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HIGHLIGHTS

• Polyimides (PIs) as coatings, separators, binders, solid-state electrolytes, and active storage materials help toward safe, high-perfor-
mance, and long-life lithium-ion batteries (LIBs).

• Strategies to design and utilize PI materials have been discussed, and the future development trends of PIs in LIBs are outlooked.

ABSTRACT Lithium-ion batteries (LIBs) have helped revolutionize the modern world 
and are now advancing the alternative energy field. Several technical challenges are 
associated with LIBs, such as increasing their energy density, improving their safety, 
and prolonging their lifespan. Pressed by these issues, researchers are striving to find 
effective solutions and new materials for next-generation LIBs. Polymers play a more and 
more important role in satisfying the ever-increasing requirements for LIBs. Polyimides 
(PIs), a special functional polymer, possess unparalleled advantages, such as excellent 
mechanical strength, extremely high thermal stability, and excellent chemical inertness; 
they are a promising material for LIBs. Herein, we discuss the current applications of 
PIs in LIBs, including coatings, separators, binders, solid-state polymer electrolytes, 
and active storage materials, to improve high-voltage performance, safety, cyclability, 
flexibility, and sustainability. Existing technical challenges are described, and strategies 
for solving current issues are proposed. Finally, potential directions for implementing 
PIs in LIBs are outlined.
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1 Introduction

The ongoing energy crisis and environmental issues attrib-
uted to traditional energy sources have aroused extensive 
attention [1, 2]. New energy sources in place of traditional 
energy sources have become an inevitably developing trend. 
Lithium-ion batteries (LIBs), as one of the most attractive 

energy sources, have been commercialized for decades 
[3–7]. However, several technological challenges such as 
increasing energy density, improving safety, and extend-
ing longevity still urgently need to be overcome. Overview 
of the rapid development of LIBs in the past 30 years, the 
critical issues solved and significant technical innovations all 
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benefit from the advancements of state-of-the-art materials 
[8, 9]. The era of new materials has arrived.

LIBs are composed of the cathode, anode, separator, elec-
trolyte, and coin shells involving various constituent materi-
als incorporation of organic materials, inorganic materials, 
and metals. Particularly, polymers, as one kind of organic 
material, are not extensively used in LIBs, besides the sepa-
rator and binder. However, with the continued improvement 
of researchers’ cognitions, more polymeric components are 
now being considered for LIBs [10, 11], including different 
functional polymer coatings, the current popular solid-state 
polymer electrolytes, new polymer active storage materi-
als, etc. Nowadays, two dilemmas of polymers applied in 
LIBs should be dealt with. One is that several technique and 
usage problems faced by traditional polymer components 
limit their practical applications, which should be replaced 
by new-style polymer materials. For example, traditional 
polyolefin separators cannot withstand high temperatures, 
which replaced by high-performance separators is encour-
aged. The other one is using new polymer components to 
boost LIBs. One compelling case is employing functional 
polymer coatings to protect key components from deterio-
rations of high voltage or interfacial side reactions. Addi-
tionally, new styles of solid-state polymer electrolytes and 
polymer active storage materials are also developing trends. 
In a word, polymer materials are playing more and more 
important roles in LIBs.

LIBs propose very high-performance requirements for 
polymer materials, including excellent chemical resistance, 
thermal stability, high-voltage tolerance, and even high 
mechanical strength, while polyimides (PIs) are standing 
out among many polymers. PIs can be used as coatings [12], 
binders [13], separators [14], solid-state electrolytes [15], 
active storage materials [16], etc. Though the applications 

of PIs are diverse, they are still confined to the laboratory 
and far away from commercialization. PIs are formed from 
anhydride and amine polycondensations [17]. PIs have been 
in development since their introduction in 1955. There are 
two methods for synthesizing PIs: One is the hydrothermal 
method, also called the one-step method, and the other is the 
two-step method, which includes thermal imine and chemi-
cal imine methods [18]. The hydrothermal method involves 
direct polymerization in a high boiling point solvent. The 
high temperatures and pressures involved in the procedure 
can be a safety concern. The chemical imine method refers to 
PI precursors (polyamic acid, PAA) dehydrated and cyclized 
with the aid of a catalyst. Compared with these two methods, 
the thermal imine method involves PAA cyclization at high 
temperatures without introducing other substances, confirm-
ing to be a more economical and convenient way. PIs can 
be categorized into aliphatic and aromatic. Generally, ali-
phatic PIs are flexible and soluble, mainly used as coatings 
or binders. In contrast, aromatic PIs are rigid and insoluble, 
mainly used as membranes or solid powders. Table 1 lists 
the important physical and chemical properties of different 
PI applications in LIBs. PIs are promising in LIBs. PIs can 
be coated onto active material surfaces to keep the cathode 
and electrolyte interface stable at high-voltage conditions, 
increasing the cyclability of the cell. PIs can also be used as 
separators to improve safety when operating at high tempera-
tures. To prolong the battery life, researchers can employ PI 
binders to enhance the electrode structural integrity. PIs can 
also be employed in solid-state lithium batteries. Further-
more, PIs can replace traditional energy storage materials to 
lower the cost and environmental pollution. Figure 1 outlines 
the requirements of each LIB component that can be satis-
fied by incorporating PIs into LIBs.

Table 1  Physical and chemical properties of different PI applications in LIBs

PIs in LIBs Solubility Critical properties Preparation methods

PI coatings Insoluble Good electrolyte wettability Self-growing and solvothermal methods
PI separators Insoluble Thermally stable membrane Template, phase separation, and electro-

spinning methods
PI binders Soluble Soluble and adhesive Chemical synthesis
Solid PI electrolytes Soluble Soluble and lithium-ion conductive Chemical synthesis
Solid PI-based electrolytes Insoluble Membrane with porous holes Etching, casting
PI active storage materials Insoluble Reversible lithium-ion storage ability at special 

voltage conditions and powdery
Chemical synthesis
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From PI materials to LIBs, much effort should be devoted 
to solving various issues encountered. Herein, we summarize 
the important issues involving PIs in LIBs. We describe the 
essential features for each issue encountered when employ-
ing PIs. Moreover, we address several critical technology 
challenges and strategies for using PIs in LIBs. Finally, 
future development directions for LIBs with PIs are outlined.

2  PIs in Different LIB Components

2.1  Improving High‑Voltage Performance: PI Coatings 
on Cathode Materials

Energy storage devices with high energy and power den-
sities for portable electric devices, electric vehicles, and 
grid energy storage are being investigated intensively [19]. 
To increase the energy density of LIBs, researchers have 
two strategies: increase the specific capacity or increase 
the operating voltage according to Eq. 1:

where E represents the energy density, C
0
 is the theoretical 

specific capacity, and V  is the average operating voltage. For 
cathode materials, much effort has been devoted to finding 
materials that operate below 4.35 V but exhibit high spe-
cific capacity, i.e., Ni-rich  LiMO2 (M = Co, Mn, Ni) [20–23]. 
However, the practical specific capacity of these materials 
is nearing the limit of ~ 200 mAh  g−1. Therefore, research-
ers began to increase the specific capacity by elevating the 
operating voltage.

When LIBs are at high-voltage conditions, the delithi-
ated cathode and liquid electrolyte promote violent interfa-
cial side reactions, which is the most significant challenge 
researchers face. Surface coating is an effective technique 
that reduces interfacial side reactions, thereby enhancing 
electrochemical performance. To date, many metal com-
pounds, such as  Al2O3 [24–27],  ZrO2 [28],  MoO3 [29],  TiO2 
[30],  AlF3 [31], and  Li3PO4 [32], have been used to coat 
active materials. Because these metal compounds facilitate 
Li-ion conductivity and decrease the violent side reactions, 
irreversible lithium loss is reduced and cycling performance 
is increased. However, metal oxides face several technical 
issues, including discontinuity, brittleness, and delamination 
from the surface of cathode materials. Therefore, selecting 
polymers with tunable molecular structures and high adhe-
sion as coatings can be an effective strategy.

Among the polymers, PIs with excellent performances 
such as good elasticity, thermal stability, and electrolyte wet-
tability can be used as ideal coating materials [33, 34]. Espe-
cially as coatings, PIs should be insoluble in electrolytes 
as well as possess good electrolyte wettability. This perfor-
mance requirement is important for enhancing the electro-
chemical performance. The synthesis of PI-coated cathode 
materials is the focus of this section, and the coating process 
is shown in Fig. 2a. Herein, the thermal imine method is 
used to realize the coating. First, pyromellitic dianhydride 
(PMDA) and 4,4′-oxydianiline (ODA) are polymerized to 
obtain PAA at low temperatures. Then, a certain concentra-
tion of PAA solution is mixed with cathode active materials 
to coat the PAA onto the surface of active material particles. 
Thereafter, the PAA-coated cathode materials are thermally 
imidized through a step-by-step heating method to convert 
PAA to PI coatings [35]. Finally, active material particles 
with PI nano-coatings are obtained.

Transmission electron microscopy (TEM) is the most 
straightforward way for evaluating PIs successfully 

(1)E = C
0
× V

Fig. 1  Schematic showing how polyimides (PIs) are promising poly-
mer materials for LIBs. As coatings, PIs can stabilize the interface 
of the cathode and electrolyte. PI separators can enhance thermal sta-
bility, while PI binders can maintain the structural integrity of elec-
trodes. PIs can increase the energy density of LIBs if employed as 
solid-state electrolyte support. PIs can replace traditional inorganic 
active storage materials. All these promising PI applications help 
toward safe, high-performance, and long-life LIBs
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coating onto the surface of cathode particles. Figure 2b 
is a TEM image of PI-coated  LiNi1/3Co1/3Mn1/3O2 
(NCM333). The coating was continuous and uniform 
(~ 10 nm thick) [33]. The electrochemical performance 
of the cell was mainly affected by this PI layer, as shown 
in Fig. 2c. As seen in this figure, the cyclability of PI-
LNMCO  (Li1.2Ni0.13Mn0.54Co0.13O2) is better than that 
of LNMCO, especially at high thermal imine tempera-
tures. Zhang et al. [35] found that high thermal imidiza-
tion temperatures facilitate strong interactions between 
PI coatings and cathode particle surfaces, prohibiting 
the solvation of transition metal ions and enhancing the 
electrochemical performance. Figure 2d illustrates the PI-
coating mechanism [33]. PI effectively blocks the elec-
trolyte, hindering interfacial side reactions. Meanwhile, 
Li-ion conductivity in PIs is good [36]. The cathodes with 
PI coatings exhibit a lower polarization and less irrevers-
ible Li-ion loss than uncoated cathodes, resulting in a 
good cycling lifetime. Additionally, N has special inter-
actions with  Mn4+, further increasing the rate capability. 
Currently, the discussion focus is the stability of PI coat-
ings at high voltage. Meanwhile, our group has devoted 

much work to verifying this question. Our following work 
concludes that PI coatings are stable at high voltages up 
to 4.6 V without structural changes. PI coatings play the 
physical barrier role in retarding the interfacial side reac-
tions. The optimal PI-coating content is about 4wt% (PAA 
added in the preparation process). As a consequence, PI 
coatings provide an effective way to improve electro-
chemical performances at high-voltage conditions.

2.2  Improving Battery Safety: PI Separators

The LIB separator is a porous and insulating membrane 
located between the cathode and anode, not only providing 
a pathway for Li-ion conduction but also playing the role 
of avoiding internal short circuits (ISCs) [37, 38]. Higher 
demands such as the proper pore size, uniform pore distri-
bution, low pore tortuosity, low heat shrinkage, excellent 
mechanical performance, and good electrolyte wettability 
should have for separators [39]. Therefore, the materials 
chosen and processing technologies for the preparation of 
good-performance separators are strict.

Fig. 2  a Schematic of PI coating onto an LNMCO cathode material. b TEM image of PI-coated  LiNi1/3Mn1/3Co1/3O2 (PI@NCM333). c Elec-
trochemical performances of LNMCO, PI@LNMCO-300, and PI@LNMCO-450, including initial efficiency, cycling, and rate capability (300 
and 450 represent thermal imidization temperatures). d Schematic of the mechanism for enhanced electrochemical performances in PI-coated 
NCM333
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Commercial separators are made of polyethylene (PE) or 
polypropylene (PP) owing to their high chemical stability 
and acceptable mechanical strength. Currently, the process-
ing technologies for polyolefin separators are very mature. 
The thickness of polyolefin separators can be reduced to 
less than 15 μm without sacrificing their mechanical prop-
erty, and the electrochemical performance can be obtained 
stably at room temperatures. However, two shortcomings of 
these separators need to be addressed [40]. First, the wet-
tability of polyolefin separators is insufficient in accommo-
dating any electrolyte, resulting in limited ionic conduc-
tivity owing to their hydrophobic nature. Second, the high 
thermal shrinkage and low melting temperature of polyole-
fin separators easily induce ISCs when operating at high 
temperatures, leading to thermal runaway. Compared with 
polyolefin separators, PI membranes exhibit a higher tensile 
strength of more than 10 Mpa, higher thermal stability up to 
500 °C with little shrinkage, and good electrolyte uptake of 
larger than 100%. Shi et al. [41] have found that the above 
performances of PI separators are all better than those of 
PE separators. He et al. [42] employed different structural 
monomers to synthesize diverse PI separators, and all per-
formance metrics are higher than those of a PP separator. 
These findings demonstrate that PI separators are preferable 
separator candidates.

PI separators are not yet commercialized due to their com-
plex processing technology and expensive cost. To date, the 
preparation methods for PI separators are still confined to 
the laboratory, including template, phase separation, and 
electrospinning methods. Figure 3a shows a schematic of 
the template method reported by Lin et al. [43]. Typically, 
the template method employs inorganic salts as templates 
to make pores. In their work, LiBr and  SiO2 were mixed 
into a PAA solution and doctor blade to produce the mem-
brane. Then, the PAA membrane was thermally imidized 
to convert it into a PI membrane. Finally, a nanoporous PI 
membrane was obtained by washing LiBr away with water. 
The main advantage of this method is that it maintains the 
intact pore structure. Moreover, the added  SiO2 enhances 
electrolyte wettability even further and provides good ther-
mal stability and mechanical properties to the separator, 
which could widen the service temperature and prohibit Li 
dendrites effectively. Li et al. [44] reported the phase separa-
tion method to fabricate PI separators. As shown schemati-
cally in Fig. 3b, dibutyl-phthalate and glycerin are added 
to the PAA solution, which is then blade onto a glass plate 

to obtain the PAA membrane. This PAA membrane is fur-
ther immersed in an ethanol coagulation bath at 40 °C sev-
eral times to remove the solvent and additives for making 
holes. Finally, the same method of thermal imidization is 
adopted to convert the PAA membrane into a PI membrane. 
The cell assembled with this PI separator exhibited good 
electrochemical performances at 140 °C, whereas the cell 
with a PE separator failed. The reason for the good per-
formance of the cell at high temperatures is attributed to 
the PI separator maintaining good thermal stability with-
out observable shrinkage at high temperatures. Similarly, 
PI separators prepared by the modified method have been 
further explored by Song and Zhou et al. [45, 46] to boost 
the safety of LIBs. Compared with the above methods, the 
electrospinning method is simpler and more versatile for 
membrane preparation. Electrospinning is one of the most 
promising methods to realize PI separator commercializa-
tion. Li et al. [47] employed the solution blow spinning for 
fabricating PI separators. The technique includes three steps: 
①synthesizing PAA, ② electrospinning, and ③ thermal imi-
dization. The preparation process is shown in Fig. 3c. As the 
PI separator made by the electrospinning method possesses 
a conductive pore structure, it further enhances the ionic 
conductivity. While the size of the hole is large, the formed 
Li dendrites easily penetrate the separator and lead to the 
ISCs. Therefore, many references have reported the modified 
electrospinning PI separators.

Pore structure modifications include coating with poly-
mers or inorganic ceramic particles. A polymer coating 
could reduce pore size to prevent Li dendrites and improve 
mechanical properties and thermal stability. Besides, 
inorganic ceramic particle coatings are also beneficial for 
enhancing electrochemical performances. Currently, much 
work has been done for PI separators coated with inor-
ganic ceramic materials combined with the electrospin-
ning method [48–50]. Figure 4a illustrates a PI nanofiber 
separator coated with  SiO2 particles using the in  situ 
nanoencapsulation hydrolysis method, as reported by Wu 
et al. [48]. SEM images clearly show that  SiO2 coatings 
are uniformly wrapped onto the surfaces of PI nanofibers. 
The static contact angle of the carbonate-based electrolyte 
on the PI/SiO2 separator was 6.8° as shown in Fig. 4b, 
lower than that on Celgard and pure PI separators, indicat-
ing good electrolyte wettability of the PI/SiO2 separator. 
Qiao et al. [50] fabricated another PI separator reinforced 
with intercalated organic montmorillonite (OMMT) via 
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solution blow spinning. In Fig. 4c, the cell with the as-
prepared PI/OMMT composite separator exhibits better 
cycling performance (a discharge specific capacity of 131 
mAh  g−1 after 100 cycles at  C) and rate capability (124 
mAh  g−1 at 2 C) than the one with Celgard-2500 separator 

(107 mAh  g−1 after 100 cycles at 1 C and 107 mAh  g−1 
at 2 C). This is due to that the electrolyte wettability of 
the PI/OMMT composite separator is enhanced, which 
forms the complete Li-ion conductive route and induces 
higher Li-ion conductivity, resulting in the enhancement 

Fig. 3  Different preparation methods for PI separators. a Template method. b Phase separation method. c Electrospinning method
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of electrochemical performances. The ceramic-coated 
PI separators also have good mechanical flexibility and 
flame-retardant properties. Figure 4d shows that PI sepa-
rators are rollable, foldable, and twistable, guaranteeing 
good use reliability [49]. Figure 4e shows the comparison 
of the combustion performances of Celgard-2400, pure PI, 
and PI/ZrO2 separators. The PI/ZrO2 separator exhibits the 
best flame-retardant property, suggesting that incorporat-
ing inorganic ceramic particles is beneficial in improving 
the safety of LIBs [49].

2.3  Improving Cyclability of Structurally Integral 
Anodes: PI Binders

Graphite dominates the anode market for many years owing 
to its long cycle life, abundance, and low cost. However, the 
graphite anode material possesses a relatively lower energy 
density (375 mAh  g−1). Therefore, developing alternative 
anode materials is essential. Silicon is considered to be a 
promising anode material for next-generation LIBs owing 
to its abundance and high theoretical specific capacity 
(4,200 mAh  g−1). The main challenge in silicon anodes is 
their extensive volume change (up to 300%) during lithium 

insertion and extraction, which often leads to the pulveri-
zation of active alloy particles and poor cyclability. Nano-
silicon [51, 52] and Si/C composite [53–55] can mitigate 
volume change in silicon. Using suitable binders [56–61] 
could also prevent silicon particle pulverization. Although 
the amount of binders in electrodes is little, they influence 
the performance of silicon-based anodes significantly.

Various polymer binders, such as the mussel-inspired 
binder [62–64], polyacrylic acid [58, 65], polysaccharides 
[66, 67], polyacrylonitrile [68], polyimides [69–71], self-
healing polymer binders [61, 72], and conductive binders 
[73, 74], have been developed. Among these, PI binders 
with superior adhering properties, good mechanical strength, 
remarkable thermal stability, and outstanding electrolyte 
affinity are attracting wide attention. Much work reports PI 
binders from the perspective of molecular structure design, 
aiming at ameliorating different properties. To increase the 
Li-ion conductivity, Yao et al. [75] introduced ether func-
tional group abundant polyethylene glycol (PEG) segments 
to PI structure. Compared with the carboxymethyl cellulose 
(CMC) binder, the discharge capacity of the silicon anode 
using this PI binder is as high as 2,989.7  g−1 and with few 
microcracks generated after cycling shown in Fig. 5a. To 

Fig. 4  a SEM images of PI/SiO2 nanofibers. b Static contact angles of Celgard-2400, pure PI, and PI/SiO2 separators (43°, 15°, and 6.8°, 
respectively). c Cycling and rate capability performances of Celgard-2500, PI, and PI/OMMT separators. d Images of the PI/SiO2 separator 
demonstrating its flexibility. e Flame retardancy of Celgard-2400, pure PI, and PI/SiO2 separators
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depress the pulverization of silicon anode, the soft and rigid 
copolymerized PI binder was designed [76]. The soft silox-
ane components possess excellent elasticity to accommodate 
volume changes. The rigid blocks provide a high modulus 

to withstand the mechanical stress generated in the silicon 
anode. The structural diagram of poly(siloxane imide) (PSI) 
binder is shown in Fig. 5b. To increase the adhesive prop-
erty, PI binders with stronger adhesive functional groups 

Fig. 5  a PI-200 synthesis by polymerizing polyethylene glycol (PEG), trimellitic anhydride chloride (TMAC), and 4,4′-methylenedianiline 
(MDA). Cycling performances, SEM images after cycling, and schematics of lithiation/delithiation comparing PI-200 and CMC binders are also 
shown. b Alternative PI binder design combining soft and rigid segments. c P84 vs. PVDF binder in silicon anodes. Images from peeling experi-
ments reveal adhesion effects. d The synthesis process of PI-COOH binder, cycling and rate capability, and SEI formations
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were synthesized. Choi et al. [77] used highly adhesive and 
thermally stable co-polyimide (P84) as the silicon anode 
binder. In Fig. 5c, P84-based electrode was peeled off from 
the Cu current collector with little residues, while the sur-
face of the Cu current collector was smooth after the PVDF-
based electrode was peeled off, suggesting better adhesion 
with P84 than with PVDF. Besides, high adhesive capability 
of PI binders could keep the electrode with structural integ-
rity, leading to the good cycling life and rate capability. Xu 
et al. [78] designed a kind of PI binder with the functional 
groups of carboxyls tethered laterally shown in Fig. 5d. Due 
to the interaction between carboxyls and the surface oxide 
layer of silicon particles, it prohibits the regenerations of 
solid electrolyte interface (SEI), enhancing the electrochemi-
cal performance. To sum up, the reasonable structural design 
of PI binders endows silicon anodes with better structural 
integrity and longer cycling lifespan, which lays a good 
foundation for the commercialization of silicon anodes.

As PI materials are stable at high voltage, it concludes 
that PI binders are also stable at high voltage. Combining the 
merits of good structural integrity and high-voltage resist-
ance, PI binders can be applied in cathodes. Similarly, the 

design of PI binders for cathodes is purposive. Pham et al. 
[79] designed a block copolymerized PI binder contain-
ing –CF3 and –COOH. Due to the –COOH, this PI binder 
will form strong interactions with  LiNi0.8Co0.1Mn0.1O2 
(NCM811), whose structure is shown in Fig. 6a. Due to the 
–CF3, it endows the PI binder with good thermal stability 
and chemical inertness. The structure of the electrode piece 
is shown in Fig. 6b, and the thickness of the binder layer is 
about 3 nm shown in Fig. 6c. Qi et al. [80] also designed 
two kinds of PI cathode binders, namely PI(BBP) and 
PI(OBO). These two PI binders were, respectively, mixed 
with active materials  LiNi0.8Co0.1Mn0.1O2 (NCM811) and 
conducting materials super-P in the ratio of 8:1:1 to obtain 
cathode sheet, whose cross-sectional SEM image and the 
corresponding schematic diagram are shown in Fig. 6d. The 
CR2032 coin cells assembled with these two kinds of cath-
odes show good rate capability and cycling performance in 
Fig. 6e. No matter PI binders are used for cathodes or sili-
con anodes, the electrode structural integrity can be assured, 
leading to excellent electrochemical performances.

Fig. 6  a, b Structure schematics of PI-FTD@NCM811 and cathode piece. c TEM image for PI-FTD@NCM811. d SEM image of the cathode 
sheet and its corresponding schematic diagram. e Rate capability and cycling performance
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2.4  Application in All‑Solid‑State Lithium‑Ion 
Batteries: Solid PI‑based Electrolytes

To realize all-solid-state (ASS) lithium-ion batteries (LIBs) 
with higher safety and higher energy density, solid-state 
electrolytes (SSEs) are pivotal as they play a significant 
role in determining comprehensive electrochemical perfor-
mance [81, 82]. SSEs should be highly ionically conductive, 
mechanically strong, chemically/electrochemically stable, 
nonvolatile, and non-flammable. SSEs can be classified 
into three types: inorganic (ceramic/glass) solid electrolytes 
(ISEs), solid polymer electrolytes (SPEs), and composite 
solid-state electrolytes (CSEs) [83]. Though ISEs possess 
excellent Li-ion conductivity, the intrinsic brittleness and 
easy pulverization of ISEs affect their use reliability. SPEs 
present continuous and flexible features, while SPEs face 
a big challenge in the improvement of Li-ion conductivity. 
Combining both advantages of ISEs and SPEs, CSEs show 
great development potential in SSEs.

For preparing SPEs even CSEs, choosing a suitable poly-
mer matrix is the first consideration. Poly(ethylene oxide) 
(PEO) has become the most widely used electrolyte mate-
rial owing to its high solubility toward lithium salts and 
relatively high Li-ion conductivity. However, PEO-style 
SSEs do not prohibit Li dendrites and are not stable at high 
temperatures. PIs possess excellent mechanical strength, 
good electrolyte wettability [84], and outstanding thermal 
stability, suggesting that they can be a good candidate for 
the SSE matrix. Generally, PI SSEs could be categorized as 
solid PI and solid PI-based electrolytes. Solid PI electrolytes 
are synthesized by introducing PEO molecular segments to 
PI main chains, while the solid PI-based electrolytes are 
synthesized by introducing PEO electrolytes to a PI porous 
membrane. Currently, only a few studies have employed PI 
directly as an electrolyte [85]. Much work has been reported 
on solid PI-based electrolytes. Furthermore, solid PI-based 
electrolytes are divided into solid PI-based SPEs and solid 
PI-based CSEs.

For solid PI-based SPEs, Wan et al. [86] fabricated a kind 
of ultrathin and flexible solid PI-based electrolytes, as shown 
in Fig. 7a(i). Aligned channels were made on the thin Kap-
ton PI film by using the track-etching method. Then PEO/
lithium bis-(trifluoromethanesulfonyl)imide (LiTFSI)/ace-
tonitrile solution was dropped and spun on this porous PI 
membrane to infiltrate the pores. SEM images for the cross-
sections of the PI SPE before and after cycling are shown 

in Fig. 7a(ii). The thickness of the PI SPE is ~ 8 μm. The 
electrode surface is smooth even after cycling, demonstrat-
ing Li dendrites were effectively prohibited by the PI SPE, 
as shown in Fig. 7a(iii). Additionally, the PI SPE-assem-
bled pouch cell can still operate under folding, twisting, and 
unfolding shown in Fig. 7b(i, ii) and the pouch cell can still 
light an LED bulb after the nail and cutting tests shown 
in Fig. 7b(iii, iv). To further increase the safety, Cui et al. 
[87] designed a flame-retardant PI SPE with a fire-retardant 
additive, decabromodiphenyl ethane (DBDPE) cast on the PI 
matrix, whose structure is shown schematically in Fig. 7c. In 
Fig. 7d(i), the PE, PEO/LiTFSI, and PI/DBDPE membranes 
exhibit different thermal behaviors under high-temperature 
conditions. Due to the different melting points of the PE, 
PEO, and PI matrix, PE shrank, PEO melted, while PI can 
withstand high temperatures and maintain its original mor-
phology. In extreme cases shown in Fig. 7d(ii, iii), the PE 
membrane-assembled pouch cell can no longer function 
when burned. The LED bulb was off after 18 s. Under the 
same conditions, the pouch cell assembled with the PEO/
LiTFSI SPE no longer functions after 24 s. However, the 
pouch cell assembled with the PI/DBDPE/PEO/LiTFSI SPE 
still functions for more than 24 s. The excellent work shows 
that the PI SPE has a great commercial prospect for safety.

For solid PI-based CSEs, Hu et al. [88] used the blading 
method to prepare a PI CSE. The porous PI film was used 
as the host, and LLZTO nanoparticles with PVDF/LiTFSI 
were used as electrolyte fillers. The structures of PVDF SPE, 
LLZTO/PVDF CSE, and PI-LLZTO/PVDF CSE are shown 
in Fig. 8a(i-iii), where the tensile strength of the PI-LLZTO/
PVDF CSE membrane is the best shown in Fig. 8b. The 
Li-ion plating/stripping mechanism is schematically illus-
trated in Fig. 8c(i, ii). The result demonstrates that PI CSE 
exhibits better mechanical strength to resist Li dendrites 
and forms a more uniform Li deposition layer than the non-
PI-based CSEs. Gai et al. [89] prepared an asymmetric PI 
CSE using the casting method with  Li1.3Al0.3Ti1.7(PO4)3, 
poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-
HFP)], and succinonitrile cast on the PI film. The SEM 
image of the cross section of the PI-PVDF-HFP CSE is 
exhibited in Fig. 8d. The porous structure is beneficial to 
Li-ion conductivity. The Li||Li+ coin cell assembled with 
the PI-PVDF-HFP CSE presents better cycling performance 
than PVDF-HFP CSE, demonstrating that PI materials are 
good solid-state electrolyte hosts. The PI-PVDF-HFP CSE 
is thermally stable at 150 °C and is flame retardant, which is 
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Fig. 7  a Vertical porous nanochannels made using the track-etching method on a PI film (i), obtaining ultrathin, lightweight, and flexible PI 
solid polymer electrolytes (ii). A uniform Li deposition layer was observed by SEM after cycling (iii). b Abuse tests for PI/PEO/LiTFSI-based 
LIBs: (i) folding performance; (ii) button batter lighting an LED bulb; (iii) flexible Li/PI/PEO/LiTFSI/LFP pouch cell lighting an LED bulb; and 
(iv, v) nail and cutting tests. c Flame-retardant PI SPE by adding the fire-retardant DBDPE. d Thermal abuse tests: (i) Photographs of the PE 
separator, PEO/LiTFSI, and PI/DBDPE film before and after exposure to thermal shock (150 °C, 0.5 h); (ii) schematic illustration of the thermal 
abuse test of the pouch cell battery; and (iii) flame abuse test of batteries with EC/DEC/PE, PEO/LiTFSI, and PI/DBDPE/PEO/LiTFSI as elec-
trolytes
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described in Fig. 8e. Notably, the suitable processing meth-
ods combined with the outstanding properties of PIs make 
solid PI-based electrolytes promising SSE candidates in all-
solid-state LIBs.

Electrospinning technology can also be used to prepare 
the scaffold of solid-state electrolytes. Shen et al. [90] take 
the electrospinning technology to make core–shell struc-
tured gel polymer electrolytes, whose preparation process 
is shown in Fig. 9a. In detail, the electrolyte solution PVDF-
HFP/PMASLi and PI solution were injected into the coaxial 
nozzle, spun onto the collector wrapped with Al foil, then 
took it off, and carried on the post-treatment, obtaining the 
PI-based solid-state electrolytes. Another preparation of 
PI-based solid-state electrolytes [91] is to make a PI elec-
trospinning membrane, then blend it with PEO/LiTFSI 
electrolyte solution, and obtain the PI-base solid-state elec-
trolytes, as shown in Fig. 9b. Due to its high mechanical 

strength, good thermal stability, and excellent (electro)
chemical inertness, the cell assembled as Li|PEO/LiTFSI/
PI SPE|Li showed better cycling and rate performance than 
the common cell of Li|PEO/LiTFSI SPE|Li. It follows that 
the preparation methods of PI separators can be effectively 
used as reference to prepare PI-based electrolytes.

2.5  Next‑generation of Organic Electrodes: PI Active 
Storage Materials

In LIBs, active storage materials play a crucial role: 
lithium-ion storage. Based on the different lithium-ion 
storage mechanisms of cathodes and anodes, active stor-
age materials can be classified into two kinds: cathode 
and anode. Cathode active storage materials are mainly 
lithium-contained transition metal oxides, while anode 
active storage materials are commonly using graphite. 

Fig. 8  a Schematic diagrams of Li-dendrite layers of PVDF SPE (i), LLZTO/PVDF CSE (ii), and PI-LLZTO/PVDF CSE (iii). b Mechanical 
property characterization (inset is the physical morphology). c Schematic illustrations of Li-plating/stripping behavior in Li/LLZTO/PVDF CSE/
Li (i) and Li/PI-LLZTO/PVDF CSE/Li (ii). d SEM image of PI CSE and cycling stability of the symmetric cells assembled with PVDF-HFP 
and PI-PVDF-HFP CSEs. e Thermal stability and flame retardancy of PP and PI films
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Fig. 9  a Preparation process of the core–shell gel polymer electrolyte by the coaxial spinning technology. b (i) Schematic sketch of PEO/
LiTFSI/PI fibers CSPE, (ii) cycling performance of Li|PEO/LiTFSI/PI SPE|Li battery at 0.1 mA   cm−2, and (iii) rate performance of Li|PEO/
LiTFSI/PI SPE|Li battery at different current densities
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Conventional cathode active storage materials are price 
costive and resource-scarce, limiting their large-scale 
energy storage applications in long term. Furthermore, the 
transition metal elements of cathode active storage materi-
als are toxic and environmentally polluting, which recycles 
difficult, requires tedious procedures, and consumes a lot 
of energy. Compared with cathode active storage materi-
als, the reserves of graphite are abundant. But the flam-
mability and the goal of reducing carbon emissions force 
us to search for other alternative materials, such as silicon. 
Therefore, developing renewable and sustainable materials 
as active storage materials for LIBs is critical.

The root of lithium-ion storage for organic materials is 
based on the reversible lithium-ion combination reactions. 
Presently, many different organic functional groups such as 
organosulfur compounds [92, 93], nitroxyl radical-bearing 
compounds [94, 95], conjugated carbonyl-containing com-
pounds [96], imine-functionalized compounds [97, 98], azo-
functionalized compounds [99, 100], and newly appeared 

sulfonamides compounds [101–103] have been used as cath-
ode materials in LIBs. Nevertheless, several small organic 
molecules can dissolve into the electrolyte, further affecting 
cycling stability. One of the most effective strategies is to 
polymerize small active molecules into polymers that are 
insoluble in electrolytes. Among various polymeric systems, 
polyimides (PIs), a class of organic carbonyl polymers, seem 
to be one of the promising electrode materials owing to their 
satisfying capacity, excellent cycling performance, and good 
rate capability. Moreover, they are structurally adjustable, 
safe when fully charged, and environmentally friendly.

In addition, another lithium-ion storage mechanism is like 
graphite by introducing large amounts of aromatic struc-
tures. This mechanism has been found by many references 
[104–106], and they utilize the conjugated benzenes to store 
lithium ions.

Similarly, PI active storage materials can also be divided 
into the cathode and anode, two types. As the cathode active 
storage materials, the lithium-ion storage mechanism is 

Fig. 10  a Polycyclocondensation reaction mechanism and chemical structures of starting monomers. b Schematic of LIB assembled with poly-
imide cathode. c Rate capability performance
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depending on the reversible reduction reactions of carbon-
yls in PI repeat units. This reaction mainly takes place at 
1.5 ~ 3.5 V. Presently, the most widely used dianhydrides 
are pyromellitic dianhydrides (PMDA), naphthalene-tet-
racarboxylic dianhydrides (NTCDA), and perylene-tetra-
carboxylic dianhydrides (PTCDA). Much effort has been 
devoted to exploring the relationship between PI structure 
and electrochemical performances. Hernández et al. [107] 
synthesized many different PI active storage materials by the 
polycondensations of PMDA, NTCDA, and 4,4’-(hexafluor-
oisopropylidene)diphthalic anhydride (6FDA) with various 
diamines shown in Fig. 10a. They utilized these PI active 
storage materials to assemble LIBs, whose structure is sche-
matically shown in Fig. 10b. As NTCDA-PIs possess good 
conjugation structure, it shows better cycling performance 
and rate capability than PMDA-PIs and 6FDA-PIs. Then, 
NTCDA was used as the main dianhydride to synthesize 
a series of PI active storage materials, whose rate capabil-
ity performances are shown in Fig. 10c. Firstly, NTCDA 
was polymerized with different aromatic diamines such as 
3,3-bis-(4-aminophenyl)phthalide (APh), 3,3-bis-(4-ami-
nophenyl)phthalimidine (APhl), 9,9-Bis-(4-aminophenyl)
anthrone (AAn), and 3,3-bis(4-aminophenyl)quinuclidine) 
(AQn-LFSI), where NTCDA-APh PIs exhibit the best rate 
capability (146 mAh  g−1 at 25 mA  g−1, 100% of its theo-
retical capacity), as it took place the three-electron reac-
tion where two electrons were from the imide part and the 
additional one from the extra carbonyl group of diamine. 
NTCDA-AAn PIs only take place the two-electron reactions 
(96 mAh  g−1 at 25 mA  g−1, 73% of its theoretical capacity) 
as the extra carbonyl group was not redox-active. Similarly, 
NTCDA-APhl PIs also take place the two-electron reactions 
(107 mAh  g−1 at 25 mA  g−1, 73% of its theoretical capacity) 
as the extra amide moiety was not redox-active. Addition-
ally, when the ionic group is introduced in the structure of 
PIs as NTDA-AQn-TFSI, it can deliver the specific capac-
ity of 90 mAh  g−1, suggesting that the ionic moiety is not 
able to improve the rate capability of the polymer. They 
also investigated PIs synthesized with different aliphatic 
diamines including 4,7,10-trioxa-1,13-tridecanediamine 
(TOTDA), 4,9-dioxa-1,12-dodecanediamine (DODDA), and 
1,12-dodecanediamine (DDA) and found that the NTCDA-
DODDA PIs and NTCDA-TOTDA PIs exhibit better rate 
capability than NTCDA-DDA PIs due to the presence of 
oxyethylene fragments which is known to solvate lithium 
ions and improve the ionic conductivity. Therefore, the 

conjugation structure, redox-active carbonyl group, and oxy-
ethylene fragments are three kinds of important structural 
units to tune the electrochemical performance.

Moreover, using redox-active anthraquinone units is also 
an effective strategy to design conjugated carbonyl poly-
mers. Ba et al. [108] prepared the PMDA and NTCDA styles 
of PIs with another new diamine monomer containing a ben-
zoquinone unit (AQPDA) shown in Fig. 11a. The specific 
capacity of these two PI cathodes at 0.1 C is 170 and 145 
mAh  g−1, respectively. The reason that PIs can be used as 
active materials is that active carbonyl groups introduced 
in molecular structures are more easily combined with lith-
ium ions, playing the role of delivering lithium ions. Wang 
et al. [109] used a novel conjugated diketone to react with 
NTCDA to obtain a kind of multi-carbonyl PI cathode active 
storage material that shows a very stable cycling perfor-
mance as shown in Fig. 11b. This PI cathode can deliver the 
specific capacity of 213 mAh  g−1 (utilization of active sites 
is 78.7%) and the maximum energy density of 490 Wh  kg−1, 
higher than traditional LIBs (300 Wh  kg−1), demonstrating 
the significant application value.

Additionally, the stacking structure of polyimides is 
important in determining electrochemical performance. 
Gannett et al. [110] used the strongest conjugation structure 
of PTCDA to react with para-phenylenediamine (pPDA), 
trans-1,4-diaminocyclohexane (chex), and 1,2-ethylenedi-
amine (en) to obtain polyimides with different crystallin-
ity, flexibility, and stacking mode shown in Fig. 12a. The 
results demonstrate that PTCDA-en possesses rapid Li-ion 
conductivity due to alkyl linking units endow that with an 
amorphous structure. PTCDA-en possesses the smallest acti-
vation energy of charge transfer and diffusion-limited cur-
rent shown in Fig. 12b, demonstrating that suitable packing 
structure should be also considered.

When PI active storage materials are used as anodes, 
the lithium-ion storage mechanism is mainly attributed to 
the “hyperlithiation” phenomenon. The suitable operating 
voltage is at 0 ~ 1 V. More benzenes introduced to the PI 
repeat unit are beneficial to lithium-ion storage. As shown 
in Fig. 13a (i), He et al. [111] used PMDA and terephtha-
late (TA) to synthesize the PI active storage materials with 
six carbonyl groups per repeat unit. The as-prepared PI 
materials can be lithiated with 22 lithium ions, displaying 
the theoretical specific capacity of 1704  mAhg−1. CV test 
results shown in Fig. 13a (ii) confirmed the existence of 
enolization reactions of carbonyls and the “hyperlithiation” 
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phenomenon. In the cycling process shown in Fig. 13a (iii), 
the specific capacity will increase, indicating the “hyper-
lithiation” process has taken place and the specific capacity 
reaches the maximum value. After this extremum, the spe-
cific capacity began to decrease. Changing the repeat units 

of PIs, the reversible carbonyl reduction reactions and the 
“hyperlithiation” process will occur, whose process is also 
trapped by the work of Liao et al. [112] in Fig. 13b(i-iii). 
Moreover, the ordered and conjugated structure of PIs, such 
as covalent organic framework, can form many lithium-ion 

Fig. 11  a Structures and synthesis of PMAQ and NTAQ (i) as well as the electrochemical performance (ii) and b structure of PTN (i) and its 
good cycling performance (ii)
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storage channels and accommodate 17 lithium ions per 
repeating unit during the lithiation process, further enhanc-
ing the cycling performance [113] shown in Fig. 13c (i, ii).

To further improve the cycling and rate capacity, differ-
ent kinds of conducting materials, such as graphene, carbon 
nanotubes, and carbon black, were compounded with PI 
active storage materials to prepare electrodes. Much effort 
is utilizing graphene to synthesize the PI-Graphene elec-
trode materials by the in situ polymerization strategy, which 
could make full use of the surface area of graphene and 
possess several magnitudes higher electronic conductivity 
compared to pure PI polymers. In Fig. 14a, the graphene 
and two kinds of carbonyl polymers poly(anthraquinonyl) 
sulfide (PAQS) and polyimide (PI) were blended to prepare 
graphene/PI nanocomposites by the in situ polymerization 
method [98]. In Fig. 14b, the monolithic 3D graphene/

polyimide composites (GF-PI) were prepared by the one-
step solvothermal strategy [114]. In Fig. 14c, Ahmad et al. 
[115] developed a novel PI-FLEG (few-layer exfoliated gra-
phene) nanocomposite, where PI nano-flakes shorten the 
diffusion path length between the electrolyte and electrode 
interfaces, leading to a further increase in the rate capability. 
In Fig. 14d, NTCDA and 2,6-diamino-anthraquinone (DAQ) 
as redox-active monomers in the presence of graphene oxide 
(GO) were in situ polymerized to obtain the graphene-sand-
wiched PQI nanosheets (PQI@Gr) [116]. Obviously, gra-
phene is a promising conductive material.

Apart from graphene, carbon nanotubes and carbon 
black are also reported to be used in the preparation of 
active storage materials. Combining a sequential assem-
bly and high-temperature dehydration strategies, car-
bon nanotube (CNT)/polyimide (PI)/mesoporous  Fe2O3 

Fig. 12  a Two one-electron reductions of diimides and the synthesis process of polyimides by tetracarboxylic acid dianhydrides and amine. b 
The charge compensation mechanisms for PTCDA-pPDA, PTCDA-chex, and PTCDA-en as cathodes in LIBs as well as CV tests of activation 
energy of charge transfer with Li-ion and diffusion-limited current proportion in  Li+ and  K+ batteries for the PDI-based polymers
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Fig. 13  a, b Lithiation mechanism (i); (ii) CV test results; (iii) cycling performance. c Synthesis process of PAT (i) and cycling performance (ii)

Fig. 14  a In situ polymerization process of PAQS-FGS or PI-FGS nanocomposite. b Preparation process of GF-PI. c Synthesis of PI-FLEG via 
in situ polymerization and Li-ion storage mechanism. d Synthetic route of PQI@Gr composites
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(meso-Fe2O3/PI/CNT) ternary nanocomposite materials 
were prepared by Ban et al. [117] as shown in Fig. 15a. 
Zhang et al. [118] fabricated the composites of polyimide 
and carbon black (PI/CBs) by the in situ condensations 
of PMDA and pPDA with the presence of carbon black 
shown in Fig. 15b. Due to the high conductive property of 
carbon materials, the capacity of PI active storage mate-
rials can be effectively utilized, further increasing the 

energy density. Currently, increasing the specific capac-
ity and operating voltage are two effective strategies to 
increase energy density. Nevertheless, the average oper-
ating voltage is limited by the intrinsic structures of PI 
molecules, which are less than 3.5 V usually. Designing 
structures that can withstand high voltage is challeng-
ing. Therefore, increasing the specific capacity is the 
first choice. The effective method is by introducing more 

Fig. 15  a Schematic illustration of the synthetic strategy of meso-Fe2O3/PI/CNT. b The illustration of the in situ polymerization process of the 
PI–CB composites
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carbonyls or conjugated structures which are beneficial 
to increase the lithium-ion storage capacity and further 
increase the energy density.

3  Perspectives on Using PIs in Practical LIBs

PIs have many advantages, including excellent mechanical 
properties, outstanding thermal stability, satisfactory elec-
trolyte wettability, and good (electro)chemical resistance, 
which are promising candidates for coatings, separators, 
binders, solid-state electrolytes, and active storage materi-
als. Appropriate PIs need to be selected based on appli-
cation requirements. This section summarizes the main 
issues that PIs can address in current LIBs and proposes 
strategies for researchers in developing PIs for LIBs. Fig-
ure 16 lists the strategies for PIs applied in LIBs.

3.1  PI Coatings

The coating is an effective way to improve the performance 
of high-voltage cathodes. To date, only a few studies have 
reported PI coatings, even though PIs have some advantages 
over traditional inorganic materials. The outstanding features 
of PIs such as designable molecular structures, continuous 
texture, and high-voltage/high-temperature resistance all 
attract research interest.

PI coatings can be implemented in three ways. First, 
researchers could use monomers with different structures to 
synthesize PI coatings with targeted performance. Second, to 
improve the electrochemical performance, inorganic materials 
(such as  Al2O3,  ZrO2, and  TiO2), electron-conducting materi-
als (such as graphene, carbon nanotubes, and carbon black), 
and their mixtures can be compounded with PIs to achieve co-
coating layers [119, 120]. Third, self-healing, heat conductive, 
fluorescence, etc., functions can be introduced to PIs to realize 

Fig. 16  Strategies of PIs applied in LIBs
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the functionalization of cathode materials. Figure 17 shows the 
design strategies of PI coatings.

Moreover, PI coatings are not only limited to cathodes, 
but they can also coat silicon anodes [121]. These all deserve 
to explore further.

3.2  PI Separators

The separators play a vital role in the safety of LIBs. Once 
the separator is destroyed due to thermal shrinkage, ISCs 
may happen, causing thermal runaway. Therefore, LIBs 
have strict requirements for separator performance. First, 
the separator should possess high mechanical strength to 
separate the cathode and anode under high tensile and com-
pressive stress. Second, the separator should be thermally 
stable with little or limited thermal shrinkage (< 5%). Fur-
ther, the separator needs to be wettable by the electrolyte. 
Moreover, its pore distribution should be uniform to allow 
lithium ions to pass through. Finally, the separator should 

be highly insulating. Although polyethylene separators have 
been commercialized, their high thermal shrinkage and low 
trigger temperatures cause poor safety in LIBs. Currently, 
there are three ways to enhance the thermal stability of poly-
olefin separators: (1) using PP/PE/PP composite separators; 
(2) coating polyolefin separators with thermally stable inor-
ganics; and (3) coating polyolefin separators with thermally 
stable polymers. However, these approaches still cannot sat-
isfy the requirements for safe batteries.

The PI separators can improve safety in LIBs. However, 
PIs have only been used in research laboratories due to three 
reasons: They absorb water and are expensive and difficult 
to process. Choosing hydrophobic monomers or designing 
hydrophobic structures can address the water absorption 
issue. To decrease costs, researchers should devote effort to 
reducing raw material costs and improving processing equip-
ment. The most critical issue in processing is to achieve 
uniform pore distribution. Two strategies to solve the issue 
of pore-making can be followed. The first is by blending PI 

Fig. 17  Design strategies of PI coatings

Fig. 18  Processing techniques for PI separators
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and polyolefin materials to obtain a composite separator. 
This approach utilizes the good processability of polyole-
fins to achieve uniform and well-distributed pores during 
heating and stretching. PIs contribute to electrolyte wetta-
bility, mechanical strength, and thermal stability. Second, a 
pure semi-crystalline PI can be designed and prepared. The 
separator can be obtained by stretching and orienting at its 
melting point. These approaches all require improvements 
in the preparation capability of the processing equipment, 
especially at high temperatures. Figure 18 shows the pro-
cessing techniques for PI separators.

3.3  PI Binders

Large volume expansion and shrinkage during cycling in 
silicon anodes cause rapid decay of electrochemical per-
formance. Elastic binders can constrain silicon particles to 
avoid pulverization and electrical contact loss. However, 
PI binders with 3D crosslinking networks can maintain the 
anode integrity while accommodating high silicon active 
material content. The adhesive properties of the anode also 
need to be enhanced to prevent silicon anode pulverization. 
Enhancement could be achieved by introducing adhesive 
functional groups such as hydrogen bonds or metal–ligand 
coordination interactions in the binder. Besides these con-
ventional approaches, multi-functionalization can also be 
one of the future directions for PI binders. For example, 
electronic or Li-ion conducting functional groups can be 
introduced to compensate for the limited electronic or ionic 

conduction. Safety and lifespan should also be considered. 
In summary, functional binders are a crucial research topic.

In fact, there are some references reported on PI binders 
for cathodes [79, 80, 122–124]. Several important references 
[80, 122–124] are from the group of Qi et al. to explore 
high-voltage performance. The above-modified strategies are 
also fit for PI cathode binders. Figure 19 shows the design 
strategies of PI binders.

3.4  PI Solid‑State Electrolytes

The PI-based SSEs may be essential in all-solid-state LIBs 
because they can function as a separator and an electrolyte. 
Apart from this, there are three methods for designing PI 
SSEs. First, traditional separators can be coated with PI 
solutes and lithium salts or ceramic particles. Second, PI 
itself can be used as the separator matrix with other poly-
mer solutes, lithium salts, and ceramic particles coated on 
its surface. Third, PI separator is coated with PI solutes 
and lithium salts or ceramic particles. Figure 20 shows the 
design strategies of PI SSEs.

3.5  PIs Active Storage Materials

In recent years, a variety of organic active storage materi-
als have developed rapidly, among which PIs with stable 
structures, large theoretical capacity, good heat resist-
ance, high tensile modulus, and high safety have attracted 
wide attention. However, there are still some problems 
in the practical application of PI active storage materials 

Fig. 19  Design strategies of PI binders
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including the low utilization rate of redox-active carbonyl 
groups and poor electronic conductivity. To solve these 
problems, the following two strategies are adopted. Firstly, 
the reasonable structure design of PI active storage mate-
rials should be promoted. The energy storage mechanism 
of active storage materials is closely related to the conju-
gated structures and redox-active sites. Utilizing the large 
π–π packing structures is encouraged, and more redox-
active functional groups should be introduced such as the 
disulfide bond (S–S), azo bond (N = N), and imine bond 
(C = N) besides carbonyl groups (C = O). Furthermore, 
ordered structures such as popular covalent organic frame-
work compounds (COFs) linked by imine units should be 
considered. Secondly, more advancing electron-conducting 
materials should be investigated and introduced to the PI 
active storage materials to enhance the energy utilization 

rate of PIs. Figure 21 shows the design strategies of PI 
active storage materials.

4  Outlook and Perspective

In this perspective, we presented the recent progress in PI 
coatings, separators, binders, SSEs, and active storage mate-
rials, revealing the potential of PIs in improving LIB safety 
and electrochemical performance. We identified several 
strategies to further improve LIBs using PIs. In summary, 
future works on implementing PIs in LIBs should consider 
the following three points:

(1) Devoting much effort to designing the PI molecular 
structure and choosing suitable preparation methods for 
critical PI components according to LIB requirements.

Fig. 20  Design strategies of PI SSEs

Fig. 21  Design strategies of PI active storage materials



 Nano-Micro Lett.          (2023) 15:135   135  Page 24 of 29

https://doi.org/10.1007/s40820-023-01104-7© The authors

(2) Advancing functional PI and PI composites to decrease 
cost and improve LIB energy density, rate capacity, 
cycling stability, and safety.

(3) Developing practical processing technologies and 
accelerating industrialization to implement PI compo-
nents in LIBs.

Promoting the development of new PI materials and tak-
ing advantage of performance benefits from these new mate-
rials advances LIBs. Next-generation LIBs can be economi-
cal, environmentally benign, and safe to use. Meanwhile, 
large-scale LIBs utilization can relieve the energy crisis. 
Hence, high-performance LIBs could advance our connected 
world toward a more sustainable future.
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