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HIGHLIGHTS

• The recent progress on using cell membrane‑coated nanoparticles for drug delivery, cancer treatment, vascular disease, immune 
modulation, and detoxification are summarized in this review.

• The patent applications related to the cell membrane coating technology from the past 10 years are collected, the future challenges 
and trends pertaining to this technology are comprehensively discussed.

• Unique properties of cell membrane‑coated nanoparticles make it a promising strategy for biomedical applications and will make 
outstanding contributions to human health.

ABSTRACT Cell membrane coating technology is an approach to the biomimetic 
replication of cell membrane properties, and is an active area of ongoing research 
readily applicable to nanoscale biomedicine. Nanoparticles (NPs) coated with cell 
membranes offer an opportunity to unite natural cell membrane properties with 
those of the artificial inner core material. The coated NPs not only increase their 
biocompatibility but also achieve effective and extended circulation in vivo, allowing 
for the execution of targeted functions. Although cell membrane‑coated NPs offer 
clear advantages, much work remains before they can be applied in clinical prac‑
tice. In this review, we first provide a comprehensive overview of the theory of cell 
membrane coating technology, followed by a summary of the existing preparation 
and characterization techniques. Next, we focus on the functions and applications 
of various cell membrane types. In addition, we collate model drugs used in cell 
membrane coating technology, and review the patent applications related to this 
technology from the past 10 years. Finally, we survey future challenges and trends 
pertaining to this technology in an effort to provide a comprehensive overview of 
the future development of cell membrane coating technology. 
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1 Introduction

Nanoparticles (NPs) have been extensively explored in 
diagnostic and therapeutic contexts, with potential appli‑
cations to drug delivery, photothermal therapy, diagnostic 
imaging, photodynamic therapy, nucleic acid delivery, and 
implantable devices [1–6]. NPs offer some advantages: 
(1) protecting their cargo from inactivation or degradation 
before target delivery in vivo [7], (2) improving targeting by 
modifying ligands [8], (3) controlling drug release by chang‑
ing the composition of NP polymers [9], (4) allowing for 
batch productions [10]. Despite these advantages, only a few 
NPs have been assessed in clinical trials and successfully 
approved by the US Food and Drug Administration (FDA) 
for clinical translation. Two primary obstacles may explain 
this discrepancy between scientific and clinical findings: (1) 
the ability of organisms to recognize and remove foreign 
substances via NP uptake by the reticuloendothelial system 
(RES), and (2) a complex circulatory environment with high 
levels of proteins and circulating immune cells in vivo, lead‑
ing to interactions that further promote NP clearance [11].

Poly(ethylene glycol) (PEG) has been extensively 
employed as the gold standard means of modifying NP 
surfaces, allowing for a reduction in NP recognition by 
the immune system and thereby extending circulation time 
[12]. The PEGylated polymers used for coating NPs are 
able to create a hydration layer, which is known to mark‑
edly reduce rates of nonspecific interactions in the blood‑
stream and to suppress RES uptake, thus increasing NP 
uptake time in vivo from minutes (for uncoated particles) 
to hours (for PEG‑coated particles) [13, 14]. However, 
PEGylation is an imperfect solution, with recent studies 
revealing that upon subsequent dosing PEG‑coated NPs 
are rapidly cleared by the liver in a phenomenon referred 
to as “accelerated blood clearance (ABC)” [15]. Such rapid 
clearance is associated with both IgM antibodies specific 
for PEG, as well as with PEG‑mediated complement acti‑
vation that can drive hypersensitivity in some cases [16]. 
As a consequence, at present PEG is not well‑suited to 
long term application. In addition, this “bottom‑up” modi‑
fication strategy, which requires pairing with the original 
group, is difficult to apply to large‑scale production.

Effective drug delivery systems must allow for the shield‑
ing of cargo from rapid degradation, long‑term in vivo reten‑
tion, immune escape, controlled and targeted cargo release, 

and the ability to cross specific barriers in vivo [17]. In an 
effort to replicate mammalian physiology, there have been 
many recent efforts to produce biomimetic systems better 
suited to in vivo drug delivery [18]. Such cell biomimetic 
approaches include efforts to replicate the surface composi‑
tion, shape, and movement of normal cellular physiology 
[19]. One of the most prominent approaches to NP function‑
alization relies upon the use of cell membrane coating [20]. 
Cell membrane coating technology is a simple top‑down 
approach which utilizes cell membrane as a carrier facili‑
tating the undetected targeted delivery of core NPs without 
specific regard to inner core nanomaterial properties [21]. 
As the membrane coatings are structurally and functionally 
similar to those of host cells, they can express specific mark‑
ers useful for appropriate NP delivery. For example, CD47, 
an integral membrane protein expressed on red blood cells 
(RBCs) and platelets, functions as a “do not eat me” signal 
that prevents the macrophage‑mediated clearance from cir‑
culation [22]. When NPs are encompassed in a natural cell 
membrane, additional external modifications are no longer 
required. To date, cell membrane coating approaches have 
sought to mimic the surfaces of bacteria, cancer cells, plate‑
lets, RBCs, stem cells, and leukocytes (Table 1). This coat‑
ing strategy has been explored in fields including drug deliv‑
ery, vascular injury repair, tumor imaging, optical therapy, 
detoxification, and immunotherapy.

The present review serves as an overview of recent 
advances in the development of cell membrane coat‑
ing technology. Herein, we systematically describe the 
preparation process for membranes, and survey various 
cell membrane types that have been applied in the text of 
drug delivery system, phototherapy, immunomodulation, 
and detoxification. In addition, we summarize the model 
drugs used for studies of the cell membrane coating tech‑
nologies. Furthermore, we compile the patent applications 
in this field over the past decade. Finally, we discuss the 
future directions of this technology.

2  The Theoretical Basis for Cell Membrane 
Coating Technology

Cell membrane‑coated NPs (CM‑NPs) have recently 
been generated, fusing together the advantages of both 
host cells and artificial NPs [23]. The origin of the cell 
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membrane coating technology can be traced back to 2011, 
when it was first reported by Zhang et al. [24], who took 
a top‑down strategy that employed intact cell membranes 
to coat NPs. Compared with synthetic “stealth” particles, 
NPs coated with an RBC membrane exhibited a longer 
half‑life in vivo in mice, with a retention time in circula‑
tion up to 72 h. This strategy relies on NPs being disguised 
by cell membranes, effectively allowing for these parti‑
cles to interact with the surrounding environment through 
the use of translocation surface membrane components 
[25]. The resultant coated NPs have both the physical and 
chemical properties of the nanocarrier itself, as well as the 
biological properties of natural cells.

2.1  Preparation

There are several extant approaches for fabricating CM‑NPs. 
Conventional generation of CM‑NPs can be separated into 

three key steps: membrane extraction, inner core nanocarrier 
production, and the fusion process (Fig. 1), each of which is 
the key to resultant NP functionalization.

2.1.1  Membrane Extraction

Cell membranes are composed of phospholipids embedded 
with specific surface proteins [26]. The membranes typi‑
cally play central roles in a wide range of biological func‑
tions including transport, cell–cell recognition, and related 
processes [20]. The process of cell membrane extraction 
includes membrane lysis and membrane purification, both of 
which must be as gentle as possible [27]. The exact extrac‑
tion process is determined by the cell type of interest.

For nucleus‑free cells, such as mammalian mature RBCs 
and platelets, the process of membrane extraction is rela‑
tively simple. Initially, cells are isolated from whole blood 
using appropriate methodology, followed by either hypotonic 

Table 1  Summary of the differences among different cell membrane‑coated NPs

Cell membrane type Key features Targeting ability Stage of development Limitations

Red blood cell membrane Long systemic circulation 
(~ 120 d in human and ~ 50 d 
in mice)

Immune evasion
Surface expresses CD47 protein

RES‑targeting Clinical trial Surface modification may induce 
hemolysis

Platelet membrane Long systemic circulation (~ 7 
to 10  d)

Survey for damage
Immune evasion
Surface expresses CD47, CD55 

and CD59
Self‑aggregation
Adhesion at tumor sites

Injury sites‑targeting Clinical trial Small proportion of blood
Undesirable activation

Leukocyte membrane Amoeboid movement
Close relationship with inflam‑

mation
Immune evasion
Endothelial adherence
Solid and metastatic tumor 

interaction

Diseased sites‑targeting Lab study The least component in blood
Various subspecies with different 

morphology
Limited to certain tumors

Cancer cell membrane “Homologous adhesion” to 
tumor sites

Drives tumor‑specific immunity

Tumor‑targeting Lab study Shorter circulation time

Stem cell membrane Long circulation
Tumor‑specific properties

Tumor‑targeting Lab study Low specificity

Fibroblast cell membrane Homologous targeting ability Cancer‑associated 
fibroblasts‑targeting

Lab study Part targeting to normal fibroblast

Bacterial membrane Stimulating innate immunity
Promoting adaptive immunity

Homologous‑targeting Lab study Need to remove peptidoglycan 
during extraction
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lysis or repeated freeze/thaw cycles to mechanically disrupt 
membranes. Differential centrifugation then allows for the 
removal of soluble proteins, after which nano‑vesicles are 
formed via extrusion [28, 29].

Eukaryotic cells, such as leukocytes, cancer cells, and 
stem cells, necessitate complex membrane extraction pro‑
tocols. First, the target cells need to be isolated from tissues 
or blood, following by cell culture [30, 31]. A combination 
of hypotonic lysis, mechanical membrane disruption, and 
discontinuous sucrose gradient centrifugation is then used 
to remove the cell nuclei and cytoplasm to isolate cell mem‑
branes [32, 33]. Membranes are washed by isoionic buffers, 
followed by additional sonication and extrusion through a 
porous polycarbonate membrane [34].

2.1.2  Inner Core Nanocarriers

Inner core nanocarriers are important in generating 
CM‑NPs, as they are the payloads ultimately delivered 
to targeted tissues [35]. In recent years, various type 
of materials (Table  2) for cell membrane encapsula‑
tion have been widely explored and applied, including 

poly(lactic‑co‑glycolic acid) (PLGA) [36], liposomes 
[37],  SiO2 [38], mesoporous silica nanocapsules (MSNs) 
[39], gold [40], iron oxide [41], upconversion nanopar‑
ticles (UCNPs) [42], metal–organic frameworks (MOFs) 
[43], nanogels [44], and black phosphorus [45]. During 
preparation, the inner core nanocarrier should be selected 
according to the needs of the specific cargo delivery.

Organic nanocarriers are made up of organic lipids and 
polymers. The US FDA has approved the use of PLGA 
for such purposes, and this compound is the most widely 
used to organic NP generation owing to its good biocom‑
patibility and high drug loading capacity [46]. Liposomes 
are another kind of commonly‑used nanocarrier, many 
of which have entered clinical trials and received FDA 
approval for specific clinical indications [47].

Inner core nanocarriers are also developed using inor‑
ganic materials, which are low in cost and easy to synthe‑
size, and can be camouflaged with appropriate membrane 
vesicles. It is easy to better controlthe inorganic parti‑
cles’ surface composition, shape, and size based upon 
specific optical, magnetic, or electrical properties [48]. 
Recently, several new inorganic materials have been used 
in cell membrane coating technology. Porphyrinic MOFs, 

Erythrocytes Cancer cell WBCs Platelets Stem cells Bacteria
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membranes

(nanoghosts)

1. Hypotonic treatment
2. Repeated freezing and thawing
3. Ultrasonic cell disruption
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0.5 mL Hamilton syringe

Direction of movement Cell membranes

Protein Silica Golden Iron oxide

Polymer Nanogel MOFs

Porous
Polycarbonate
membrane

Direction of movement

Membrane-coated nanoparticles
collected in the syringe

Physical force to push the plunger

Fig. 1  Membrane coating via physical co‑extrusion approach. After obtaining appropriate cell membranes via hypotonic isolation, repeated 
freeze/thawing, or ultrasonic disruption, synthetic NP cores are co‑extruded through a porous polycarbonate membrane. Adapted from Ref. [23] 
with permission
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Table 2  Inner core nanocarriers for cell membrane coating approaches

Materials Coating cell membrane Features Size (nm) Zeta 
potential 
(mV)

References

PLGA RBC membrane FDA approved
Good biodegradable
Biocompatible
Non‑toxic
High drug loading capacity

97.9 − 31.3 [52]
121.0 − 48.3 [53]

T Cell Membrane 88.3 − 49.2 [54]
Macrophage membrane 84.5 − 41.3 [55]
T Cell Membrane 42 / [56]
Cancer cell membrane 79.8 − 34.3 [57]
Bacterial membrane 93.0 − 24.7 [58]

Liposomes Macrophage membrane Easy preparation
Hydrophilic and hydrophobic cargo delivery

64.5 − 28.0 [32]
RBC membrane 100 − 21.0 [59]

Silica/SiO2 RBC membrane Easy preparation
Good biodegradable

50 − 21 [38]
120 20.9 [60]

Cancer cell membrane 85.7 +35.4 [61]
90.4 +32.7 [62]

MSN RBC membrane Large surface area
Tunable pore sizes
High pore volume

91.2 +5.1 [39]

UCNP RBC membrane Convert near‑infrared (NIR) light into visible light
Narrow emission peaks
Low Toxicity
Good photo‑stability

30 − 5.89 [63]
80 / [42]

Cancer cell membrane 80 / [64]

Gold RBC membrane High photothermal conversion efficiency
Excellent biocompatibility
Tunable localized surface plasmon resonance 

(LSPR) peak

71.2 − 19.7 [65]
70.1 − 42.2 [66]

Platelet membrane Length 50 nm
Width 12 nm

+ 35 [67]

Cancer cell membrane 82.3 − 19.7 [40]
Bacterial membrane 30.3 − 38.6 [68]

Iron Oxide Cancer cell membrane Low toxicity
Good biocompatibility
High stability
Capability as magnetic resonance imaging (MRI) 

contrast agents

285.6 − 4.4 [69]
Myeloid‑derived 

suppressor cell mem‑
brane

80 − 18 [70]

RBC membrane 82.3 − 14.2 [71]
172.3 − 14.4 [72]
151 − 27.9 [41]

MOFs Cancer cell membrane High photosensitizers loading
Facilitate intersystem crossing for PDT

126.9 + 25.8 [49]

Nanogel RBC membrane High drug loading
Have a macroporous structure

170 / [44]
130.2 − 23 [73]
104 / [74]

BP RBC membrane High photothermal conversion efficiency
Excellent biodegradability

3 − 17 [45]

Bovine serum albumin RBC membrane Unique spatial structure
Increase the solubility of insoluble drugs
Protecting oxidizable drugs

67 − 23.1 [75]

Perfluorocarbon (PFCs) RBC membrane Highly hydrophobic and lowly reactive
Have ability to dissolve large amounts of gases such 

as oxygen and carbon dioxide

380 − 50 [76]
140 − 32 [77]

Nanocrystals RBC membrane High drug loading 80 − 18 [78]
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including porous coordination network (PCN)‑224, exhibit 
high loading capabilities for effective cytotoxic reactive 
oxygen generation in photosensitization applications. A 
study of cancer cell membrane‑coated PCN NPs for tumor 
treatment has confirmed its effective functionality in the 
text of photodynamic therapy (PDT) [49]. Nanogel is also 
an ideal core material due to its macroporous structure 
and high loading capacity that required for multiple ther‑
apeutic strategies [50]. Black phosphorus (BP) has also 
been identified as an efficient photothermal therapy (PTT) 
agent for cancer therapy due to its excellent photothermal 
performance [51]. Negative potential and biodegradabil‑
ity enable BP to combine with cell membranes. Liang 
et  al. [45] first reported BP‑RBC membrane‑mediated 
PTT together with antibody‑mediated checkpoint block‑
ade, thereby allowing for increased tumor infiltration and 
 CD8+ T cell activity, constraining basal‑like breast tumor 
growth in vivo.

2.1.3  Fusion Process

After obtaining the membrane and the inner core nanocar‑
rier, these two materials must be fused so that the membrane 
can cover the surface of the core, yielding cell membrane 
biomimetic NPs. Currently, there are three fusion methods in 
use: membrane extrusion, ultrasonic fusion, or electropora‑
tion. Membrane extrusion and ultrasonic treatment are the 
two most frequently used methods in the literatures to date. 
For cell membrane extrusion, both membrane vehicles and 
inner core nanocarriers can be extruded for several times 
repeatedly through a nanoscale polycarbonate porous mem‑
brane using an Avanti mini extruder. During this extrusion 
process, mechanical forces lead to cell membrane coating 
of NPs [79]. This method is convenient and effective, but it 
is difficult to prepare on a large scale. When NP cores are 
co‑incubated with membrane components and sonicated, 
this can similarly drive cell membrane‑coated NP genera‑
tion, although the resultant particles can vary significantly 
in terms of size and lack uniformity [80]. Recently, a novel 
microfluidic electroporation approach has been utilized for 
membrane‑coated NP generation. The device first merges 
together components in a Y‑shaped channel before mixing 
them thoroughly prior to electroporation. With appropriate 

optimization, this approach has been used to achieve effi‑
cient and reliable NP generation [81].

2.2  Characterization

The evaluation of CM‑NPs includes an assessment of their 
physicochemical and biological properties, in order to con‑
firm that the cell membrane has been successfully coated 
on the NP surface. The success of cell membrane coating 
can be determined based upon NP size, surface charge, and 
protein composition.

Cell membrane coating alters both NP size and zeta 
potential, and transmission electron microscopy (TEM) 
images can be used to confirm the morphology of CM‑NPs 
(Fig. 2a) [36]. TEM images of CM‑NPs exhibit a roughly 
20 nm increase in diameter compared with uncoated NPs. 
Scanning electron microscopy (SEM) can further be used 
as a means of examining membrane‑coated NP morphology 
(Fig. 2b) [82]. Zeta potential offers information regarding 
the surface potential of particles prior to and following the 
coating process. For example, in one study, following RBC 
membrane coating the zeta potential of particles increased 
by ~ 10‑mV (Fig. 2c) [36]. Particle size distributions can 
further be assessed via dynamic light scattering (DLS) meas‑
urements, with coated particles increasing in size relative to 
uncoated particles (Fig. 2c).

Physicochemical properties alone can confirm that coat‑
ing was successful; the biomimetic function of the cell 
membrane depends on its biological characteristics. As 
such, verifying that this membrane is correctly oriented and 
biologically active is essential to ensure optimal NP coating 
efficacy. Western blotting is a common molecular biology 
technique useful for confirming protein expression in cells 
or other experimental systems, allowing researchers to con‑
firm the presence of particular surface proteins on coated 
NPs. For example, the results shown in Fig. 2d confirmed 
the presence of CD47 (an RBC membrane marker) on the 
surface of the RBC membrane‑coated NPs (RBCM‑NPs) 
[83]. Relative protein levels in source cell membranes, 
membrane extracts, and coated NPs can thus be tested via 
SDS‑PAGE, and in this instance levels were similar across 
samples (Fig. 2e), confirming that the membrane proteins 
on RBCM‑NPs were consistent for all stages of fabrication.

In summary, the preparation and characterization of CM‑
NPs is a relatively well‑developed process. As the demand 
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for these particles and the scope of their utilization con‑
tinue to develop, these methods are being further optimized. 
In addition, the types of materials used for the inner core 
particles continue to increase, utilizing different forms of 
liposomes, nanogels, nanoemulsions, and nanocrystals. With 
this continuing diversification of the inner core, the available 
means of characterization are becoming increasingly abun‑
dant (including strategies relying upon the ultraviolet and 
infrared spectra), in order to fully ensure that the preparation 
of CM‑NPs is consistent with experimental expectations.

3  RBC Membrane‑Coated Nanoparticles

RBCs are the most prevalent form of blood cell in humans, 
and are essential for transporting oxygen from the lungs to 
distal sites via the hemoglobin protein contained within each 
cell. Normally, RBCs are 7–8 µm in diameter, and as thin 
as 1 µm in the center of each cell. RBCs also lack nuclei, 
and are able to undergo changes in shape while circulating 
through the body. In addition, RBCs can be easily isolated 
from donor blood, and they thus represent a potentially ideal 
source of cellular membranes well suited to in vivo circu‑
lation throughout the vasculature of patients [84]. RBCs 

express the self‑recognition protein CD47 on their surface, 
and this protein is recognized by the reticular endothelial 
system (RES), allowing for long‑term RBC circulation 
in vivo (~ 120 d in human and ~ 50 d in mice) [85]. When 
erythrocyte membranes are used to coat NPs, the resultant 
particles exhibit surface antigens consistent with a “self” 
identity, allowing these particles to circulate for longer with‑
out being recognized and eliminated by macrophages in vivo 
[86]. RBCs are completely biodegradable and nontoxic. In 
addition, as the membrane of RBCs is only semi‑permea‑
ble, cargo release is gradual, thus ensuring that a sustained 
release can be achieved when utilizing RBCM‑NPs [39].

3.1  Drug Delivery

In the past 10 years, RBCs have been a major topic of 
research interest as a means of achieving effective drug 
delivery, owing to their excellent biocompatibility [87], lim‑
ited immunogenicity [88], flexibility, and prolonged circula‑
tion [89]. In one recent report, mesoporous silica nanocap‑
sule NPs coated with an RBC membrane were demonstrated 
to exhibit long‑term circulation in the bloodstream, allowing 
for effective drug release and tumor imaging applications 
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[39]. MSNs and RBC membranes in this study were co‑
loaded with the anticancer drug doxorubicin (DOX), with 
drug loading (DL%) and encapsulation efficiencies (EE%) 
of 39.8% and 97.6%, respectively. When NPs were coated 
using an RBC membrane, NP circulation time increased sig‑
nificantly, likely as a consequence of membrane‑mediated 
immune evasion by these particles. The RBC membrane 
additionally ensured that DOX was not prematurely released 
from particles.

RBC membrane‑encapsulated NPs are able to overcome 
certain drug limitations, such as poor water solubility or 
significant side effects. For example, Gambogic acid (GA) 
is a novel potential anticancer compound, but it is known 
to exhibit poor water solubility and to have a potentially 
high rate of adverse side effects, limiting its clinical utility. 
To overcome such limitations, Zhang and colleagues coated 
PLGA NPs with RBC membrane, and assessed whether 
such coating of GA‑loaded NPs was compatible with drug 
retention and better GA antitumor efficacy [89]. In their 
study, they demonstrated that RBCm‑GA/PLGA NPs not 
only achieved antitumor efficacy in vitro, but also inhibited 
subcutaneous tumor growth in vivo, caused tumor necrosis, 
and decreased tumor volume, whereas an equivalent dose 
of uncoated GA was only marginally able to control tumor 
growth, doing so far less effectively in vivo than in vitro. 
As such, the resultant biomimetic NPs were better able to 
exploit the antitumor properties of GA. In another example, 
Fu and colleagues developed a means of co‑encapsulating 
paclitaxel (PTX) and DOX into magnetic O‑carboxymethyl‑
chitosan NPs coated with RBC membrane [90]. They then 
evaluated potential PTX and DOX‑associated side effects. 
They found that IgE levels in NP‑treated groups tended to be 
normal, whereas  Taxol® or  Taxol®/DOX markedly increased 
these levels. After treatment with free DOX, they also 
observed myofibrillar loss as well as cytoplasmic vacuoliza‑
tion, whereas animals treated with NP formulations of these 
drugs exhibited far lower rates of such outcomes. Impor‑
tantly, these NPs also better allowed for the maintenance of 
normal myocardial morphology. Zhang’s group have found 
that supplementing RBC membranes with additional choles‑
terol can allow for better maintenance of a pH gradient in 
the resultant NPs, allowing for more effective DOX and van‑
comycin (Vanc) loading. When this group employed DOX‑
RBC particles as a means of treating breast cancer model 
mice, they found that the NPs effectively constrained tumor 
growth. Similarly, Vanc‑RBC particles were effective means 

of reducing bacterial titers in a model of methicillin‑resistant 
Staphylococcus aureus (MRSA) skin infection, preventing 
lesion formation completely over a 5‑day period [91].

RBCM‑NPs offer many advantages, but in order to 
achieve effective targeting, some functionalization meas‑
ures need to be taken. Recently, an RBC membrane‑coated 
solid lipid NP was developed and modified to contain the T7 
and NGR peptides [88]. When loaded with vinca alkaloid 
vincristine (VCR), the resultant particles achieved effective 
anti‑glioma efficacy both in vitro and in vivo owing to their 
effective dual targeting efficacy. Similarly, Zhang et al. [87] 
have modified RBCM‑NPs by employing a lipid insertion 
approach to add recombinant anti‑EGFR‑iRGD to the par‑
ticle surface, allowing them to achieve successful and accu‑
rate tumor‑targeting in a high EGFR‑expressing colorectal 
cancer model, whereas NPs without peptide modification 
were less efficacious. The particles could also be loaded 
with GA, leading to better anti‑tumor efficacy than that of 
free GA. Chai and colleagues similarly utilized a target‑
ing moiety derived from a neurotoxin in order to develop 
modified RBC NPs [92]. They conjugated biotin to the CDX 
peptide (DCDX), and then used avidin to bind this peptide 
to the surface of the RBC NPs, with the resulting particles 
achieving significantly higher brain distributions (Fig. 3a). 
Specifically, the DCDX‑RBC NPs were present at markedly 
higher levels in the cortical, hippocampal, ventricular, and 
corpus striatal regions. When used in mice bearing an intrac‑
ranial U87 glioma model tumor, the investigators were able 
to assess the distribution of the resultant NPs over the course 
of tumor progression (Fig. 3b). At all assessed time points, 
the investigators found that the DCDX modification resulted 
in higher levels of fluorescence in the brain and tumor. The 
investigators further utilized frozen tumor sections to assess 
NP distribution in vivo in a more accurate manner (Fig. 3c). 
The DCDX‑RBC NPs were ultimately distributed at higher 
levels in glioma tissues, and were primarily restricted to the 
tumor rather than to the surrounding vasculature. Impor‑
tantly, the modified NPs were able to prolong murine median 
survival by 4.3‑fold relative to mice treated with RBC NPs 
lacking the DCDX modification (Fig. 3d). When the particles 
were loaded with DOX, DCDX‑RBC NPs induced signifi‑
cantly higher levels of apoptosis and reduced angiogenesis 
more effectively than did unmodified RBC NPs loaded with 
DOX (Fig. 3e, f). The results of this study thus confirm 
that DCDX modification of RBC NPs may be an effective 
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glioma treatment strategy owing to the ability of the peptide 
to mediate drug delivery over the blood brain barrier.

RBC membranes have also been used to achieve better 
glucose‑responsive insulin delivery to patients. For example, 
Gu et al. [93] determined that RBC membranes can effec‑
tively bind to insulin that had been modified using a deriva‑
tive of glucose (termed Glc‑Insulin). In a murine model of 
inducible type 1 diabetes, they found that RBC membrane‑
coupled Glc‑insulin had a longer half‑life following intrave‑
nous injection in vivo, improving the maintenance of normal 
blood glucose levels. This may be associated with the pres‑
ence of glucose transporter (GLUT) molecules on the RBC 
surface, thus allowing for reversible interactions between 
Glc‑insulin and RBC membranes such that in the presence 
of high glucose levels, insulin molecules are released, as free 
glucose undergoes a competitive interaction with GLUTs.

RBC membranes are biogenic, and they have potential 
to replace PEG in some contexts and to overcome drug 
limitations. At present, an extensive body of research has 
focused on the development of RBCM‑NPs, with increas‑
ingly advanced particles being developed regularly.

3.2  Phototherapy

Phototherapy is a noninvasive approach to treating cancer, 
and encompasses techniques including PDT and PTT [77]. 
During cancer therapy, PDT and PTT have shown promis‑
ing utility while inducing minimal side effects and main‑
taining high selectivity [94]. PDT has been exploredto 
treat a wide array of disease types [63]. Pei et al. [95] 
developed NPs coated with RBC membrane that mediated 
drug release in response to light, allowing for synergis‑
tic PDT‑mediated chemotherapy. An inner core NPs was 
composed of a combination of a reactive oxygen species 
(ROS)‑sensitive PTX dimer  (PTX2‑TK) as well as a photo‑
sensitization agent (5,10,15,20‑tetraphenylchlorin (TPC)). 
When studied in vitro, the resultant NPs were readily inter‑
nalized into the endosomes of cells, and the circulation 
of these RBC membrane‑coated NPs was extended by 
the coating process, with reduced liver uptake consistent 
with these particles being recognized as “self” to avoid 
RES‑mediated liver uptake (Fig. 4a, b). Importantly, RBC 
membrane coating of NPs led to higher concentrations of 
 PTX2‑TK in the tumor tissue with maximal doses achieved 
23 h following administration (Fig. 4c). Exposure to the 

proper light source was able to trigger ROS generation 
for PDT, as well as cleavage of the  PTX2‑TK molecule 
to release chemotherapy drugs in a controlled manner. 
In this study, researchers used a murine human cervical 
carcinoma model system to assess the in vivo efficacy of 
the particles in nude mice. Mice were i.v. administered 
a range of formulations containing PTX (30 mg kg−1) 
and TPC (10 mg kg−1), and after 6 h appropriate animals 
underwent a 15‑min irradiation step using a 638 nm laser 
lamp (200 mW  cm−2). This led to some inhibition of tumor 
progression, indicating that PDT and chemotherapy can 
be effectively combined in vivo (Fig. 4d). Importantly, 
drug‑loaded NPs coated with RBC membrane achieved 
the most profound anti‑tumor efficacy in animals, owing 
to their extended circulation and preferential accumulation 
within tumors. Excised tumor volumes (Fig. 4e, g) were 
consistent with findings in vivo (Fig. 4f). Animal body 
weights were unchanged by treatment, suggesting that 
none of the NPs were inherently toxic (Fig. 4f). Addition‑
ally, stained tumor sections revealed that nuclear ablation 
was best achieved in animals treated using drug‑loaded 
RBC membrane‑coated particles (Fig. 4h).

In a related approach, Xuan et al. [96] produced RBC 
membrane‑coated mesoporous silica NPs to deliver photo‑
sensitization agents, and they combined the particles with 
magnetic targeting in order to enhance PDT efficacy. In this 
approach, mechanically separated RBC membrane vesi‑
cles were used to coat mesoporous silica NPs that had been 
loaded with the PDT agent hypocrellin B (HB). They found 
that RBCM‑NPs were able to circulate significantly longer 
in vivo, and represented a viable means of HB delivery. By 
combining the particles with magnetic field‑mediated tar‑
geting and appropriate light irradiation, the authors dem‑
onstrated the ability of the RBCM‑NPs to mediate effective 
HB accumulation in tumors, thereby enhancing anti‑tumor 
efficacy and constraining growth of the 4T1 tumor model 
in mice.

Liu et al. [97] utilized magnetic RBCM‑NPs generated via 
a microfluidic electroporation approach to achieve good PTT 
treatment efficacy. They employed a microfluidic chip to 
achieve successful electroporation‑mediated fusion of RBC 
membrane vesicles and NPs, allowing for the production 
of particles which could then be administered to BALB/c 
nude mice implanted with the human breast MCF‑7 tumor 
cell line. They found that the RBCM‑NPs were able to accu‑
mulate in tumors better owing to an enhanced permeability 
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and retention (EPR) effect. When animals were treated via a 
1‑h laser irradiation following administration of differently 
prepared NPs, the authors found that the tumor temperature 
in mice treated using electroporation‑generated RBCM‑NPs 
rapidly rose over a 5‑min period from 34.5 to 55.2 °C fol‑
lowing laser treatment (Fig. 5a). Tumor growth was almost 

completely inhibited in these animals (Fig. 5b), and they 
achieved the best tumor inhibition of all treated groups 
(Fig. 5c). H&E and TUNEL‑staining (Fig. 5d) further con‑
firmed that PTT following treatment with the NPs led to a 
near complete destruction of tumor tissues, with extensive 
cell necrosis and apoptosis.
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One recent PTT strategy has focused on using RBC mem‑
branes to coat nanorods [98]. When animals bearing tumors 
were treated with the resultant biomimetic nanorods and 
laser irradiated, animals in a group that received cyclopa‑
mine achieved the highest average temperature (57.2 °C) 
at the tumor site, as compared to 48.5 °C in control ani‑
mals. Tumor size reductions were also most significant in 
the treated mice (Tumor growth inhibition rates based on 
tumor size (TGIRv): 80.60 ± 0.21%; Tumor growth inhibi‑
tion rates based on tumor weight (TGIRw): 81.1 ± 0.151%) 
bearing Capan‑2 xenografts. In a separate study, Liu et al. 
[99] coated gold nanocages with RBC membranes. They 
modified RBC membranes with antibodies specific for 
EpCam, thereby allowing for targeting of the anti‑cancer 
drug paclitaxel to 4T1 tumor cells following gold nanoc‑
age encapsulation. Following appropriate laser irradiation 
(808 nm; 2.5 W cm−2), the tumor temperature rose to 49 °C 
in animals treated with these particles within 5 min, whereas 
PBS‑treated control animals exhibited only a 3 °C increase. 
This localized hyperthermia was able to release PTX owing 

to heat‑mediated RBC membrane disruption, and directly 
damage surrounding tumor cells.

Both PDT and PTT together represent a viable strategy for 
enhancing anticancer therapeutic activity. Ren et al. [100] gen‑
erated an RBC membrane‑coated oxygen‑enriched biomimetic 
particles for PTT. They prepared HAS NPs containing a near 
infrared (NIR) dye and perfluorotributylamine (PFTBA), and 
the NPs were enclosed in an RBC membrane. Following irra‑
diation with a NIR laser (808 nm, 1 W cm−2, 3 min), the parti‑
cles were able to achieve a 62% tumor inhibition rate for PDT 
alone, and a 93% rate when PDT and PTT were combined. In 
a similar strategy, RBC‑coated particles have been generated 
that target tumors and contain a bovine serum albumin (BSA) 
core with 1,2 diaminocyclohexane‑platinum (II) (DACHPt) 
and indocyanine green (ICG), which are surrounded by an 
RBC membrane modified with appropriate targeting peptides 
[75]. The resultant particles were able to specifically target and 
ablate B16F10 tumors and prevent lung metastases from devel‑
oping in vivo via the combination approach of PDT and PTT.

It is clear that phototherapy research in the context of 
RBCM‑NPs is largely tumor‑focused, and the prolonged 
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circulatory characteristics of RBCs have been of great value 
in this context. RBC membranes are the first choice for bionic 
medical applications of new materials (e.g., BP) owing to their 
relatively easy extraction procedures. RBC membrane coating 
is thus the first step towards the development of biomimetic 
membrane‑coated NPs. In addition, targeted modifications 
can allow RBCM‑NPs to be further functionalized so as to 
achieve better therapeutic efficacy, and at present the combina‑
tion of various therapeutic strategies represents a major area 
of research in the field of RBCM‑NPs.

4  Platelet Membrane‑Coated Nanoparticles

Platelets are cells that arise from megakaryocyte progenitor 
cells [101]. They are vital blood components, participating in 
a wide range of processes including immunity, wound heal‑
ing, and the metastasis of tumors [102]. Platelets are produced 
in large quantities in humans with a size of approximately 
1–3 mm in diameter, surviving for 7–10 days on average in 
circulation [103, 104]. Platelet membranes offer potential 
advantages for NP coating, as they can mediate immune eva‑
sion through both CD47‑mediated macrophage evasion and 
CD55/59‑mediated avoidance of complement activation [102], 
with the latter two receptors being regulators of the comple‑
ment cascade [105]. The platelet CD44 and P‑selectin recep‑
tors can also allow them to bind to circulating tumor cells 
[106]. They can further indirectly interact with tumors and 
other cells via release factors that can promote aggregation 
including MMP‑2 and thromboxane‑A2 (TXA2), and in 
tumors, platelets have been shown to mediate tumor‑induced 
platelet aggregation in a manner dependent upon the GPIb and 
GPIIb/IIIa receptors [107].

4.1  Drug Delivery

Platelet membranes offer an opportunity to achieve NP‑
mediated drug delivery in a fashion which can specifically 
target tumor cells while evading immune detection [108]. 
As an example of this approach, Hu et al. [106] produced 
platelet membrane‑coated nanovesicles (PMNVs) capable 
of delivering DOX and tumor necrosis factor (TNF)‑related 
apoptosis inducing ligand (TRAIL) to target cells. Specifi‑
cally, these PMNVs delivered TRAIL to the membranes of 
MDA‑MB‑231 cells, thereby inducing their extrinsic apop‑
totic death. PMNVs further contained an acid‑sensitive 

matrix that was degraded upon particle endocytosis, leading 
DOX to be released into cells to promote further apoptotic 
death via the intrinsic pathway. As metastatic tumor cells 
in particular depend upon platelet‑mediated aggregation for 
their ability to spread through their body, such PMNVs offer 
an opportunity to specifically target cancer cells with meta‑
static potential. In a separate study, researchers developed 
platelet membrane‑coated NPs via surrounding DOX and 
melanin NPs (MNPs) with platelet vesicles modified using 
the RGD peptide (RGD‑NPVs) [109]. The resultant particles 
were able to both evade immune‑mediated elimination and 
target tumor vasculature‑associated αvβ3 integrin expression 
as well as resistant MDA‑MB‑231 tumor cells, inhibiting 
drug‑resistant breast cancer (MDA‑MB‑231/ADR) growth 
via this dual‑targeting approach. Liu et al. [110] similarly 
used cholesterol‑enriched platelet membranes as a means of 
encapsulating DOX and Vanc with a high rate of encapsula‑
tion efficiency, thereby allowing for effective drug delivery 
approaches. These particles had a natural affinity for 4T1 
breast cancer cells and methicillin‑resistant Staphylococcus 
aureus, offering an opportunity to enhance their ability to 
target disease in vivo, thus making the drug payloads more 
potent than untargeted free drug.

Platelets are able to bind to the subepithelial collagen 
exposed upon epithelial damage, and this binding has 
been leveraged to treat coronary restenosis–a condition 
that restricts arterial blood flow due to intima overgrowth 
following injury [25]. Recent efforts to produce platelet‑
mimetic NPs (PNPs) have exhibited increased DOX and 
Vanc efficacy when these PNPs were used for drug deliv‑
ery in rodent models of coronary restenosis and bacterial 
infection, respectively [111]. Further testing of the parti‑
cles was conducted using a human carotid artery segment 
in which the subendothelial layer was exposed via wounding 
(Fig. 6a). When arterial samples were exposed to fluorescent 
PNPs, cross section imaging revealed these particles to more 
readily adhere to the wounded tissue samples than to intact 
ones (Fig. 6b, c), with additional binding to the edges of 
intact samples at sites where subendothelial tissue had been 
exposed during tissue isolation (Fig. 6c). This in vitro result 
was consistent with results from an in vivo rat angioplasty‑
induced arterial injury model, wherein 2 h following PNP 
administration there was evidence of selective binding spe‑
cifically to denude arterial tissue regions (Fig. 6c). PNPs 
localized to the luminal smooth muscle layer (Fig. 6e) for a 
minimum of 5 days on average following treatment (Fig. 6f). 
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When rats were treated with PNP‑Dtxl particles, neointimal 
growth was markedly inhibited based on arterial cross‑sec‑
tions collected 14 days following injury (Fig. 6g, h), with 
PNP‑Dtxl yielding a markedly lower intima‑to‑media ratio 
(I/M) and luminal obliteration relative to free drug (Fig. 6i). 
As such, these findings clearly demonstrate that PNPs can 
be used to effectively mediate drug delivery in the context 
of vascular disease.

A separate group sought to use platelet membrane‑coated 
polymeric nanoclusters to target injured arterial wall at the 
site of restenosis [112]. In this study, researchers loaded 
these nanoclusters using an epigenetic inhibitor (JQ1) known 
to protect the endothelium, or using rapamycin which is 
known to be toxic to the endothelium, and they then com‑
pared their ability to impair restenosis without disrupting 
endothelial healing. The platelet‑coated nanoclusters were 
home specifically injured and not uninjured arterial sites, 
and at 2 weeks post‑angioplasty, both of the drug‑loaded 
biomimetic nanoclusters significantly reduced neointimal 
hyperplasia by more than 60% relative to controls.

Platelets are intrinsically capable of binding plaques and 
homing to regions of atherosclerosis, potentially making 
them viable for the treatment of such disease. Song et al. 
[113] have recently utilized PNPs with a PLGA core con‑
taining rapamycin to target drug delivery to atherosclerotic 
plaques. They found that the PNPs exhibited an almost five‑
fold increase in radiant efficiency relative to control uncoated 
particles, confirming the ability of the platelet membrane to 
mediate atherosclerotic plaque homing in vivo. They further 
observed a significant reduction in atherosclerotic progres‑
sion in apolipoprotein E‑deficient  (ApoE−/−) model mice 
administered the rapamycin PNPs, with improved plaque 
stabilization. Together, the findings thus clearly indicate that 
platelet membrane‑coated NPs represent a potential strategy 
for targeting and treating atherosclerosis.

Relative to RBCs, platelets are better suited to target 
injured tissues and tumor sites. Platelet membrane‑coated 
NPs represent an ideal approach to drug delivery owing to 
their durable in vivo circulation and effective targeting to 
specific sites. This approach offers an new opportunity for 
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the treatment of vascular diseases, including both restenosis 
and atherosclerosis.

4.2  Phototherapy

In addition to their utility for traditional drug delivery, PNPs 
may also represent ideal mediators of more effective PDT. 
Xu et al. [114] developed a PNPs containing verteporfin 
which serves as a sensitization agent, demonstrating that 
loading PLGA PNPs with verteporfin altered its absorption 
peak from 682 to 712 nm, thereby better facilitating penetra‑
tion of deeper tissue. When the particles were compared 
in vivo in a murine 4T1 tumor model, they found that there 
was a much stronger fluorescent signal in mice treated with 
the PNPs relative to mice treated with comparably‑prepared 
NPs instead coated with RBC membrane (Fig. 7a–c). Fol‑
lowing a 10‑min irradiation period (680–730 nm) 1 day fol‑
lowing NP administration, infrared thermographs (Fig. 7d) 
revealed an elevated 35.9 °C local temperature in PNP‑
treated mice (Fig. 7e), likely as a result of the better tumor 
accumulation of these particles. Using Ver‑loaded particles, 
they then assessed the relative utility of PNPs and RBC‑
coated NPs for tumor treatment, irradiating mice as above 
(680–730 nm; 0.05 W cm−2) daily for 3 days and then moni‑
toring mice for up to 25 days. The average tumor volume of 
mice treated with these Ver‑PNPs significantly decreased 
during the 4 days following treatment, with sustained sup‑
pression of tumor growth through the remainder of the study 
period (Fig. 7f). Consistent with this, following animal sac‑
rifice at the study end, tumors from PNP‑treated mice were 
smaller than those from other treatment groups (Fig. 7g). 
Importantly, 100% of mice in the Ver‑PNP group survived 
during the 35‑day study period (Fig. 7h). When tissue sec‑
tions were collected from tumors of mice on the third day of 
treatment, H&E staining revealed there to be more signifi‑
cant lesion formation in mice treated with Ver‑PNPs relative 
to other mice, and consistent findings were evident on day 
35 when mice were sacrificed (Fig. 7i). Both Ver‑PNP and 
control mice showed no evidence of skin tissue damage near 
the tumor site, suggesting that no photo‑induced skin dam‑
age was induced (Fig. 7j).

As platelets could target lesions in vivo, this offers a novel 
strategy for PTT treatment. Liu et al. [67] have developed 
a platelet mediated tumor therapy strategy wherein the 
used PLTs to serve as a means of targeting photothermal 

compounds to tumor sites, thereby enhancing PTT efficacy. 
To this end, they loaded PLTs with gold nanorods via elec‑
troporation, yielding molecules which offered the advan‑
tageous photothermal properties of these gold nanorods 
together with prolonged in  vivo circulation. When the 
resultant PLTs were administered to mice, the authors found 
local irradiation to be able to inhibit local head and neck 
squamous cell carcinoma (HNSCC) growth. Mice treated 
with the PLTs also exhibited the most significant increase in 
temperature following irradiation, likely due to the ability of 
these particles to circulate for extended periods and to effec‑
tively target tumors in vivo. Importantly, temperature rose 
following each treatment, suggesting that following PTT 
ablation, tumors attracted further nanorod‑containing PLTs, 
creating a positive feedback loop useful for PTT‑mediated 
tumor destruction.

Liu et al. [115] also demonstrated the ability of PNPs 
to improve cancer diagnostics. To achieve this, they coated 
 Fe3O4 magnetic NPs (MNs) with murine platelet membrane 
vesicles, yielding PLT‑MNs useful both for MRI and PTT. 
These PLT‑MNs still absorbed UV light at ~ 808 nm, con‑
sistent with their potential for PTT utility (Fig. 8a). Follow‑
ing irradiation, it was clear that both MNs and PLT‑MNs 
achieved comparable efficacy, confirming that PLT coating 
does not interfere with PTT efficacy in vitro (Fig. 8b). The 
authors also demonstrated that PLT‑MNs were better able 
to achieved MCF‑7 cancer cell killing at the site of laser 
irradiation than were MNs, owing to the selective binding 
of PLT‑MNs to tumor cells (Fig. 8c). After mice bearing 
the MCF‑7 tumors were treated using PLT‑MNs and laser 
irradiation, there was an increase in the temperature of the 
tumor from 34.4 to 56.1 °C within 5 min (Fig. 8d), and there 
was also a 1.3 °C increase following magnetic field applica‑
tion, consistent with PLT‑MN magnetic targeting. Tumor 
volumes and weights were also monitored in these mice, 
revealing near complete tumor ablation in mice treated using 
a combination of PLT‑MNs, magnetic fields, and laser irra‑
diation (Fig. 8e‑g). Consistent with this, histological find‑
ings clearly indicated impaired tumor growth following this 
combination of treatments (Fig. 8h).

While PNPs have already been shown to be effective for 
PTT and PDT, some of the materials used for the inner core 
of such molecules may be limited in their utility as a conse‑
quence of hypoxic tumor environments and susceptibility to 
oxidative damage, necessitating a combination of PDT and 
PTT. In an effort to enhance PDT efficacy and to overcome 
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Fig. 7  Mice received an i.v. injection of NPs, and after 12, 24, and 48 h, tumors and organs of random mice were isolated and used to assess 
fluorescence and verteporfin levels therein following homogenization. a–c In vivo fluorescence images of mice implanted with 4T1 tumors 12, 
24, and 48 h following injection of a PNPs and b RBC‑coated NPs loaded with the red membrane dye DiR, with black circled dots identifying 
tumors. c Total radiant efficiency in tumors was determined based on the images from a and b. d Mice (n = 5/group) were irradiated with 680–
730 nm light (0.05 W cm−2) for 10 min, 24 h after administration of PBS or of PNPs or RBC‑coated NPs loaded with verteporfin. e Quantifica‑
tion of average tumor center temperatures from d. Data are mean ± S.D. f Average tumor volume in mice following light irradiation. g Tumors 
were excised from treated mice 35 days following NP administration. h Mouse survival and i average body weight of differently treated mice 
following light irradiation. Mice treated using RBC‑coated NPs loaded with verteporfin are included for reference, as are PBS‑injected controls. 
Data are mean ± standard deviation. j Tumor and skin sections stained with H&E on days 3 and 35 after NP administration. Scale bar = 50 µm. 
*p < 0.05 and **p < 0.01. Adapted from Ref. [114] with permission



Nano‑Micro Lett. (2019) 11:100 Page 17 of 46 100

1 3

tumor hypoxia, Zuo et al. [116] developed a novel PNP drug 
delivery system wherein  W18O49 NPs and metformin (Met) 
were loaded into PNPs to allow for simultaneous PDT and 
PTT mediated by these two respective compounds. When 
Raji cells were combined with these PNPs and irradiated 
via 808 nm laser for 10 min, viability markedly decreased, 
and co‑loading of Met greatly improved PDT efficacy. Rates 
of apoptosis were much higher when cells were treated with 
PNPs containing  W18O49 with Met (88.30% apoptotic) or 
without Met (52.97% apoptotic) as compared to free  W18O49 
alone. In addition, generation of ROS and heat were mark‑
edly enhanced by these PNPs in vitro, and in vivo these 
dual‑loaded PNPs markedly enhanced the therapeutic effi‑
cacy of these compounds, impairing Raji tumor growth and 
increasing rates of apoptosis.

Phototherapy is a major area of active cancer therapy 
research. The adhesive properties of platelets offer an oppor‑
tunity to overcome the limitations of the uneven distribution 
of photosensitizers and photothermal converters in the con‑
text phototherapy. PTT relies upon thermal damage inducing 
cancer cell death, and this feedback after injury can facilitate 
passive platelet targeting, leading to their additional recruit‑
ment and enhancement of the photothermal effect. Thus, 
combining platelet membrane coating and PDT/PTT offers 
an opportunity to enhance the utilization of PTT in the treat‑
ment of cancer.

5  Leukocyte Membrane‑Coated 
Nanoparticles

Leukocytes, or white blood cells (WBCs), are immunologi‑
cal cells essential for defending hosts against pathogen inva‑
sion and disease [117]. These cells are significantly larger 
than RBCs, moving in an amoeboid fashion that allows for 
their rapid and effective extravasation from the blood into 
surrounding tissues, leading the cells to be abundant both in 
circulation and in extravascular sites [118]. There are five 
primary classes of leukocytes: lymphocytes, monocytes, 
neutrophils, eosinophils, and basophils. Relative to RBCs 
and platelets, WBCs are more complex and are nucleated, 
making the isolation of their membranes a more significant 
challenge. WBCs are closely tied to inflammatory processes 
and pathogen control, with cells such as monocytic mac‑
rophages serving to consume debris and microbial pathogens 
directly, whereas other cells rely on the release of cytotoxic 

and lytic compounds to destroy these pathogens [119]. Dis‑
tinct leukocyte types are involved in the pathogenesis or 
prevention of specific diseases, with, for example, chronic 
inflammation being primarily associated with monocytes 
(e.g., macrophage cells) and lymphocytes (e.g., T cells, B 
cells, and NK cells), and acute inflammation being primar‑
ily associated with granulocyte activity. WBCs also exhibit 
unique adhesive and homing properties that allow them to 
interact with tumor cells both in the tumor site and in cir‑
culation [120].

5.1  Drug Delivery

In order to efficiently deliver drugs in an efficacious manner, 
the drugs must evade phagocytic uptake by monocytic cells 
such as macrophages, while targeting the site of interest and 
bypassing any endothelial barriers to reach this target tis‑
sue. As such, many efforts to utilize WBC membrane‑coated 
NPs have been developed to overcome these challenges. For 
example, WBC membrane‑coated NPs (WBC‑NPs) coated 
using J774 cell membranes were taken up 75% less by live 
J774 cells, while they were still able to specifically bind to 
inflamed epithelial sites and to facilitate transport of DOX 
across the endothelium without resulting in its lysosomal 
uptake [121]. Separately, Cao et al. [32] found that using 
RAW264.7 macrophage membranes to generate WBC‑NPs 
containing the anti‑cancer agent emtansine in pH‑sensitive 
liposomes was able to enhance drug delivery to tumor meta‑
static sites. The macrophage‑coated NPs were taken up more 
efficiently by 4T1 breast cancer cells than that uncoated par‑
ticles, and in vivo the particles were able to inhibit 4T1 lung 
metastases by 87.1%—an improvement 1.88‑fold higher than 
that of uncoated emtansine liposomes. Similarly, another 
study of DOX‑containing NPs coated with U937 cell mem‑
branes exhibited significantly increased DOX loading into 
cancerous HeLa cells relative to uptake in healthy HEK293 
cells [122].

WBC‑NPs are a viable tool for mediating the long‑term 
sustained release of drugs in vivo, as evidenced by a study in 
which PLGA NPs were coated in a membrane derived from 
monocytic U937 cells [123]. The resultant WBC‑NPs were 
highly stable in serum for 120 h, and had a DOX loading 
efficiency of 21% with sustained drug release over a 72‑h 
period. In a test of drug uptake by cells, the authors found 
that DOX uptake and associated cytotoxicity was greater 
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when Dox‑loaded WBC‑NPs were used than when uncoated 
DOX‑loaded PLGA NPs were used to treat MCF‑7 breast 
cancer cells, likely owing to the improved tumor targeting, 
binding, and uptake of these coated NPs.

Recent efforts have employed the use of T cell‑derived 
membranes for biomimetic drug delivery, with one study 
utilizing cytotoxic  CD8+ T cell membranes to coat PLGA 
NPs [124]. This approach was combined with localized low‑
dose irradiation (LDI) as a means of mediating NP chem‑
oattractant targeting. The resultant particles had a 23.99% 
reduction in macrophage uptake, and when used to deliver 
paclitaxel in vivo in a model of human gastric cancer, these 
particles were associated with a 56.58% inhibition of tumor 
growth. When used in combination with local tumor LDI, 
these particles achieved an even higher 88.5% inhibition of 
tumor growth.

NK cells are a form of lymphocyte able to directly interact 
with cancer cells through specific inhibitory and activating 
cell surface receptors, allowing for superior tumor target‑
ing. Arunkumar et al. [125] sought to leverage this property, 
coating DOX‑loaded liposomes with NK cell membranes to 
achieve effective tumor targeting. The resultant “NKsomes”, 
exhibited a higher affinity for tumor cells relative to normal 
healthy cells in in vitro assays, and this result was confirmed 
in vivo wherein the particles were able to persist in circu‑
lation for 18 h. In the MCF‑7 tumor model, the NK some 
particles showed promise as a means of effectively and spe‑
cifically delivering DOX to cancer cells.

There remains a need for more rational efforts to develop 
membrane‑coated NPs suited for both efficient drug delivery 
and release in target tissues. In one recent study, macrophage 
membrane‑coated cskc‑PPiP/PTX@ Ma NPs were gener‑
ated as an approach to efficiently targeting drugs to tumor 
sites wherein they are gradually released in response to local 
microenvironmental changes in tumor pH [126]. Once these 
particles arrive in the tumor site, the microenvironment pro‑
motes shedding of the macrophage membrane, allowing the 
released surface‑modified NPs to effectively penetrate and 
deliver drug to the tumor directly. For this study, authors 
functionalized a pH‑sensitive polymer using the cationic 
2‑aminoethyldiisopropyl group (PPiP), thereby adjusting its 
pH buffering potential to match the extracellular tumor envi‑
ronment. They also generated the synthetic D‑form cskc oli‑
gopeptide to mediate NP targeting, with PTX being used as 
a model for drug delivery in an orthotopic mouse model of 
breast cancer. The authors were able to clearly demonstrate 

effective accumulation of macrophage‑coated particles in 
tumors via fluorescent imaging and 3D reconstructions 
(Fig. 9a, b), with similar biodistribution in the tumor and 
in key organs (the heart, liver, spleen, lung, and kidney) 
(Fig. 9c). Owing to its ability to mediate tumor targeting, the 
PTX‑loaded coated NPs bearing the cskc motif were, in con‑
trast, preferentially enriched in the tumor (Fig. 9d), result‑
ing in substantial tumor control without any corresponding 
decrease in overall body weight (Fig. 9e, f). There was also 
clear evidence of widespread tumor cell apoptosis in mice 
treated with these cskc‑PPiP/PTX@Ma particles (Fig. 9g).

There is an ever‑present need for strategies that can 
improve the efficacy of chemo‑radiotherapy while reducing 
associated site effects. To this end, Ju et al. [127] developed 
an approach to neoadjuvant therapy in which they combined 
human neutrophils with Abraxane‑loaded cytopharmaceuti‑
cals and radiotherapy as a means of treating gastric cancer. 
They utilized peripheral blood neutrophils to internalize 
Abraxane, which is a PTX‑loaded NP, yielding a cytop‑
harmaceutical agent. Localized tumor irradiation can both 
directly kill tumor cells and induce the expression of inflam‑
matory IL‑8, IL‑10, and TNF‑α for at least 48 h, with the 
later cytokines promoting the recruitment of the neutrophil 
cytopharmaceuticals to tumors, wherein they are activated 
to release both neutrophil extracellular traps (NETs) and 
Abraxane, thereby providing a dual approach to tumor cell 
killing.

WBC‑coated NPs offer an attractive approach to avoiding 
NP immune detection while facilitating sustained circulation 
and drug release. Given that there are many different forms 
of leukocytes available, these cells can be leveraged for a 
range of distinct targeted drug delivery applications without 
significant modifications. Given recent advancements in the 
development of WBC‑NPs capable of gradual drug‑release 
in response to the tumor microenvironment, it is clear that 
this technology is steadily progressing towards more intel‑
ligent therapeutic strategies.

5.2  Phototherapy

The membranes of NK cells are able to induce M1‑polari‑
zation of macrophages in order to achieve cell‑membrane‑
mediated immunotherapy. This is of particular value given 
that PDT approaches are often coupled with efforts to induce 
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immune responses in the context of anti‑cancer therapies. 
As such, Deng et al. [128] developed NK cell membrane‑
coated NPs (NK‑NPs) loaded with 4,4′,4″,4‴‑(porphine‑
5,10,15,20‑tetrayl) tetrakis (benzoic acid) (TCPP). When 
the NK‑NPs were i.v. injected into mice that were then irra‑
diated with an appropriate light source, they observed NK 
membrane‑mediated killing of cells in a manner consistent 
with responses for human NK cell membranes (Fig. 10a–c). 
To test whether the NK‑NPs were more effective than other 
therapeutic strategies and better suited to treating pre‑exist‑
ing tumors, the authors employed a bilateral 4T1 tumor 
implant model (Fig. 10d). In this system, they found that the 
NK‑NPs were, in combination with PDT, able to eliminate 
primary tumors through a synergistic mechanism (Fig. 10e, 
f). The NK‑NPs were also able to slow the growth of distal 
tumors away from the site of PDT in an abscopal manner, 
and they found that half the mice in the NK‑NP + PDT group 
survived for 60 days over the course of the study period 
(Fig. 10g). This treatment was not associated with any sig‑
nificant changes in body weight relative to control mice, 
indicating good therapeutic tolerance (Fig. 10h).

Similarly, WBC membranes can be employed to enhance 
PTT efficacy. For example, macrophage membrane‑coated 
gold nanoshells (MPCM‑AuNSs) have been devised as a 
novel PTT agent useful for in vivo cancer therapy [129]. In 
this study, the authors utilized a 4T1 tumor model to demon‑
strate that macrophage membrane‑coating of the nanoshells 
improved their biocompatibility and tumor targeting abil‑
ity while extending their time in circulation to over 48 h. 
When used to treat mice via a PTT approach, these MPCM‑
AuNSs allowed for effective tumor growth inhibition fol‑
lowing NIR irradiation, with a near complete elimination of 
tumors within a 25‑day study period. In a similar approach, 
another group developed macrophage membrane‑coated 
iron oxide (Fe3O4) photothermal NPs [130]. These particles 
exhibited excellent biocompatibility, tumor targeting, and 
immune evasion, and when i.v. injected into MCF‑7 tumor 
model mice these particles led to a marked increase in tumor 
temperature from 34.4 to 55.6 °C within 5 min of irradiation, 
leading to clear tumor regression.

By accurately targeting NPs for PTT, the overall efficacy 
of this approach can be markedly improved. One recent 
study therefore utilized gold‑silver nanocages encapsu‑
lated in a macrophage membrane that was first bacterially 
pre‑treated, thereby allowing for more efficient bacterial 
targeting [131]. When these resultant NPs were coupled 

with localized NIR irradiation at the site of infection, the 
temperature at this site rapidly rose to 50.9 °C, mediating 
efficient bacterial destruction.

PTT efficacy can also be enhanced by rationally combin‑
ing this approach with specific therapeutic compounds. For 
example, Zhao et al. [132] designed  Bi2Se3 NPs coated in a 
macrophage membrane and loaded with quercetin that were 
able to release the chemokine  CCL2 in response to hyper‑
thermic conditions, thereby mediating cellular recruitment 
and impairing breast cancer growth and metastasis. When 
used in mice bearing 4T1 tumors, in vivo imaging revealed 
that these coated particles accumulated within the tumor 
within 4 h of i.v. injection, and were able to remain there 
for as long as 24 h. Upon appropriate NIR irradiation, local 
temperatures rose as high as 70 °C. When particles were 
also loaded with quercetin, there was a clear decrease in 
tumor volume following irradiation, demonstrating clear 
PTT efficacy. In another recent strategy, researchers have 
utilized cytopharmaceuticals to mediate a combination of 
PTT and inflammation‑mediated active targeting (IMAT) 
chemotherapy, first conducting PTT 72 h after injecting ani‑
mals with PEGylated gold nanorods, and then administering 
cytopharmaceutical agents to mediate IMAT chemotherapy 
[133]. This dual treatment approach led to localized inflam‑
mation in the tumor, with the produced inflammatory factors 
mediating neutrophil recruitment and more effective tumor 
clearance.

WBC‑NPs have thus been shown to be ideal agents well‑
suited to PDT and PTT approaches, improving the biocom‑
patibility and targeting potential of active photosensitization/
photothermal compounds in vivo. These leukocyte mem‑
branes offer an effective means of ensuring that NPs are tar‑
geted specifically to sites of tumors or infections to a greater 
extent than uncoated NPs.

5.3  Immune Modulation

Beyond the above approaches, the biomimetic potential of 
WBC‑NPs has also led to interest in their use for immu‑
nomodulatory therapies. For example, Zhang et al. [54] have 
developed  CD4+ T cell‑coated NPs with a polymeric core 
(T‑NPs) which they were able to target HIV viral particles. 
Specifically, as the T‑NPs expressed CCR5 and CXCR4, 
which are T cell co‑receptors necessary to bind to HIV, 
the T‑NPs were able to selectively bind the HIV gp120 
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glycoprotein and to disrupt the resultant gp120‑mediated 
killing of proximal  CD4+ T cells. The T‑NPs could also 
inhibit HIV infection of human PBMCs and monocyte‑
derived macrophages in a dose‑dependent fashion.

In another study, Zhang et al. [134] demonstrated that 
rheumatoid arthritis (RA), an autoimmune‑mediated inflam‑
matory disease of the joints, could be treated using NP‑
mediated delivery of broad‑spectrum anti‑inflammatory 
compounds. In this study, the authors employed neutrophil‑
coated NPs in a murine collagen‑induced arthritis (CIA) 
model in order to explore anti‑arthritic activity (Fig. 11a). 
At the end of the study period, the authors found that mice 
treated with neutrophil‑NPs had smaller knee diameters 

than control PBS‑treated mice consistent with better dis‑
ease control, with responses being comparable to traditional 
anti‑inflammatory treatments (anti‑IL‑1β and anti‑TNF‑α) 
(Fig. 11b). Consistent with this, neutrophil‑NPs were better 
able to reduce immune infiltration of the cartilage and conse‑
quent cartilage degradation as demonstrated via histological 
examination (Fig. 11c‑e). The majority of FLS in the control 
group were  CD248+ and  fibronectin+, whereas those in mice 
treated with neutrophil‑NPs or anti‑inflammatory antibod‑
ies were negative for these markers (Fig. 11f). The authors 
also examined systemic inflammation in these CIA model 
animals, measuring circulating TNF‑α and IL‑1β levels, 
as both are linked to arthritic disease severity. They found 

PBS(a)

(d)

(b)

(e)

(h)(g)

(c)

−L
as

er
+L

as
er

−L
as

er
+L

as
er

1#

660 nm
laser

−9 day
Tumor inoculation

−1 day
i.v. injection of NK-NPa

0 day
PDT for 1# tumor

1# and 2# tumor measurement

Primary tumor (1#)

2#
PI

Annexin V/FITC

T-NPs NK-NPs PBS T-NPs NK-NPs

25 µm

0.11%

97.58%

0.96%

1.35%

102

102

103

104

105

103 104 1050

0

1.59%

96.08%

1.23%

1.10%

102

102

103

104

105

103 104 1050

0

0.21%

Caspase-3

Caspase-8

Bax

Bcl-2

Bcl-xL

GPADH

Laser
T-NPs

NK-NPs

96.49%

1.25%

2.05%

102

102

103

104

105

103 104 1050

0

1.32%

93.87%

1.98%

2.83%

102

102

103

104

105

103 104 1050

0

3.13%

68.14%

19.60%

9.13%

102

102

103

104

105

103 104 1050

0

4.61%

36.96%

30.61%

27.82%

102

102

103

104

105

103 104 1050

0 −
−
−

+
−
−

−
−
+

−
+
−

+
+
−

+
−
+

1200

1000

800

600

400

200

0

Tu
m

or
 v

ol
um

e 
(m

m
3 ) PBS

T-NPs
NK-NPs
T-NPs+Laser
NK-NPs+Laser * *

*

*
*

*
*

*
*

0 6 12 18
Time (days)

(f) Distant tumor (2#)
1200

1000

800

600

400

200

0

Tu
m

or
 v

ol
um

e 
(m

m
3 ) PBS

T-NPs
NK-NPs
T-NPs+Laser
NK-NPs+Laser

0 6 12 18
Time (days)

Body weightSurvival curve

25

20

15

10

100

80

60

40

20

0

W
ei

gh
t (

g)
PBS
T-NPs
NK-NPs
T-NPs+Laser
NK-NPs+Laser

PBS
T-NPs
NK-NPs
T-NPs+Laser
NK-NPs+Laser

0 6 12 18
Time (days)

0 12 24 36 48 60
Time (days)

S
ur

vi
va

l r
at

e 
(%

)

*
*

*
*
* *
*

*
*
*
*

*

Fig. 10  a ROS production in cells exposed to T‑ or NK‑membrane NPs following 660 nm irradiation (100 mW cm−2) was assessed using the 
fluorescent DCFH‑DA indicator. b Flow cytometric assessment of apoptotic induction in irradiated cells exposed to T‑ and NK‑NPs. c Western 
blotting‑mediated measurement of apoptosis‑associated proteins in response to NK‑NP + PDT treatment. d Overview of the study experimental 
design, with a dual 4T1 tumor implant model in which primary tumors on the right side received PDT, whereas distal tumors on the left side did 
not. e Primary tumor growth. f Distal tumor growth. g Morbidity‑free survival of differently treated mice. h Changes in body weight of differ‑
ently treated mice. (n = 10). (*p < 0.05, **p < 0.01). Adapted from Ref. [128] with permission



Nano‑Micro Lett. (2019) 11:100 Page 23 of 46 100

1 3

levels of both cytokines to be reduced in animals treated 
with anti‑cytokine antibodies or neutrophil‑NPs, consistent 
with effective systemic disease control (Fig. 11g). Impor‑
tantly, in neutrophil‑NP treated mice, knee and ankle joint 
diameters were the lowest of all treated animals (Fig. 11h), 
and paw swelling was markedly reduced by neutrophil‑NPs 
and anti‑cytokine treatments relative to control PBS‑treated 
mice (Fig. 11i). The authors further found that neutrophil‑
NPs were able to effectively reduce arthritic severity better 
than PBS when mice were assessed in a blinded manner 
(Fig. 11j), thus confirming their therapeutic efficacy.

Given the unique properties of different forms of leu‑
kocyte membranes, there remains a wide array of possible 
applications for WBC‑NPs in the treatment of immunologi‑
cal diseases. These examples of T cell membrane‑mediated 
HIV targeting and neutrophil‑mediated cartilage targeting 
to protect joints via microbubble production offer clear a 
valuable therapeutic opportunity, with future research efforts 
likely to develop further exciting and novel immunomodula‑
tory interventions.

In summary, different subtypes of leukocytes perform 
different functions, and they also differ in practical applica‑
tions. Macrophages are often used in cargo delivery because 
of their long circulation in vivo and their ability to mediate 
immune evasion through self‑recognition by other mac‑
rophages. Lymphocytes, such as T cells, B cells, and NK 
cells, are more widely used in targeted delivery, especially in 
cancer therapy. Notably, unlike T and B cells, NK cells can 
directly target cancer cells through interaction with inhibit‑
ing and activating receptors on cancer cell surface. As the 
most abundant WBCs in peripheral blood, neutrophils play a 
key role in combination with chemotherapy or radiotherapy 
due to their natural chemotaxis to inflammatory signals.

6  Cancer Cell Membrane‑Coated 
Nanoparticles

Cancer cells represent another potentially viable source of 
membrane material for NPs coating, and are of particular 
interest owing to the fact that many cancer cells are able to 
effectively undergo homologous adhesion to other cancer 
cells [135]. Specific adhesion proteins on the surface of the 
cancer cell types can mediate their effective self‑recognition, 

allowing for homing to homologous tumor sites and thus 
enabling NPs coated in such membranes to effectively tar‑
get cancer cells even when other heterologous tumor cells 
are also present [136–138]. Cancer cell membrane‑coated 
NPs can also be designed so as to possess a high degree of 
stability while also bearing normal cancer cell membrane 
antigens, allowing for effective delivery of both multivalent 
tumor antigens and immunostimulatory adjuvants to tumor 
sites and thus improving the efficacy of cancer vaccination 
efforts via inducing tumor‑specific immunity [139].

6.1  Drug Delivery

Multifunctional nanocarrier‑based treatment is aimed at 
overcoming certain key challenges in cancer therapy [140]. 
While traditional chemotherapeutic drugs lack effective 
tumor targeting capabilities, coating the drugs in can‑
cer cell membranes can improve targeting efficacy. For 
example, Li et al. [141] developed a novel cancer cell‑
biomimetic NP loaded with PTX that they were utilized for 
targeted chemotherapy in a 4T1 tumor model system. The 
resultant cancer‑cell‑membrane‑coated PPNs (CPPNs) 
retained normal expression of 4T1 surface antigens such as 
E‑cadherin, CD47, and TF antigen, and were able to effec‑
tively accumulate in primary tumors and metastases when 
injected into mice implanted with homotypic 4T1 tumors. 
The CPPNs mediated effective tumor growth inhibition 
when used to treat these mice (Fig. 12a), reducing tumor 
volumes to 4.8% of those in the control group, as com‑
pared with a reduction to only 66.4% for uncoated PPNs, 
thus demonstrating the clear efficacy of cancer membrane‑
coated NPs. Consistent with this, CPPNs induced higher 
rates of tumor apoptosis than other treatments (Fig. 12c), 
and were associated with fewer lung metastases than 
control PBS treatment (Fig. 12b, d), reducing rates of 
metastasis by 97.8% as confirmed by lung H&E staining 
(Fig. 12e). This was also confirmed via in vivo biolumi‑
nescent imaging (Fig. 12f), thus indicating that CPPNs 
can improve drug delivery efficiency and therapeutic PTX 
efficacy.

Cancer cell membranes can also be employed for 
functional nanoreactor development. Balasubramanian 
et  al. [142] used undecylenic acid‑modified thermally 
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hydrocarbonized PSi (UnPSi) NPs surrounded by an MDA‑
MB‑231 breast cancer cell membrane to encapsulate the 
horseradish peroxidase (HRP) enzyme. The surrounding 
membrane served as a layer that was able to allow chemicals 
to travel in or out of the cell while retaining the HRP enzyme 
inside, thus producing an effective nanoreactor wherein HRP 
was able to effectively reduce intracellular ROS levels. In 
another approach, a group developed a  CaCO3‑capped MSN 
in order to allow for controlled drug release in tumors in 
response to the local acidic microenvironment [143]. For this 
approach, MSNs were loaded with DOX and surrounded by 
a  CaCO3 layer, followed by external coating with membranes 
derived from LNCaP‑AI cells. The authors found that in a 
normal simulated physiological setting, drug release from 
these particles was negligible, whereas in an acidic setting 
mimicking the tumor microenvironment DOX was rapidly 
released. Importantly, the ability of cancer cell membranes 
to mediate homotypic targeting allowed the particles to be 
readily targeted to model prostate tumor cell sites, thereby 
achieving a more pronounced anti‑tumor effect.

The combination of DOX and iron oxide compounds 
enclosed in cancer cell membranes has been shown being 
an efficacious approach to cancer cell drug delivery and 
treatment. Zhu et al. [137], for example, utilized an iron 
oxide nanoplatform loaded with DOX and coated in can‑
cer cell membranes and found the resultant NPs effec‑
tively targeted to homotypic tumors in a murine dual 
tumor model. By using mice bearing two different tumor 
types (H22 and UM‑SCC‑7) on opposite flanks and then 
administering mice H22 membrane‑coated NPs, the 
authors demonstrated homotypic targeting to H22 tumors 
with minimal NP accumulation in the heterologous UM‑
SCC‑7 tumors. When loaded with drugs, the NPs allowed 
for potent in vivo tumor treatment. In a similar approach, 
DOX‑loaded iron oxide NPs coated in human squamous 
carcinoma membranes were also able to mediate effec‑
tive homotypic cancer cell targeting [144]. In this model, 
NPs coated in UM‑SCC‑7 membranes failed to efficiently 
interact with the heterologous COS7 tumor cells, thereby 
effectively inhibiting the growth of UM‑SCC‑7 but not 
COS7 tumors in this model.

Nanocarrier targeting efforts often rely on complex bot‑
tom‑up strategies. The use of cancer cell membranes to 
achieve homologous tumor targeting in a top‑down fashion 
represents a novel and appealing approach to efficiently 
and effectively targeting tumors in patients.

6.2  Phototherapy

In addition to its clear utility in the context of anti‑tumor 
therapy, the coating of NPs in cancer cell membranes has 
also been used for effective phototherapeutic interventions. 
Li et al. [49] found that tumor PDT could be effectively 
mediate by using a tumor targeting nanoplatform contain‑
ing tirapazamine in a PCN‑224 porphyrinic metal organic 
framework and coated with a 4T1 tumor cell membrane. 
The resultant NPs could achieve effective immune evasion 
and 4T1 tumor cell targeting. Once taken up by 4T1 tumor 
cells, the PCN‑224 in the NPs produces high levels of ROS 
upon irradiation (660 nm, 200 mW cm−2, 10 min), medi‑
ating effective PDT cytotoxicity. The subsequent hypoxia 
induced by oxygen utilization then offers an opportunity 
for tirapazamine activation, resulting in improved chem‑
otherapeutic efficacy. In this study, the 4T1‑coated NPs 
loaded with tirapazamine displayed the strongest efficacy 
of all tested treatments owing to their ability to durably 
accumulate in tumor sites.

Li et al. [145] also developed a bioreactor in which glu‑
cose oxidase (GOx) and catalase were enclosed in a PCN‑
224 framework that was in turn surrounded by a 4T1 tumor 
membrane as above. The authors demonstrated that follow‑
ing administration, the particles (termed mCGPs) accu‑
mulated in the tumors of mice bearing 4T1 tumors within 
12 h of injection, reaching peak accumulation within 48 h 
(Fig. 13a). Following irradiation (660 nm, 29.8 mW  cm−2, 
5 min) at this 48 h timepoint, the authors achieved simul‑
taneous PDT and cancer starvation, resulting in synergistic 
suppression of tumor growth for 14 days following treatment 
(Fig. 13b). Importantly, decreased HIF‑1α immunofluores‑
cence at tumor sites in treated mice were observed, indicat‑
ing that the mCGPs could mediate tumor  H2O2 breakdown 
to effectively overcome the hypoxic nature of the tumor 
microenvironment (Fig. 13c). Tumor weights (Fig. 13d) 
and images (Fig. 13e) also confirmed the efficacy of mCGP 
treatment, with growth inhibition rates of 97.1% in irradi‑
ated and mCGP‑treated mice. H&E staining results further 
confirmed that this combination strategy was highly effective 
for mediating cancer cell death (Fig. 13g).

In one recent study, researchers made efforts to develop 
cancer cell membrane‑coated NPs suited to be used in 
synergistic PDT and cancer starvation therapy [146]. The 
researchers generated cancer membrane‑coated mesoporous 
NPs to bear both surface GOx and the photosensitizer 
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chlorin e6 (Ce6), and then used the modified NPs to encap‑
sulate bis‑[2,4,5‑trichloro‑6‑(pentyloxycarbonyl)phenyl] 
oxalate and perfluorohexane. The resultant nanoreactor par‑
ticles could be readily targeted to homologous tumors and 
were able to evade immune detection, with PFC delivering 
oxygen to the tumor and thus altering the hypoxic nature 
of the local microenvironment, and leading to higher rates 
of glucose and ROS production. In a murine B16F10 lung 
metastasis model, the nanoreactor particles could completely 
eliminate lung metastases in vivo.

Researchers also developed a persistent biomimetic lumi‑
nescent nanoplatform suitable for tracking and irradiation‑
mediated chemotherapy and PDT treatment of metastatic 
tumors [147]. To develop this system, a silicon phthalo‑
cyanine (Si‑Pc) functionalized nanoplatform PLNP core 
(SPLNP) was developed and surrounded with a silicon‑
based layer loaded with DOX and an outer cancer cell mem‑
brane. The external CCM layer prevented DOX leakage in 

the bloodstream and mediated targeting to homotypic meta‑
static tumor cells. The particles were also readily trackable 
in vivo as a consequence of the “afterglow” effect of NIR 
irradiation of SPLNPs, allowing for sustained reactive oxy‑
gen singlet generation that facilitates rapid nanoplatform 
endosomal escape and drug release. The net effect of these 
features was a strategy allowing for combination PDT and 
chemotherapeutic targeting of tumor metastases, completely 
(> 99%) inhibiting 4T1 tumor growth in vivo following par‑
ticle injection and irradiation as compared to control PBS‑
treated mice.

NPs coated in cancer cell membranes have also been 
successfully employed as an optimal PTT therapeutic.For 
example, Chen et al. [148] employed CCM‑NPs loaded with 
ICG (termed ICNPs) as a means of conducting targeted PTT 
in mice. Using an MCF‑7 tumor model, the investigators 
administered either uncoated or coated ICGs to mice and 
then irradiated animals with an appropriate laser (1 W cm−2, 
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5 min), resulting in a temperature rise to 48.2 °C for the 
uncoated particles and an increase to 55.3 °C for the coated 
particles, owing to their enhanced homologous tumor target‑
ing abilities. On day 18, mice administered the coated ICNPs 
and irradiated exhibited complete tumor remission, without 
incidence of relapse and with a 100% survival rate.

H22 CCM‑coated gold nanocages (CAuNCs) loaded with 
DOX was developed by using an ammonium sulfate gradient 
approach [40]. The particles were administered in vivo, and 
were found to efficiently accumulate in tumors to a roughly 
twofold greater extent than did uncoated AuNCs. When mice 
were administered the CAuNCs and then irradiated with an 

808 nm NIR laser after 24 h and once daily for 4 days, DOX 
was efficiently released from the particles in the tumor site 
(Fig. 14a‑c). Both AuNCs and CAuNCs alone were able 
to achieve therapeutic efficacy upon irradiation, but only 
DOX‑loaded CAuNCs were able to achieve complete tumor 
eradication in the mouse model, highlighting their potent 
ability to mediate combination PTT‑chemotherapy. These 
observations were consistent with histological findings and 
demonstrated more significant structural damage in the 
tumors of mice administered DOX‑loaded CAuNCs follow‑
ing irradiation (Fig. 14d), with comparable survival findings 
(Fig. 14e).
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Yet another group generated carrier‑free HeLa CCM‑NPs 
containing both DOX and ICG, achieving an 89.3% drug 
loading rate while maintaining both immune evasion and 
homologous cancer cell targeting capabilities [149]. Owing 
to the photothermal properties of ICG, in response to NIR 
irradiation (808 nm, 3 W cm−2) the membrane of the par‑
ticles was disrupted, allowing for efficient drug release. 
This coupled with the EPR‑mediated homologous targeting 
ability of the particles, resulting in both high intratumoral 
accumulation and temperature elevation to 52.4 °C upon 
irradiation. When employed in mice bearing HeLa tumors, 
administration of the NPs followed by irradiation mediated 
robust anti‑tumor efficacy, markedly shrinking tumors in 
treated animals.

In summary, several rational and efficacious approaches 
to CCM‑NPs have been developed for phototherapeutic 
applications. These particles are able to effectively target 
homologous tumors to deliver photosensitizers/photother‑
mal compounds, and in combination with chemotherapy 
or tumor starvation strategies these particles can achieve 
marked anti‑tumor efficacy.

6.3  Immune Modulation

CCM‑NPs also represent an effective means of inducing 
immune responses specific to cancer cells. Jin et al. [57] 
coated PLGA NPs with CCMs, using membranes derived 
from CXCR4‑high or –low and CD44‑high or –low glioma 
and breast cancer cells. They demonstrated specific increases 
in  CD8+ T cell responses following NP treatment when 
membranes were derived from CXCR4‑high U87 glioma 
cells. The mice also had higher levels of  CD4+ T cells in 
the spleen, and the highest frequency of interferon gamma 
(IFNγ) producing T cells as measured by ELISpot assay.

Zhang et al. [139] generated NPs coated with both the 
TLR4 agonist monophosphoryllipid A (MPLA) as an adju‑
vant and an outer CCM layer that were suitable for use 
in a vaccinal context. In the experiments, they generated 
CCM‑NPs using B16F10 tumor cell membranes, and then 
used these cells to assess dendritic cell maturation and 
tumor antigen delivery. Only by combining the MPLA 
adjuvant layer with the CCM coating were the authors 
able to achieve effective dendritic cell (DC) maturation, 
as assessed based on increased CD40, CD80, and CD86 
expression. They then combined the DCs with transgenic 

pmel‑1 murine splenocytes specific for a particular tumor 
antigen (a glycoprotein 100 epitope), in order to assess 
how the NPs promoted DC tumor antigen presentation. 
The authors observed significant clustering of T cells 
around CCM and MPLA‑coated NP‑pulsed DCs and a 
significant induction of IFNγ secretion, consistent with a 
CCM‑MPLA‑NP‑mediated activation of antigen‑specific 
cytotoxic T cell responses.

In another cancer vaccination approach, Yang et al. [33] 
generated adjuvant‑containing NPs with a mannose‑mod‑
ified external CCM layer. The authors loaded PLGA NPs 
with the TLR7 agonist imiquimod (R837), with the exter‑
nal CCM layer serving as a source of tumor antigens. By 
modifying the external surface of the particles with mannose 
residues, the authors were able to enhance uptake of their 
nanovaccine by antigen presenting DCs, thereby offering 
a novel approach to enhance the development of specific 
anti‑tumor immune responses. The nanovaccine particles 
were effective when administered prophylactically to mice, 
and were also effective when used therapeutically to impair 
myeloma progression when used in combination with the 
administration of anti‑PD‑1.

Another group fabricated a NP‑based adjuvant‑containing 
tumor vaccine by loading PLGA NPs with the TLR ago‑
nist CpG and then coating the NPs in CCM derived from 
B16F10 melanoma cells [150]. The resultant NPs, termed 
CpG‑CCNPs, were then used to promote antigen‑specific 
T cell responses, with mice vaccinated using CpG‑CCNPs 
protected from tumor development in 86% of cases over a 
150‑day study period. When the CpG‑CCNPs were com‑
bined with checkpoint blockade antibodies (anti‑CTLA4 and 
anti‑PD1), control of established B16F10 tumor growth was 
markedly improved, with median survival increasing from 
18 to 32 days relative to control animals. The results of this 
study clearly demonstrated that adjuvant‑loaded CCM‑NPs 
are viable as both tumor vaccines and as therapeutic agents 
for cancer treatment in combination with other immuno‑
therapeutic agents.

In another example of CCM‑NPs used for cancer immu‑
notherapy, Fontana et  al. generated thermally oxidized 
porous silicon (TOPSi) NPs encapsulated in AcDEX or 
spermine‑modified AcDEX (SpAcDEX) polymeric par‑
ticles. Through co‑extrusion, these particles were coated 
with MDA‑MB‑231 breast cancer CCM vesicles, and then 
functionalized with the Trp2 model antigen. The resultant 
NPs were highly cytocompatible in immortalized human cell 
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lines (KG1 and BDCM), and could significantly enhance 
IFN‑γ secretion from human PBMCs without inducing IL‑4 
production, thus specifically promoting the Th1 polarization 
of newly primed T cells.

Cancer cell membranes offer a full array of tumor‑asso‑
ciated antigens to stimulate robust tumor‑specific immune 
responses. The above examples have confirmed that encap‑
sulating vaccine adjuvants in cancer cell membranes is an 
efficient method for stimulating anticancer immunity, offer‑
ing tremendous potential for cancer immunotherapy.

7  Other Cell Membrane‑Coated 
Nanoparticles

7.1  Stem Cell Membrane‑Coated Nanoparticles

Mesenchymal stem cells (MSCs) can be readily isolated and 
can undergo long term in vitro proliferation. These MSCs 
also possess properties such as long‑term circulatory poten‑
tial, immune evasion, and tumor targeting properties which 
make them ideal for NP delivery [23]. The cells express a 
range of ligands well‑suited to tumor targeting, and read‑
ily migrate to inflamed tissues in vivo due to this property 
[17]. Yang et al. [151] coated PLGA NPs using umbilical 
cord MSC membrane to achieve targeted DOX delivery to 
MHCC97‑H liver tumors in nude BALB/c mice. By func‑
tionalizing the MSC membrane, they achieved a high degree 
of NP uptake and efficient tumor targeting and cancer cell 
killing, markedly inhibiting tumor growth by 78.2% in vivo. 
In a similar effort, another group coated gelatin‑based nano‑
gels in MSC membrane in a top‑down manner to achieve 
high rates of stability and tumor targeting in vitro and in vivo 
[50]. The resultant DOX‑loaded particles more effectively 
inhibit the growth of HeLa tumors than were free DOX or 
uncoated gelatin‑DOX particles, thus demonstrating the 
enhanced therapeutic efficacy associated with MSC mem‑
brane coating.

In order to engineer particles which home to ischemic 
tissues, one group recently developed stem cell membrane‑
coated nanocarriers functionalized to express CXCR4 [152]. 
In this strategy, the authors effectively increased particle 
retention in ischemic tissues via CXCR4 functionalization 
of the nanocarrier membrane. The researchers relied upon 

the use of human adipose‑derived stem cells overexpressing 
CXCR4 in order to generate these functionalized membranes 
for their PLGA nanocarriers. Coating with CXCR4‑function‑
alized stem cell membrane was linked with improved pen‑
etration of the endothelial barrier, as well as with decreased 
uptake by both human (THP‑1; 76–24%) and murine (J774; 
84–29%) macrophages. Importantly, CXCR4 expression was 
readily transferred to and maintained upon the resultant bio‑
engineered stem cell membrane‑nanocarriers (BSMNCs). 
To assess the relative value of CXCR4 functionalization of 
the NPs, the authors used a mouse model of severe hindlimb 
ischemia to measure the dynamics of NP targeting in vivo. 
Besides, by using Cy‑5.5‑labeled SMNCs or BSMNCs, the 
authors found the later to more effectively be retained in 
ischemic tissues over a 14‑day period, thus confirming that 
the BSMNCs may represent an effective therapeutic strategy 
to drug delivery under ischemic conditions.

MSC‑coated NPs are also employed in the context of pho‑
totherapeutic regimens. For example, a research group used 
MSC‑derived membrane material to effectively camouflage 
silica‑encapsulated β‑NaYF4:Yb3+,  Er3+ upconversion NPs 
[31]. The resultant biomimetic PDT particles were loaded 
with two photosensitizing agents (ZnPC and MC540) with 
high efficiency owing to the ideal loading characteristics of 
the internal particles, and both could be activated by 980 nm 
irradiation. By using the particles in vitro and in vivo, the 
authors found that MSC coating could extend circulation, 
improve tumor targeting, and enhance anti‑tumor efficacy. In 
a separate approach, the researchers used MSC membrane‑
coated  Fe3O4 polydopamine (PDA) NPs loaded with siRNA 
molecules. The resultant particles exhibited excellent pho‑
tothermal efficacy, and were suitable for MR imaging while 
also allowing for effective siRNA delivery to DU145 cells, 
with an 84.2% uptake efficiency. By combining both gene 
silencing and PTT, the authors demonstrated clear in vivo 
efficacy in the DU145 xenograft mouse model system.

As these results shown, MSCs offer desirable charac‑
teristics including extended circulation and tumor target‑
ing, making them ideal for delivery of chemotherapeutic 
or photosensitizing agents to tumors. By functionalizing 
the MSC membranes, it is possible to generate even more 
efficacious NPs capable of readily crossing the endothelial 
barrier.
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7.2  Fibroblast Cell Membrane‑Coated Nanoparticles

Activated fibroblasts (AFs) are a major component of the 
tumor stroma, and have been shown to drive angiogenesis, 
metastasis, and cancer cell proliferation [153]. Li et al. 
[154] recently sought to use utilize fibroblast membranes 
to coat NPs in an effort to mediate tumor‑associated AF 
targeting, thereby allowing for improved multimodal imag‑
ing guided cancer therapy. For this approach, the authors 
utilized semiconducting polymer NPs (SPNs) surrounded 
by an AF membrane, with the homologous targeting 
potential of the AF‑SPNs allowing them to target cancer‑
associated AFs. The resultant particles were then used for 
PDT in vivo in a 4T1 xenograft tumor model, irradiat‑
ing mice 48 h after particle injection (808 nm; 5 min). 
This intervention was linked to a maximal temperature 
increase to 50 °C in mice injected with AF‑SPNs, and 
this increase was 14.0 °C higher than that in control PBS‑
treated mice. PDT‑induced damage was then assessed by 
staining for sulfenic acids, which are indicative of protein 
oxidation, and the resultant images confirmed higher lev‑
els of damage‑associated green fluorescence in the tissues 
of irradiated mice administered these SPNs. Importantly, 
the fluorescent signal was stronger for mice administered 
AF‑SPNs than for mice administered uncoated SPNs, and 
fluorescence was largely absent in PBS control animals. 
Irradiation of AF‑SPN mice was associated with supe‑
rior inhibition of tumor growth relative to other treatment 
groups, leading to complete PDT‑mediated tumor ablation.

Another recent strategy has relied upon the use of fibro‑
blast membrane‑coated NPs for diabetes treatment. For 
example, Tan et al. [155] coated a PLGA diaphragm with 
fibroblast membrane, and were then able to differentiate pan‑
creatic stem cells on the surface to promote the generation of 
insulin‑secreting cells. This approach offers an opportunity 
to increase PLGA membrane biocompatibility while effec‑
tively controlling the differentiation of pancreatic stem cells, 
indicating that such a functionalized PLGA surface may be 
useful for the generation of artificial islets that can be used 
to treat individuals suffering from diabetes.

7.3  Beta Cell Membrane‑Coated Nanoparticles

Pancreatic beta cells are an endocrine cell type that make 
up 70% of pancreatic cells, and are found in islets. The 

cells are heavily dependent upon interactions with other 
cells for survival and functionality, and this property has 
led investigators to assess optimal scaffold designs with the 
potential to drive optimal beta cell functionality [156]. For 
example, Chen et al. generated nanofibers coated in beta 
cell membrane for beta cell culture. The result showed a 
marked increase in beta cell survival and proliferation over 
a 1‑week period (with a 327% increase relative to baseline). 
The resultant cells could also mediate a five‑fold increase in 
glucose‑dependent insulin production relative to beta cells 
grown on nanofibers that had not been modified with beta 
cell membranes.

7.4  Bacterial Membrane‑Coated Nanoparticles

Given their high levels of immunogenic proteins and adju‑
vants, bacterial cell membranes represent a novel and poten‑
tially optimal source of cellular membrane material useful 
for coating NPs in contexts where pathogen‑associated 
molecular pattern‑mediated innate and adaptive immune 
system activation is desirable [157, 158]. Zhang’s group 
coated 30 nm gold NPs using membranes derived from E. 
coli [157]. When mice received a subcutaneous dose of the 
bacterial membrane NPs (termed BM‑AuNPs), the authors 
demonstrated that the particles were trafficked to proximal 
draining lymph nodes wherein they effectively activated DCs 
as evidenced by both higher overall CD11c + DC levels and 
higher frequencies of CD40/CD80/CD86‑positivity among 
DCs in the lymph nodes, suggesting both effective recruit‑
ment and activation. When the authors further explored spe‑
cific B cell‑mediated immunity against the bacteria by meas‑
uring antibodies specific for E. coli, they found that mice 
vaccinated with the BM‑AuNPs exhibited higher avidity 
antibody than did mice vaccinated with vesicles composed 
of only the outer membrane vesicles (OMVs). They further 
examined E. coli‑specific T cell responses in this experimen‑
tal system, and determined that both BM‑AuNPs and OMVs 
significantly enhanced IFN‑γ and IL‑17 production upon 
infection relative to naive mice, confirming the development 
of an E. coli‑specific T cell response. Importantly, the IFN‑γ 
and IL‑17 levels were higher for mice immunized using BM‑
AuNPs relative to those immunized with OMVs, suggesting 
the former are more effective for T cell activation.

Another group recently sought to explore the potential 
use of bacteria membrane‑coated NPs for active targeting 
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efforts [58]. The researchers utilized PLGA NPs coated in 
S. aureus‑derived extracellular vesicles (EVs), yielding par‑
ticles that were able to actively traffic to S. aureus‑infected 
macrophages in vitro, and to major sites of S. aureus infec‑
tion in vivo in mice. Whereas the particles achieved active 
targeting, comparable NPs instead coated using either a 
PEGylated lipid bilayer or E. coli OMV failed to exhibit 
this targeting activity. Consistent with the observed targeting 
activity, the EV‑coated particles more readily accumulated 
in organs with a higher bacterial burden (the kidney, spleen, 
lungs, and heart) in infected mice relative to uninfected con‑
trols. When the EV‑NPs were loaded with antibiotics, they 
significantly enhanced antibiotic efficacy upon i.v. adminis‑
tration, markedly reducing bacterial burden, particularly in 
the lung and kidneys.

Recent studies have explored the use of PDT as a strategy 
for overcoming antibiotic resistance. In one study, authors 
combined the photosensitizer protoporphyrin IX (PpIX) with 
the antimicrobial peptide (KLAKLAK)2 (KLA), thereby 
producing PPK particles ideal for bacterial PDT inactivation 
[159]. The particles readily bound bacterial cells via a com‑
bination of electrostatic interactions and membrane inser‑
tion, damaging the membrane and driving PpIX‑induced 
ROS‑mediated cytotoxicity upon 660 nm light exposure. 
Importantly, the PPK particles were highly effective at kill‑
ing both Gram‑positive and ‑negative bacteria (S. aureus and 
E. coli, respectively).

7.5  Hybrid Cell Membrane‑Coated Nanoparticles

Beyond the use of individual cell membranes, recent work 
has sought to combine multiple membrane types in order to 
develop unique hybrid membranes with enhanced functional 
characteristics that can then be used for novel NP coating 
and delivery strategies.

A dual‑membrane‑coated hybrid NPs was developed by 
combining RBC and platelet membrane material with the 
properties of both source cell types [46]. The hybrid [RBC‑
P] NPs could circulate for extended periods of time, mak‑
ing them well‑suited to future studies in vivo. Researchers 
also developed a hybrid RBC/platelet membrane coated 
polypyrrole (PPy) NPsthat could mediate tumor cell kill‑
ing upon NIR irradiation [160]. The hybrid RBC‑platelet‑
coated PPyNPs exhibited both RBC and platelet‑like attrib‑
utes, and achieved self‑targeting and extended circulation 

in vivo. To test the functional utility of the particles, mice 
bearing HCT116 tumors with i.v. injected with the hybrid 
membrane‑coated NPs, after which a NIR laser (808 nm, 
1.5 W cm−2, 300 s) was used to damage the tumor vascula‑
ture, inducing microthrombi formation. The platelet mem‑
brane characteristics of the NPs allowed them to readily 
traffic to the thrombotic areas, yielding superior anti‑tumor 
efficacy than in other treatment groups.

The unique properties of hybrid membranes can also be 
leveraged in the context of phototherapy to better suppress 
tumor growth. For example, Wang et al. [161] generated 
hollow copper sulfide NPs (loaded with DOX) coated with 
a hybrid of RBC and B16F10 melanoma cell membrane and 
used as a combination strategy for melanoma treatment. The 
hybrid particles exhibited characteristics of both RBC and 
tumor cells, with homologous tumor targeting and extended 
circulation. Importantly, the particles were also able to 
completely inhibit melanoma growth when administered 
to mice. In a similar example, researchers fused membrane 
materials from RBCs and MCF‑7 tumor cells and used this 
hybrid membrane (RBC‑M) to coat melanin NPs [162]. 
The melanin RBC‑M NPs exhibited RBC and MCF‑7 cell 
properties, effectively circulating and targeting MCF‑7 cells 
in vivo. Upon i.v. administration, the authors found that, 
with a 1:1 RBC:MCF‑7 ratio, the melanin RBC‑M NPs were 
most effective, exhibiting superior tumor accumulation and 
PTT efficacy as compared to uncoated melanin NPs or NPs 
coated with different cell membrane ratios. For mice treated 
with the optimal 1:1 melanin RBC‑M NPs, following irra‑
diation tumor temperature rapidly rose from 29.6 to 54.0 °C 
(∆T = 24.4 °C) within 10 min, suggesting the particles medi‑
ated enhanced PTT relative to uncoated melanin NPs. Con‑
sistent with this, the 1:1 melanin RBC‑M NPs resulted in the 
complete elimination of the tumor following PTT in treated 
animals, with a 100% tumor inhibition rate and H&E‑ and 
TUNEL‑staining results indicative of enhanced tumor cell 
destruction, confirming that the hybrid NPs prepared at a 
1:1 ratio of RBC to tumor cell material are ideal for PTT 
therapeutic efficacy in vivo.

As a means of achieving effective targeting to solid 
tumors, He et al. [163] employed liposomal NPs coated 
in a hybrid cell membrane composed of both leukocyte 
and tumor cell material (J774A.1 and HN12 cells, respec‑
tively) which were loaded with PTX. When employed in a 
murine head and neck cancer xenograft model, the authors 
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found that the hybrid membrane‑coated NPs exhibited both 
extended in vivo circulation time and superior targeting to 
tumors (79.1 ± 6.6% ID per gram of tumor).

Beyond direct cancer treatment, hybrid membrane‑coated 
NPs also have potential in a variety of other specialized 
applications. For example, Liu et al. [164] recently employed 
magnetic beads coated in a hybrid WBC and platelet mem‑
brane and then surface modified to bear specific antibodies 
of interest. The resultant hybrid membrane‑coated immuno‑
magnetic beads (HM‑IMBs) could readily bind cancer cells 
as a result of their platelet membrane material, and reduce 
rates of interaction with homologous leukocytes, thereby 
facilitating rapid and specific circulating tumor cell (CTC) 
binding. Using blood samples spiked with CTCs, the authors 
found that coating IMBs with hybrid membrane improved 
their CTC separation efficiently from 66.68% to 91.77%, 
while improving the purity of resultant cell preparations 
from 66.53% to 96.98% as compared with uncoated com‑
mercially available IMBs.

In summary, several different research groups have pio‑
neered efforts to combine multiple different types of cell 
membrane coating strategies, thus greatly expanding the 
number of options available for biomimetic NP coating 
efforts. By leveraging the properties of multiple cell types, 
it is now possible to generate NPs with extended in vivo 
circulation half‑lives and effective targeting abilities, thus 
offering unprecedented advantages for drug delivery, pho‑
totherapy, and CTC separation.

8  Application of Cell Membrane‑Coated 
Nanoparticles for Detoxification

Those NPs coated in a membrane could better deliver 
cargo, facilitate phototherapy, and mediate immunoregula‑
tion compared with bare NPs. The proteins present on the 
surface of the membranes could offer more opportunities 
to broaden the scope of their utility. Of note, certain exo‑ 
and endo‑toxic compounds can bind to specific cell surface 
molecules, and be exploited for detoxification purposes. 
Indeed, the coated NPs have been explored as a novel strat‑
egy for neutralizing specific bacterial toxins owing to the 
tendency of these toxins to bind the cell membrane [165]. 
Zhang et al. first proposed such a detoxification approach 
in 2013. They generated a RBC membrane coated‑PLGA 

NP that served as a “nanosponge” for bacterial toxins 
in vivo. The coated‑NPs could reduce toxicity by prevent‑
ing them from interacting with their intended targets [166]. 
The nanosponges could mediate a substantial reduction in 
staphylococcal alpha‑haemolysin (α‑toxin)‑induced toxic‑
ity in vivo, thus representing an ideal method to treat dis‑
eases associated with such pore‑forming toxins. The RBC 
nanosponges were also used for the treatment of severe 
MRSA [167]. The nanosponges could neutralize the hemo‑
lytic activity of toxic proteins secreted by the MRSA bac‑
teria in vivo, thus significantly improving murine survival. 
In addition, when animals were directly challenged by a 
sublethal dose of supernatant derived from MRSA, the 
nanosponges significantly decreased the associated lung 
damage and reduced splenic inflammatory transcription 
factor activation. The same general detoxification mecha‑
nism can also be employed in the context of 3D bioprint‑
ing. For example, Zhang’s group prepared a 3D printed 
RBC‑NP/hydrogel that was ideally suited to detoxification. 
The material could absorb and thereby neutralize the activ‑
ity of a wide range of toxins while still permitting blood 
to flow through in vivo [168].

NPs coated in platelet membranes can also be used as a 
means of binding and thereby clearing pathological antibod‑
ies from systemic circulation. This strategy is of value in the 
context of certain diseases, such as in immune thrombocyto‑
penia purpura (ITP) wherein autoantibodies mediate patho‑
logical platelet destruction. Platelet membrane‑coated NPs 
offer an opportunity to specifically bind the platelet‑specific 
auto‑antibodies, thereby preventing them from mediating 
platelet destruction [28]. Indeed, researchers found that the 
platelet membrane‑coated NPs are highly effective at reduc‑
ing platelet destruction and preserving normal hemostatic 
function in vivo. The so called “nanomotors” in platelet 
membranes were cloaked and used to mediate long term pro‑
pulsion in blood [169]. The resultant nanorobotic particles 
still exhibited platelet‑like properties, including significant 
adhesive ability and the potential to bind toxins and patho‑
gens, such as Shiga toxin and S. aureus.

In another example, the nanorobots combining proteins 
from RBCs and platelets were developed, which require 
no fuel and are ideal for detoxification efforts [170]. The 
nanorobots readily binded both pathogens and toxins, serv‑
ing as an optimal hybrid membrane‑coated multifunctional 
therapeutic strategy.
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9  Model Drugs and Patents Based on Cell 
Membrane Coating Technology

9.1  Model Drugs Investigated

Table 3 summarizes the model drugs used in the context 
of cell membrane biomimetics. While the selected drugs 
have recognized good therapeutic efficacy, they also have 
some limitations, such as multi‑drug resistance (e.g., DOX), 
poor targeting, or poor water solubility (e.g., PTX and GA). 
A major focus of cell membrane‑related biomimetic drug 
research is thus unsurprisingly focused on overcoming 
multidrug resistance, prolonging drug circulation, enhanc‑
ing drug targeting, and improving therapeutic efficacy. Cell 
membrane coating allows drugs having similar character‑
istics to those of the cell membrane. The membrane‑asso‑
ciated properties, including extended circulation, immune 
escape, inflammation targeting, or tumor targeting could 
directly improve the drug efficacy. Cell membrane coating 
not only increase the biocompatibility of drugs in vivo but 
also avoid consequent rapid clearance. The natural targeting 
strategies, such as platelet or cancer cell membranes, can 
reduce systemic drug distribution, thus achieving maximal 
therapeutic targeting and reducing associated side effects. 
In addition, using appropriate carrier modifications can not 
only prevent drug leakage, but also achieve controlled drug 
release.

Nowadays, cell membrane coating technology is mainly 
focused on cancer treatment in combination with specific 
drugs. Owing to the excellent biocompatibility of cell mem‑
branes, the model drugs studied are generally insoluble 
drugs to improve the solubility. Beyond cancer, the damage 
and repair‑associated properties of cell membranes, as in the 
case of platelets, make them well‑suited to be coated on the 
NPs and treat other diseases such as atherosclerosis.

9.2  Recent Patents

With the development and application of CM‑NPs, there 
have been an increasing number of relevant patents filed 
over the past decade. Table 4 lists applications for bionic 
patents for cell membrane coating technologies from year 
2009 to 2018.The applications highlight a trend wherein 
biomimetic drug design is gradually expanding beyond 

initial RBC membrane efforts to a more diversified array 
of membrane types. US20130337066A1 described the 
synthesis of an erythrocyte membrane‑camouflaged PLGA 
NPs designed for long‑circulating cargo delivery, fabricat‑
ing cell‑mimicking NPs through a top‑down approach. The 
biomimetic delivery platform may represent an elegant 
method for personalized medicine whereby the drug deliv‑
ery nanocarrier is tailored to individual patients with little 
risk of immunogenicity by using their own RBC mem‑
branes as particle coatings. Similarly, a biomimetic nano‑
system of activated neutrophil membrane‑coated PLGA 
loaded chemotherapeutic drug NPs has been invented 
(CN201610803744.6). The biomimetic nanosystem can 
target circulating cancer cells and achieves strong target‑
ing and high efficiency.

WO2017027760Al describes a platelet membrane‑
coated drug delivery system which can sequentially and 
site‑specifically deliver both extracellularly active drugs 
and intracellularly functional drugs to cancer cells. By 
taking advantage of the high affinity between platelet 
membranes and cancer cells, the platelet membrane‑
coated nanovesicle effectively aggregates on the surface 
of cancer cells and can thereby promote the interaction 
of extracellularly active drugs. After endocytosis, plate‑
let membrane‑coated nanovesicles can be degraded by 
acidity in the lyso‑endosome, accompanied by the release 
and further accumulation of encapsulated intracellularly 
functional drugs. Jinan University has proposed a method 
for preparing human erythrocyte membrane‑coated NPs 
for drug combination photodynamic therapy of tumors in 
its patent. This delivery platform can not only realize the 
high‑efficiency loading of drugs, but also can effectively 
prolong their circulation time in vivo, so as to achieve 
accurate and continuous drug delivery in the tumor.

These patents clearly demonstrate that an effective 
cargo delivery system can be constructed by using cell 
membrane coating technology, offering a potential novel 
platform for disease treatment. With the development of 
this technology, the application of cell membranes has 
expanded from blood cells to immune cells, tumor cells, 
and other cell types. Based upon patent applications from 
the last 2 years, we can see that in addition to increases 
in cell membrane types utilized, the relatively mature cell 
membrane delivery systems (e.g., RBCM‑NPs) are also 
progressing in a more efficient and intelligent direction.
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Table 3  A summary of model drugs used in cell membrane coating technology‑related research

Drugs Molecular 
weight 
(MW)

Water solubility Types of 
enveloped cell 
membranes

Inner core 
materials

Drug 
loading 
(%)

Encapsulation 
efficiency (%)

Indication(s) References

Vinca alkaloid 
vincristine

824.972 2.27 mg L−1 RBC membrane Solid lipid nano‑
particle

2.1 55.72 Glioma [88]

Gambogic acid 628.762 Insoluble RBC membrane PLGA / / Colorectal 
cancer

[87]

Doxorubicin 543.525 Insoluble RBC membrane MSN 39.8 97.6 Breast cancer [39]
Platelet membrane Nanogel / / Breast cancer [106]

PLGA / / Breast cancer [171]
Liposome 11 / Breast cancer [110]

Monocyte Cell 
membrane

PLGA 21 / Breast cancer [172]

Cancer cell mem‑
brane

Magnetic iron 
oxide nanopar‑
ticle

16.8 / Hepatoma [137]

Hollow silica 
interlayer 
(hSiO2)

10 / Breast cancer [147]

Iron oxide 1.8 / Osteosarcoma [173]
Au nanocages 8.1 / Hepatoma [40]
MSN 4.2 / Prostate cancer [143]

Stem cell mem‑
brane

PLGA / / Hepatoma [151]
Nanogel 15 / Cervical cancer [50]

Hybrid cell 
membrane 
(Red blood cell 
membrane and 
Melanoma cell 
membrane)

PLGA 87.7 95.5 Melanoma [161]

Vancomycin 1449.265 2.25 × 10−1 g 
 L−1

Bacterial mem‑
brane

PLGA / 36 Staphylococcus 
aureus bacte‑
remia

[58]

Rapamycin 914.187 9.9 × 10−5 mg 
 L−1

RBC membrane PLGA 7.79 / Atherosclerosis [83]
Platelet membrane PAMAM / 84.5 Restenosis [112]

Quercetin 302.238 60 mg  L−1 Macrophage 
membrane

Hollow bismuth 
selenide

/ / Breast cancer [132]

Docetaxel 807.89 Insoluble Platelet membrane PLGA 4 / Coronary reste‑
nosis

[111]

Paclitaxel 853.918 Insoluble RBC membrane Au nanoparticle 4.6 / Breast cancer [99]
PCL 4.1 96.8 Breast cancer [174]

Cancer cell mem‑
brane

PCL 4 96.02 Breast cancer [141]

Metformin 129.167 Soluble Platelet membrane W18O49 nano‑
particle

2.78 69.83 Burkitt’s lym‑
phoma

[116]

Rifampicin 822.953 1400 mg  L−1 Bacterial mem‑
brane

PLGA / / Staphylococcus 
aureus bacte‑
remia

[58]

NR2B9C / Soluble RBC membrane Dextran / / Ischemic stroke [131]
Glyburide 494.01 Insoluble Stem cell mem‑

brane
PLGA 5 / Stroke [175]

Sorafenib 464.825 Insoluble Cancer cell mem‑
brane

Iron oxide 8.6 94.6 Glioma [176]
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10  Conclusion and Future Perspective

The unique properties of natural cell membranes, including 
their ability to facilitate extended circulation time, immune 
escape, adhesion, and homologous targeting, have led to 
the novel application of membrane coating technology in 
the context of nanomedicine. Cell membrane used include 
red blood cell membranes, platelet membranes, white cell 
membranes (macrophage, neutrophils, and T cell mem‑
branes), cancer cell membranes, stem cell membranes, beta 
cell membranes, fibroblast cell membranes, and their hybrid 
membranes. The CM‑NPs have been shown to be effective 
for drug delivery, phototherapy, immune modulation, and 
detoxification.

Extrusion and ultrasound production are the main meth‑
ods to prepare NPs coated with cell membranes. In recent 
years, microfluidic electroporation has also been proposed 
as a means of preparing more stable and uniform CM‑NPs. 
However, the clinical preparation of such CM‑NPs remains 
challenging. Because this technology relies upon a simple 
top‑down preparation method, the requirements for nuclear 
materials are not stringent, thus providing ample opportunity 
for the biomimetic utilization of a wide range of materials 
and drug dosage forms. Polymers, liposomes, silica, iron 
oxide NPs, and metal materials can all be encapsulated in 
cell membranes. New two‑dimensional materials (e.g., BP) 
and some drug formulations (e.g., micelles, nanogel, and 
nanocrystals) have also been combined with cell membrane 
coating technologies. The diverse array of combinations 
thus greatly expands the scope of cell membrane coating 
technologies.

The membrane coating technology is mainly used for 
cancer treatment, with studies in breast cancer, liver cancer, 
colon cancer, head and neck squamous cell tumors, mela‑
noma, and other tumor models, and achieved good experi‑
mental therapeutic efficacy in vivo and in vitro. As foreign 
substances interact with cell membranes, nanosponges have 
been successfully developed that take advantage of this 
property to achieve effective detoxification outcomes. The 
diverse array of available cell membrane types offers ample 
opportunity to treat a diverse range of diseases. In particular, 
platelet membranes have the potential to be utilized to treat 
atherosclerosis and restenosis. Immune cell membranes, 
in contrast, offer an opportunity to treat immunological 

diseases. The emergence of hybrid cell membranes allows 
for the blending of the characteristics of various cell mem‑
brane types, optimizing their functionality. This hybrid strat‑
egy has been developed extensively over the past 2 years. We 
believe that the development of hybrid cell membrane coat‑
ing technologies will remain a major area of active research 
in the near future.

However, there are still some limitations associated with 
cell membrane coating technologies. In order to develop 
multi‑functional intelligent CM‑NPs, certain membrane 
modifications will inevitably be required, potentially induc‑
ing undesirable side effects. Excessive use of immune 
CM‑NPs may induce or aggravate inflammation through 
interactions with the immune system, thereby leading to 
pathological mediator release.

Herein, we additionally surveyed common model drugs 
and recent CM‑NP‑related patents that have been filed in 
the past decade. The CM‑NPs have the potential to increase 
chemotherapeutic drug biocompatibility while decreasing 
the incidence of associated side effects. In addition, rela‑
tively mature cell membrane delivery systems (e.g., blood 
CM‑NPs, immune CM‑NPs, and cancer CM‑NPs) are 
being developed in a more intelligent and effective manner. 
Although the technology of cell membrane coating has not 
yet achieved full clinical implementation, its clear advan‑
tages and the abundant sources of cell membrane offer a 
solid foundation for its industrial production and imple‑
mentation in individual precision medicine approaches. We 
believe that in the near future, the research and development 
of CM‑NPs will yield invaluable contributions to human 
health.
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