the electric 
field. The migrated ions may corrode the metal electrodes 
on the surface, damage the device, and create many voids as 
the center of non-radiative recombination, resulting in a deg-
radation of the photovoltaic performance. On the other side, 
“mobile ions” that accumulate at the device interface can 
migrate across the interface and react with it, affecting the 
device’s operating mechanism [86, 87]. Higher ion migra-
tion, especially for X-ray detectors, also leads to baseline 
drift problems. The relatively low resistivity and intense ion 
migration can dramatically increase the detector’s current 
drift and dark current noise, thus reducing the resolution 
and stability of the detector. Also, ion migration is a critical 
cause of photocurrent instability in detectors [40, 88].

The organometallic octahedra of 2D perovskites are sepa-
rated by long organic spacer cations, which effectively pre-
vent ion migration and can improve the sensitivity of the 
device to X-rays [64, 89]. Also, higher generation energy 
related to ionic vacancies in 2D perovskites in comparison to 
3D perovskites facilitates ion migration suppression in lay-
ered perovskites [64, 90]. Besides, with the help of flexible 
tunability, the 2D perovskite structure still has much room 
to improve the inhibition effect of ion migration. Studies 
have shown that blocking ion migration paths and increas-
ing the activation energy of ion migration are effective 
inhibition measures. H. Li et al. [79] introduced defective F 
atoms as supramolecular anchors in 2D perovskite organic 
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spacer layers, which effectively suppressed the ion migration 
phenomenon by interrupting the ion migration path after 
anchoring. They prepared a 2D (F-PEA)2PbI4 perovskite 
single crystal hard X-ray detector with a bulk resistivity of 
1.36 ×  1012 Ω cm (Fig. 3a, b), which resulted in low device 
noise for hard X-ray detection. Zhang et al.[91] overcame 
ion migration by enhancing chemical bonding, shortening 
the distance between adjacent organic cations in the lattice 
by incorporating fluorine atoms into the neighboring posi-
tions of phenethylamine to enhance electrostatic interactions 
between F atoms and adjacent benzene rings. The activation 
energy for ion migration (AEIM) of (o-F-PEA)2PbI4 single 
crystals was increased in comparison to that of (PEA)2PbI4 
single crystals (Fig. 3c). The improved AEIM also enhances 
thermal stability. As a consequence, the dark current of the 
(o-F-PEA)2PbI4 2D perovskite single crystal X-ray detector 
is decreased by a factor of 2 compared to (PEA)2PbI4 and 
by a factor of 4 at 20 V bias (Fig. 3d). Besides, reducing 
the defect density and adjusting the number of perovskite 

layers n would be effective strategies to improve ion migra-
tion [27, 90].

From the perspective of external conditions, researchers 
usually tend to apply a high electric field to optimize detec-
tion properties. Still, a high electric field is often accom-
panied by high dark current and ion migration. Recently, 
self-powered photodetectors have received great attention 
because they can operate without applied bias, effectively 
reducing the field-driven ion migration effect, suppress-
ing device noise, and greatly improving portability [92]. 
2D layered perovskite has attracted researchers’ interest in 
self-powered devices due to its structural flexibility. Tsai 
et al. [84] designed a novel 2D RP phase layered perovskite 
(BA)2(MA)2Pb3I10 X-ray detector (Fig. 3e). When exposed 
to the X-ray source, this 2D RP device demonstrates a sig-
nificant increase in X-ray-induced current density at zero 
bias (Fig. 3f). The detector obtained a sensitivity of 0.276 
C  Gyair

−1  cm−2 at zero bias. The sensitivity can be obtained 
by multiplying the slope of the linear region in the charge 

Fig. 3  a Optimized single crystal structure of (F-PEA)2PbI4; b Resistivity of (PEA)2PbI4 and (F-PEA)2PbI4 single crystals; Reproduced 
with permission [79]. Copyright 2020, Wiley–VCH Publications; c AEIM of (o-F-PEA)2PbI4 with (PEA)2PbI4 calculated by DFT simula-
tion; d Dark current measurements of (o-F-PEA)2PbI4 versus (PEA)2PbI4 (20 V, RH 60%); Reproduced with permission [91]. Copyright 2021, 
Wiley–VCH Publications; e Schematic illustration of the p-i-n thin film X-ray detector based on (BA)2(MA)2Pb3I10; f J–V characteristics of 
(BA)2(MA)2Pb3I10 (red) and silicon (black) reference devices in the dark and under X-ray (10.91 keV) exposure; g X-ray response currents of 
(BA)2(MA)2Pb3I10 and silicon diode at various dose rates under zero bias conditions. Reproduced with permission [84]. Copyright 2020, Ameri-
can Association for the Advancement of Science



Nano-Micro Lett.          (2023) 15:128  Page 9 of 18   128 

1 3

density–dosage–dependent plot (Fig. 3g) by the active layer 
thickness.

4.2  Improved Charge Transfer Performance

The introduction of organic cations, although providing bet-
ter stability and lower ion migration, greatly inhibits carrier 
transport due to the blocking of the organic layer, leading 
to larger charge transport anisotropy, increasing the charge 
accumulation on the surface and limiting its device perfor-
mance [31, 93]. What is exciting is that the unique structure 
of 2D perovskite provides flexible improvement measures for 
it. In recent years, research on its anisotropic charge trans-
port has made good progress. The current research focuses 
on: (1) inorganic layer thickness n; (2) organic spacer engi-
neering; (3) lattice modulation; (4) crystal orientation, etc.

K. Wang et al. [94] reported a strategy for the rapid syn-
thesis of 2D perovskite (BA)2(MA)n − 1PbnI3n + 1 single 
crystal membranes and investigated the effect of inorganic 
layer thickness on transport anisotropy. The results show 
that increased inorganic layer thickness increased mobil-
ity and decreased anisotropy. Reasonable adjustment of 
the spacer layer can affect the electronic coupling between 
adjacent organic cations and barrier height, thus regulating 
the degree of crystal anisotropy. C. Ma et al. [95] reported 
a method to adjust the length of the organic spacer cation 
to adjust the anisotropy. They achieved significant charge 
transport enhancement by replacing the larger organic 
spacer cation butylammonium (BA) with the smaller pro-
pane-1,3-diammonium (PDA), which reduced the distance 
separating the inorganic perovskite layers (Fig. 4a). Xu et al. 
[96] constructed a binary spacer layer by adding 20% GA 
to F-PEA2MA3Pb4I13 and prepared smoother films with 
better vertical orientation and larger grains. Adding GA 
effectively accelerates the charge transfer and inhibits the 
non-radiative recombination in the films. Besides, carrier 
mobility is affected by the interaction between charge car-
riers and lattice vibrations (phonons). Therefore, it is also 
an excellent measure to improve carrier transport and sta-
bility by weakening the electron–phonon coupling through 
lattice distortion and the increase of hydrogen bonding, thus 
suppressing the disordered scattering of carriers [44, 97]. 
Changing the orientation of the quantum well (QW) to be 
perpendicular to the electrode and confining the free carri-
ers in the QW can avoid the obstruction of charge transport 

by the organic layer. Hence, improving the charge transport 
in 2D perovskites by adjusting the crystal orientation has 
been the research focus in recent years. In response, Chen 
et al. [98] investigated the nucleation and growth process 
of 2D QWs, and also summarized the growth mechanism 
of 2D QWs, which is essential for the application of 2D 
perovskites in X-rays.

In addition to the transport issues, due to dimension and 
dielectric limitation, carriers confined in 2D perovskite QWs 
will produce high exciton binding energy and expand the 
formation of excitons instead of free carriers, which restrict 
their application in devices that require charge separation. 
Adding suitable additives may be an effective way to solve 
this problem, Gelvez-Rueda et al. [99] achieved the efficient 
formation of free mobile carriers by adding strong electron 
acceptor groups (perylene diimide organic chromophores) 
onto the surface of 2D perovskite nanosheets. The yield of 
these free carriers is ten times higher than in the absence 
of the acceptor, and the lifetime is tens of microseconds 
higher (two orders of magnitude). This scheme provides an 
effective concept for solving the charge separation problem. 
Moreover, changing the value of n reasonably to improve 
charge separation is also advisable. It has been shown that 
when n > 2, the exciton is separated into free carriers by the 
low energy state at the edge of the layer of the QW. This is 
beneficial to the photoelectric properties of 2D perovskite 
[100].

4.3  Stability

Stability has been a stumbling block to the commerciali-
zation of perovskite X-ray detectors. 2D structures formed 
through dimensionality reduction are currently a successful 
solution to device stability. The large hydrophobic organic 
cations in 2D perovskites are spatial barriers for surface 
water adsorption and protect the fragile halide perovskite 
lattice [51, 101]. Hence the significant enhancement of water 
stability is a distinct advantage of 2D perovskites. Simul-
taneously, the moisture stability of 2D perovskites can be 
readily adjusted by changing the organic cations. For exam-
ple, replacing hygroscopic organic cations with hydrophobic 
organic cations can enhance the stability of 2D perovskites 
in atmospheric environments. Zheng et al. [102] investigated 
the stability of four 2D perovskites under wetting conditions. 
The results show that  (C6H5CH2NH3)2(FA)8Pb9I28 has the 
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highest humidity stability compared to other 2D perovskites, 
and the device still has good optoelectronic performance 
when placed at 80% relative humidity for 500 h due to the 
strongest hydrophobicity from  C6H5CH2NH3

+. In addition, 
the selection of organic spacer cations that enhance the inter-
action of interlayer molecules can also improve moisture sta-
bility. H. Ren et al. [103] synthesized (MTEA)2(MA)4Pb5I16 
(n = 5) perovskites (Fig. 4b), in which, besides the weaker 
van der Waals interaction, there is also an interaction 

between sulfur atoms in the two MTEA molecules, which 
effectively enhances the water stability of the perovskites. 
Recently, surface treatment is also used to improve mois-
ture stability, H. Tsai et al. [104] found that the instability 
under voltage bias is immediately relevant to the humid-
ity content in the environment. Coating the hydrophobic 
molecule 5F-PEAI on the 2D perovskite surface can inhibit 
the migration and degradation of ions, enabling the device 

Fig. 4  a PDA- and BA-based charge transport between inorganic layers in 2D perovskites; Reproduced with permission [95]. Copyright 2018, 
Wiley–VCH Publications; b Schematic crystal structure of (MTEA)2(MA)n − 1PbnI3n + 1. Reproduced with permission [103]. Copyright 2020, 
Springer Nature Publications; c Chemical structure of PEAI and 5FPEAI. Contact angle of perovskite films treated with and without 5FPEAI. 
Reproduced with permission [104]. Copyright 2022, American Chemical Society Publications; d Phase stability of  CsPbI3 in the presence and 
absence of  EDAPbI4; Reproduced with permission [105]. Copyright 2017, American Association for the Advancement of Science; e Relation-
ships between binding energy, band gap, formation energy, stability and dimensionality of low-dimensional perovskite. Reproduced with permis-
sion [107]. Copyright 2020, Wiley–VCH Publications. f PL spectra of 3D/2D film at different intervals under 1 V µm−1. Reproduced with per-
mission [110]. Copyright 2021, Wiley–VCH Publications; g Temporal baseline tracking of the detectors made of the control  (MAPbI3) and the 
double-layer perovskite film. Reproduced with permission [111]. Copyright 2021, Wiley–VCH Publications; h Schematic diagram of the device 
structure of 2D-3D perovskite-based X-ray detector. Reproduced with permission [113]. Copyright 2022, Elsevier Inc Publications
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to maintain good operating stability and low dark current 
even in a humid environment and under high voltage bias 
(Fig. 4c).

Furthermore, 2D perovskites also have excellent struc-
tural stability. By introducing bulky organic cations, the 
spatial site resistance between adjacent inorganic layers can 
be enhanced, thus improving the structural stability of 2D 
perovskites and effectively inhibiting the formation of non-
perovskite phases. T. Zhang et al. [105] found that a few 2D 
 (EDAPbI4) perovskites containing ethylenediamine (EDA) 
cations can stabilize α-CsPbI3, thus avoiding the formation 
of non-perovskite δ phases. The stability comparison with 
and without  EDAPbI4 is shown in Fig. 4d. In addition to 
organic cations, the n value also affects the stability of 2D 
perovskites. 2D perovskites with lower n usually exhibit 
higher structural stability thanks to their higher generation 
energy (Fig. 4e) [106, 107].

It is worth mentioning that DJ perovskite is more sta-
ble than RP perovskite in terms of stability alone. There is 
a van der Waals gap between adjacent inorganic layers in 
RP perovskite because of the presence of two monovalent 
spacer cations. This gap not only hinders the charge transfer 
but also leads to water penetration. The diammonium in DJ 
perovskite, as a large spacer ion, not only can shorten the 
distance between inorganic frameworks but also form ter-
minal hydrogen bonds with inorganic layers at both ends to 
avoid gaps between two adjacent inorganic layers, resulting 
in tighter connections, and more favorable charge transfer 
between inorganic flakes [108, 109].

4.4  2D/3D Heterojunctions

Perovskite materials of different sizes have demonstrated 
huge potential for direct X-ray detection, but each has 
inherent restrictions. The sensitivity of 2D perovskites 
is limited by poor carrier transport, while ion migration 
in 3D perovskites leads to baseline drift problems, and 
their stability has not been effectively addressed. To effec-
tively combine the strengths of both 2D and 3D struc-
tures and enhance the performance of the material, 2D/3D 
bilayer perovskite stacking has been investigated. In this 
new design paradigm, the 3D layer ensures fast carrier 

transport, while the 2D layer mitigates ion migration, 
thereby improving both device efficiency and stability. He 
et al. [110] constructed single crystal heterojunctions of 
 FAPbBr3/(FPEA)2PbBr4 through a simple solution-treated 
epitaxial growth method. Compared with 3D/3D structure, 
2D perovskite PL hardly degraded in 3D/2D structure. The 
intensity of 3D perovskite PL remained above 80% under 
the same polarization conditions, indicating that the ion 
migration effect was inhibited in 3D/2D structure (Fig. 4f). 
In addition, the 3D/2D structure shows a lower defect den-
sity than the 3D structure. Xu et al. [111] developed an 
innovative X-ray detector based on 2D/3D bilayer perovs-
kite films using an aerosol-liquid–solid process, in which 
2D (PEA)2MA3Pb4I13 layers parallel to the substrate are 
cascaded with 3D  MAPbI3 layers grown vertically. The 
presence of the 2D layer mitigates ion migration, providing 
a very stable baseline (Fig. 4g). Additionally, the 2D layer 
can improve the resistivity of the thin film without affect-
ing the carrier extraction, and simultaneously expand the 
energy barrier of hole injection. These excellent properties 
result in an exceptional sensitivity of its device (1.95 ×  104 
μC  Gyair

−1  cm−2). The construction of a heterojunction 
generally results in a built-in electric field, which often 
has a wide range of applications in self-powered devices. 
Zhang et al. [112] report a lead-free halide perovskite het-
erocrystal, (BA)2CsAgBiBr7/Cs2AgBiBr6. With its built-
in potential, the device is capable of spontaneous charge 
separation/transport, while offering excellent sensitivity 
and stability.

In addition to the construction of stacked layers, a method 
of ion-exchange-induced slow crystallization (IESC) was 
recently reported by Peng et al. [113] They prepared devices 
on 2D-3D perovskite thick junctions by optimizing the pro-
cess conditions, such as 2D and 3D precursor co-mixing 
ratios, and its structure is shown schematically in Fig. 4h. 
The optimized  (BA2PbBr4)0.5-FAPbI3 X-ray detector demon-
strated an excellent sensitivity of 1.36 ×  104 μC  Gyair

−1  cm−2, 
which shows huge capacity in X-ray imaging. The concern is 
that the introduction of 2D/3D structure not only improves 
the performance but also has obvious shortcomings. People 
need to consider and resolve how to achieve dense contact 
at the interface and improve the electronic coupling at the 
interface.
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5  2D Metal Halide Scintillators

Due to their flexibility and lower price, indirect X-ray detec-
tors are still mainstream in the detection market. Due to the 
MQW structure, 2D perovskite has excellent photolumines-
cence quantum yield and good stability, making it a potential 
scintillator material. Manufacturing cost, toxicity, X-ray con-
version efficiency, and resolution are important criteria for 
judging scintillator materials. Based on the above criteria, 
Cao et al. [114] synthesized lead-free 2D  (C8H17NH3)2SnBr4 
perovskite scintillator in air environment. Its quantum yield 
is as high as 98% and has excellent stability and RL inten-
sity under X-ray (Fig. 5a). Generally speaking, the num-
ber of inorganic layers n is difficult to control, so the 2D 
perovskite prepared in general is a quasi-2D, 2D, and 3D 
mixed phase. The preparation of pure 2D perovskite has 
always been a technical difficulty to be solved urgently. 
Recently, Xu et al. [65] prepared pure  BA2PbBr4 single crys-
tal by simple cooling crystallization method, which showed 

intense radioluminescence and ultrafast fluorescence life-
time (Fig. 5b, c). Introducing metal ions (e.g.,  Mn2+,  Li+, 
 Sr2+,  Ba2+) into the inorganic layer is a common method 
to improve the light yield of the scintillator. W. Shao et al. 
[115] introduced an efficient manganese (II) activated 2D 
 BA2PbBr4: Mn (II) perovskite. With an appropriate amount 
of Mn (II) dopant as an activator, the luminescence proper-
ties of  BA2PbBr4 were optimized by effective energy trans-
fer. The device based on the optimum  BA2PbBr4: 10% Mn 
(II) perovskite exhibits excellent sensitivity and light yield as 
high as 85 ± 5 photons  keV−1 (Fig. 5d). Moreover, Li-doped 
2D (PEA)2PbBr4 perovskite crystals were prepared by Xie 
et al. [116], in which Li-dopant serving as traps can broaden 
the X-ray luminescence and enhance the intensity. The light 
yield of 1:1 Li-doped (PEA)2PbBr4 crystal is 11,000 ± 500 
photons  MeV−1, which is much higher than that of undoped 
crystal 8000 ± 800 photons  MeV−1. Finally, they also dem-
onstrated X-ray phase-contrast imaging of Li-(PEA)2PbBr4 
as a scintillator film (Fig. 5e).

Fig. 5  a Stability characterization of RL response of composite films at 40 kV. Reproduced with permission [114]. Copyright 2020, American 
Chemical Society Publications; b Time-resolved photoluminescence (TRPL) spectrum of  BA2PbBr4; c Radioluminescence spectrum (RL) of 
 BA2PbBr4. Reproduced with permission [65]. Copyright 2022, The Royal Society of Chemistry and the Chinese Chemical Society; d Com-
parison of the X-ray scintillation light yield. Reproduced with permission [115]. Copyright 2022, Wiley–VCH Publications; e Schematic of the 
experimental setup for the X-ray imaging system using 1:1 Li-(PEA)2PbBr4 as a scintillator. Reproduced with permission [116]. Copyright 2020, 
Springer Nature Publications
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6  Summary and Outlook

In summary, 2D perovskites are a novel and promising 
category of materials that can complement 3D perovskites 
for X-ray detection and other optoelectronic applications 
owing to their elevated stability and tunability of perfor-
mance through the appropriate design of organic spacer 
cations. In this mini-review, the synthesis scheme of 2D 
perovskite is introduced. Then the research status of 2D 
perovskite in the field of direct X-ray detectors is illus-
trated through its performance analysis. Finally, we dis-
cuss its application to scintillators. To further advance 2D 
perovskite X-ray detectors into the market, we also point 
out key challenges to be explored. We hope that these 
insights will guide us in optimizing the capabilities of 2D 
perovskite X-ray detectors:

6.1  Material Coupling

Owing to the insulating effect of organic spacer cations, 
2D perovskites usually have high charge transport in the 
inorganic plane and inferior cross-layer transport, which 
severely degrades their electrical properties. Moreover, the 
charges in the compounds tend to recombine, thus signifi-
cantly reducing the photoelectric conversion performance 
of the devices. Although the introduction of 3D layers 
can improve the transmission problem, the 2D/3D inter-
face problem due to dielectric mismatch is still a press-
ing research challenge to be solved. Moreover, designing 
organic cations with strong charge transfer capability or 
combining them with other 2D materials (Graphene and its 
derivatives, black phosphorous, transitional metal dichal-
cogenides, and transition-metal carbides and nitrides) may 
be an effective solution [117–119].

6.2  Lattice Adaptation

The unique layered design of 2D perovskite gives flexibil-
ity to its structure. The selection of organic spacer cations 
and halides, and the variation of perovskite layer thickness 
help to adjust the properties of 2D perovskite. However, 
the introduction of different spacer layers in 2D perovs-
kites will lead to different degrees of lattice deformation, 

which is a difficult process to control. Therefore, research 
is also needed to discover more new materials with good 
lattice fitness and excellent performance of spacer layers.

6.3  Toxicity and Synthesis Optimization

2D perovskites generally contain the toxic metal Pb, which 
has been criticized. For now, using Sn or constructing a dou-
ble perovskite structure using two metals instead of Pb is a 
better choice to solve the toxicity. Meanwhile, the manufac-
turing process of 2D perovskite needs to be designed ration-
ally to improve device performance and reduce costs.

In conclusion, although the environmental stability and 
ion migration properties of 2D halide perovskites are better 
than those of 3D devices, their optoelectronic performance 
is still unsatisfactory, and there is still considerable scope 
for improvement. In the area of X-ray detection, there is a 
long way to go to replace the current commercial materials 
for wider commercial applications, both in 2D and even in 
all halide perovskites.
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