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Construction of Self‑Assembly Based Tunable 
Absorber: Lightweight, Hydrophobic 
and Self‑Cleaning Properties
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HIGHLIGHTS

• NiCo/C aerogel was prepared by pyrolysis carbonization self-assembly of NiCo- metal–organic frameworks (MOFs).

• The assembly mechanism of MOF aerogel was studied by adjusting the ratio of metal ion /BTC.

• Aerogel combines hydrophobic, lightweight, self-cleaning, and electromagnetic wave absorption properties.

ABSTRACT Although multifunc-
tional aerogels are expected to be 
used in applications such as port-
able electronic devices, it is still a 
great challenge to confer multifunc-
tionality to aerogels while maintain-
ing their inherent microstructure. 
Herein, a simple method is pro-
posed to prepare multifunctional 
NiCo/C aerogels with excellent 
electromagnetic wave absorption 
properties, superhydrophobicity, 
and self-cleaning by water-induced 
NiCo-MOF self-assembly. Specifically, the impedance matching of the three-dimensional (3D) structure and the interfacial polarization pro-
vided by CoNi/C as well as the defect-induced dipole polarization are the primary contributors to the broadband absorption. As a result, the 
prepared NiCo/C aerogels have a broadband width of 6.22 GHz at 1.9 mm. Due to the presence of hydrophobic functional groups, CoNi/C 
aerogels improve the stability in humid environments and obtain hydrophobicity with large contact angles > 140°. This multifunctional aerogel 
has promising applications in electromagnetic wave absorption, resistance to water or humid environments.
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1 Introduction

With the vigorous development of science and technology, 
a variety of electrical and electronic devices have emerged, 
especially the booming development of the fifth generation 
(5G) mobile technology operating at gigahertz electro-
magnetic frequencies, which has profoundly affected our 
lifestyles [1]. The emergence of electromagnetic wave haz-
ards-related problems has many adverse effects on health 
as well as defense security, which also need to be urgently 
addressed [2–6]. As a result, there is a growing demand 
for strong absorption and durable microwave absorbers.

Typically, the prepared powdered absorbers require high 
filling levels, which lead to aggregation and high density 
[7]. Agglomeration behavior can be efficiently prevented 
if micro/nanocells are somehow ordered and uniformly 
grown in microscopic 3D nanofiber network [8, 9]. 
Accordingly, macroscopic 3D interconnected network is 
developed to lightweight EMA materials [10]. The charac-
teristics of large surface area and high porosity can provide 
multiple interfaces and rich active sites for electromag-
netic wave attenuation, increase the propagation path of 
electromagnetic wave, and achieve the purpose of improv-
ing impedance matching [11, 12]. Furthermore, ultra-low 
density of continuous 3D structure aerogel means extra-
low filler load [13]. More importantly, in order to cope 
with harsh real-world applications, aerogels are required 
to be multi-functional [14, 15]. For example, aerogels with 
hydrophobicity and self-cleaning can flexibly cope with 
environments containing water [16].

Metal–organic frameworks (MOFs) are formed by com-
bining transition metal ions and organic groups through 
covalent coordination bonds [17]. In the past decades, 
MOFs are usually used as ideal sacrificial templates for 
the preparation of various types of carbon-based nano-
absorbing materials [18, 19]. However, the currently pre-
pared MOF-derived carbon-based materials usually exist 
in the form of powder with low mechanical strength and 
low integrity [20], which often limits their application in 
practice and cannot be widely promoted [21]. To improve 
this drawback, MOF can be regarded as a self-assembled 
precursor, and its potential applications in wave absorp-
tion can be enhanced by expanding from simple conven-
tional structures to complex structures at mesoscopic and 
macroscopic scales [22, 23]. The advantage is that it does 

not need to undergo complex chemical reactions, but is 
achieved by changing the physical structure only [24]. 
For example, Lohe et al. [25] earlier reported amorphous 
MOFs aerogels with micropores and macropores, which 
opened the way for the later synthesis of MOF aerogels. 
Zhang et al. [26] prepared MXene/RGO using magnetic 
nanochains as support. The excellent structural stability 
and strong mechanical properties ensure that it has the 
lowest reflection loss value based on the reported Mxene 
aerogels. Based on the structure of carbon fiber and the 
excellent thermal and compressive properties of polyimide 
rigid bubble walls and imide rings, Liu et al. [27] prepared 
ultra-wideband rigid porous foam absorbers up to 14 GHz 
(compressive strength up to 1.05 MPa).

In this work, we propose a simple strategy to prepare 
NiCo alloy nanoparticles embedded in carbon aerogel by 
water-induced NiCo-MOF self-assembly and pyrolytic 
carbonization under nitrogen atmosphere. It is extended 
from two-dimensional structure to 3D nanofiber structure. 
Due to the impedance matching of the 3D structure and 
the reasonable component design of CoNi/C, the ultralight 
NiCo/C aerogel can achieve high EMA performance with 
a maximum effective absorption bandwidth  (EABmax) of 
6.22 GHz. The constructed 3D network structure increases 
the EMA performance from the following aspects. (1) 3D 
structure of aerogel is beneficial to address the aggregation 
of nanoparticles, especially magnetic nanoparticles, result-
ing in high EMA performance at ultra-low loading (0.15 
wt%). (2) The impedance matching of the 3D structure, 
the multi heterogeneous interface, and the defect-induced 
dipole polarization confer excellent EMA properties on 
CoNi/C aerogels. (3) The combination of hydrophobic-
ity, self-cleaning, elasticity, and excellent EMA without 
changing the 3D structure suggests that CoNi/C aerogels 
are promising for applications such as resistance to water 
or humid environments.

2  Experimental Section

2.1  Materials

1,3 ,5-Benzenetr icarboxyl ic  ac id   (H3BTC),  N, 
N-dimethylformamide (DMF), nickel nitrate hexahy-
drate (Ni  (NO3)2.6H2O), cobalt nitrate hexahydrate (Co 
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 (NO3)2.6H2O), anhydrous ethanol and glycerol were 
bought from Aladdin. All chemicals were of analytical 
grade (AR) and used without further purification. The 
water was ultrapure water (18.25 MΩ cm).

Monometallic aerogels were prepared by replacing 
NiCo-MOF with Ni-MOF-1, Ni-MOF-2, Ni-MOF-3, Ni-
MOF-4, Co-MOF-1, Co-MOF-2, Co-MOF-3, Ni-MOF-4, 
and other conditions remained unchanged (freeze drying). 
They were named as NCA-1, NCA-2, NCA-3, NCA-4, 
CCA-1, CCA-2, CCA-3, CCA-4, correspondingly.

2.2  Characterization

The microscopic morphology and elemental distribution 
of the samples were analyzed using field emission scan-
ning electron microscopy (SEM, JEOLJSM-7800F). The 
lattices of the samples were analyzed using transmission 
electron microscopy (TEM, JEOLJEM-2100). The Raman 
spectra of the samples were collected using a Raman spec-
troscopy system with a 50 m W DPSS laser at 532 nm. 
The molecular structures of the samples were obtained by 
powder x-ray diffraction (XRD, Rigaku Ultima IV with 
Cu–Ka radiation (λ = 0.15418)). The states of the ele-
ments of the samples were obtained by x-ray photoelectron 
spectroscopy (XPS) at 250Xi spectrometer and aluminum 
Kα-ray source. The molecular structures and chemical 
compositions of the samples were obtained by Fourier 
transform infrared spectroscopy (FT-IR, NicoletiS50) 
analysis. Hydrophobicity of the samples was measured 
by a contact angle measuring instrument (BOEN-6489). 
The thermogravimetric analysis (TGA) of the samples was 
recorded by an SDTQ600 analyzer. The electromagnetic 
parameters of each sample at test frequencies from 2 to 
18 GHz were determined using a vector network analyzer 
(Agilent N5234A, USA) using the coaxial method, and 
the EMA characteristics of the samples were further cal-
culated. The samples and paraffin wax were molten and 
mixed well by different mass ratio (The ratio of the mass 
of the sample to the mass of paraffin is defined as the 
loading), and the mixture was put into a grinding tool and 
pressed into a ring with an inner diameter of 3.04 mm and 
an outer diameter of 7 mm. The reflection loss (RL) value 
can be calculated based on transmission line theory. The 
formula is as follows [28–30]:

where Zin is the impedance of the standard absorber,  Z0 is 
the impedance in free space, f is the frequency of the inci-
dent electromagnetic wave, d is the thickness of the absorber 
layer, and c is the propagation speed of the electromagnetic 
wave in free space.

3  Results and Discussion

3.1  Composition and Structure

Since the synthesized NiCo-MOF is extremely sensitive to 
water, here we propose a facile strategy for the preparation 
of NiCo-MOF hydrogels by water-induced self-assembly. 
The preparation process of NCCA-1 is shown in Fig. 1a. 
NiCo-MOF was synthesized by oil bath method with  Ni2+, 
 Co2+ as metal ions and  H3BTC as organic ligands [31]. 
NiCo-MOF was sonicated in a 1:9 solution of ethanol and 
water for several minutes. Turn the beaker upside down, the 
hydrogel can adhere to the beaker wall stably without fall-
ing off, indicating successful gelation (Fig. 1b). After that, 
the NiCo/C aerogel was synthesized by freeze-drying and 
calcination at 700 °C. The mechanism of aerogel assembly 
is as follows: (a) The laminar structure dissociates as water 
replaces DMF in the MOF structure; (b) The water mol-
ecule H combines with the O in the organic ligand in a form 
of hydrogen bonding, resulting in a partial dissolution of 
the organic ligand and metal ions in solution; (c) The metal 
center binds to the O of the water molecule, resulting in the 
assembly of the MOF; Hydrogen bonds formed between the 
H of the water molecule and the O in the organic ligand 
result in the directed assembly of Ni-MOFs [32]. Compared 
with the conventional aerogel preparation process, the water-
induced self-assembly NiCo-MOF has the advantages of 
simple preparation, environmental protection, economy, and 
can be produced on a large scale.

The XRD spectra in Fig. 1c show the phase information 
and the crystal structure of NCA-2, CCA-2, NCCA-1. Three 
very distinct peaks can be observed, located at 76.4°, 51.8° 
and 44.5°, corresponding to the (220), (200) and (111) crys-
tallographic planes of metallic Ni [32]. It is noteworthy that 
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the diffraction peaks of CCA-2 and NCCA-1 overlap with 
NCA-2 due to the small difference between the diffraction 
peaks of Ni and Co [33]. In addition, the weak peak at 26.6° 
belongs to amorphous carbon [34], and there is no other 
characteristic peak, which proves that metal ions are suc-
cessfully reduced to metal nanoparticles and graphitized 
carbon is formed by high temperature pyrolysis.

The Raman spectra of NCA-2, CCA-2, NCCA-1 are 
shown in Fig. 1d. The peak marked in light green, located 
at 1423.3  cm−1 is geared to the D peak and the peak marked 
in light orange, located at 1588.4  cm−1 belongs to the G 
peak. Usually, the values of ID/IG are related to the level 
of graphitized carbon content and is inversely proportional. 
The values of ID/IG for NCA-2, CCA-2, and NCCA-1 are 
0.81, 0.80, and 0.78, respectively. The value of ID/IG for 
NCCA-1 is the lowest, indicating that during the synthesis 
of aerogel, the amorphous carbon gradually decreases and 
more graphitized carbon is formed, which is beneficial to 
increase the electrical conductivity of the material and creat-
ing more conduction loss. The above results are consistent 
with the ratio of carbon diffraction peak intensity to metal 

(metal alloy) diffraction peak intensity in XRD (Fig. S2b). 
In addition, this also explains why the carbon peak intensity 
of NCA-2 in XRD is greater than that of NCCA-1, which 
cannot directly reflect the degree of graphitization.

Thermogravimetric analysis was performed for Ni-MOF 
hydrogel, Co-MOF hydrogel and NiCo-MOF hydrogel. As 
shown in Fig. 1e, we can find four decreasing phases in the 
curves. In the first stage, the slight decrease of 7.8% in the 
curve before 102 °C is attributed to the evaporation of water 
from the surface of material. In the second stage, in the tem-
perature range of 102–172 °C, the mass decreases by 14.3 
wt%, which is attributed to the evaporation of crystalline 
water from the lattice. In the third stage, in the tempera-
ture range of 171–403 °C, the mass decreases by 11.8 wt%, 
which is attributed to the volatilization of residual solvent 
in the NiCo-MOF hydrogel [32]. The fourth stage, which 
decreases sharply in the temperature range of 403–487 °C 
with a mass decrease of about 33.2 wt%, is attributed to the 
decomposition and carbonization of organic matter in the 
hydrogel to form pyrolytic carbon, which reduces metal ions 
to metal nanoparticles dispersed in the carbon layer. When 

Fig. 1  a Schematic illustration of the preparation process of NCCA-1. b NiCo/C hydrogel self-assembly process. c XRD pattern, d Raman spec-
tra of NCA-2, CCA-2, NCCA-1. e TGA analysis of Ni-MOF hydrogel, Co-MOF hydrogel and NiCo-MOF hydrogel after freeze-drying
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the temperature continued to increase, the curve hardly 
changed significantly, indicating that no thermochemical 
reaction occurred. Similar alterations may be seen in the 
Ni-MOF hydrogel and Co-MOF hydrogel TGA curves. 
The final residual metal content is in the order of Co-MOF 
hydrogel > NiCo-MOF hydrogel > Ni-MOF hydrogel. This 
is consistent with the relative molecular mass size of the 
elements Co and Ni. Therefore, it is not difficult to see that 
NCCA-1 exists in the form of NiCo alloy combined with 
XRD pattern (Fig. 1a). Compared with elemental metals, the 
alloy can change the distribution of charge, induce the center 
of polarization, orient the internal electrons and convert 
electromagnetic energy into heat energy under the action of 
induced electric field.

To investigate the morphological evolution during aero-
gel synthesis, NiCo-MOF and NCCA-1 morphologies were 
characterized by SEM. NiCo-MOF morphology is a bulk 
structure consisting of lamellar structures with a thickness 
of 25–35 μm (Fig. 2a), and Ni-MOF-2 and Co-MOF-2 also 
exhibit the same lamellar structure (Fig. S5a, d), indicat-
ing that changing the metal nitrate does not change the 

morphology of MOF. This lamellar structure under the 
strong action of ultrasound undergoes more easily peeled off 
from each other along the radial direction to form a dispersed 
3D fibrous network structure, which in turn forms a hydro-
gel by self-assembly under induction of water. Figure 2b, c 
shows the scans of NCCA-1 at different magnifications. It 
can be seen that the morphology of the carbonized aerogel 
is a nanofibrous structure with smooth surface and uniform 
dispersed phase. The diameter distribution in Fig. 2d shows 
that the diameter of the fibers is about 0.48–0.84 μm. Fig-
ure 2e shows the TEM image of a single nanofiber in NCCA-
1, which has a slender rod-like structure and smooth sur-
face. By calculating that its diameter is 610 nm, the results 
are consistent with those in Fig. 2c. The diameter of NiCo 
alloy nanoparticles is between 15 and 25 nm (Fig. S1). The 
plane spacing of CoNi (111) crystal planes (2.04 Å) can be 
observed in Fig. 2f. Similarly, the planar spacing of 1.77 Å 
are corresponding to (200) crystalline plane, respectively 
(Fig. 2g). As can be seen from the EDS mapping, Ni, O, 
C elements are present in NCA-2 (Fig. S10); and Co, O, C 
elements in CCA-2 (Fig. S11); and Ni, Co, O, C elements 

Fig. 2  a SEM images of NiCo-MOF. b, d SEM images of NCCA-1 at different magnifications. c diameter distribution, e TEM, f, g HR-TEM 
and h SAED images of NCCA-1. i C 1s spectra, g O 1s spectra, k Ni 2p spectra and l Co 2p spectra of the NCCA-1
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in NCCA-1 (Fig. S9), respectively. It further illustrates the 
high homogeneity and dispersion of NiCo alloy particles 
on the surface. Selected Area Electron Diffraction (SAED) 
enables further analysis of the phase information of NCC-1. 
The three diffraction rings as shown in Fig. 2h correspond to 
the (111), (200), and (220) crystal planes of the NiCo alloy, 
demonstrating the successful synthesis of NCCA-1.

The electronic states and the types of elements on the 
surface of aerogel were further investigated using XPS 
spectra. In Fig. S15, the XPS spectrum of NCCA-1 shows 
characteristic peaks at 284°, 533°, 778°, and 854° corre-
sponding to C 1s, O 1s, Co 2p, and Ni 2p, respectively. The 
C 1s spectra of NCCA-1 can be divided into three peaks 
(Fig. 2i) at 284.2, 285.4, 286.3 eV, corresponding to C–C, 
C–O, C=O [35]. The O 1s spectra of NCCA-1 is shown in 
Fig. 2g, and two distinctive peaks can be observed, the one 
at 530.9 eV corresponding to C–O and the one at 532.8 eV 
indicating the presence of oxygen vacancies [36]. Oxygen 
vacancies can change the charge transfer capability within 
the material and alter the conductivity, which can facilitate 
the absorption of electromagnetic waves. As seen in the 
Ni 2p XPS spectra (Fig. 2k), the characteristic peaks of 
Ni 2p1/2 and Ni 2p3/2 are located near 870.6 and 853.2 eV 
[37] and the two weak peaks near 874.9 eV and 858.2 eV 
belong to the satellite peaks of Ni 2p1/2 and Ni 2p3/2. 
As seen in the Co 2p XPS spectra (Fig. 2l) near 778.5 
and 793.8 eV attributed to Co 2p3/2 and Co 2p1/2 [38]. 
Meanwhile, another deconvolution peak at 780.5 eV may 
belong to Co (II), which may be caused by partial surface 
oxidation of metallic cobalt. In addition, the XPS spectra 
of NCA-2 and CCA-2 coincide with those of NCCA-1, 
further suggesting that the generation of NiCo alloys in 
NCCA-1 (Figs. S16 and S17).

3.2  Electromagnetic Performance and Mechanism

Figures 3a1,  a2 and S18a, b show the complex permittiv-
ity (εr = ε′ − jε″) and complex permeability (μr = μ′ − jμ″) 
of NCA-2, CCA-2, NCCA-1 in 2–18 GHz [39–41]. The ε′ 
values of the three samples show a decreasing trend, which 
is caused by the Debye polarization behavior of the dipole 
lagging behind the change of electromagnetic wave inci-
dent frequency [42]. The values of ε′ decrease from 7.5, 
6.5, 8.7 to 5.5, 4.9, 6.6, respectively. ε′ value of NCCA-1 is 
much larger than NCA-1 and CCA-1, indicating its stronger 

electromagnetic wave storage capacity. The ε″ curve also 
tends to decrease with increasing frequency and is accom-
panied by multiple resonance peaks (Fig. 3a2), which is 
evidence of dielectric loss formation. It indicates that the 
introduction of metal nanoparticles increases the density 
of interfacial contacts, which can generate more interfacial 
polarization. When the frequency is increased to the range of 
13–18 GHz, there is a slight increase in the value of ε″ and 
several distinct relaxation peaks, which are the result of the 
dipole reorientation with increasing electric field frequency 
[43] and the presence of multiple polarization relaxation 
processes [44, 45]. NCCA-1 does not have the highest ε″ 
value in the low frequency region (2–10 GHz) compared to 
NCA-2 and CCA-2, which is the reason for the unsatisfac-
tory value of Tanδε (Tanδε = ε′/ε″) (Fig.  3a3). However, the 
final wave absorption performance of NCCA-1 is the best, 
which is due to the poor impedance matching (Fig. 3d) and 
low ε′ values of NCA-2 and CCA-2, resulting in the electro-
magnetic waves not being reflected well into the interior of 
the material. This will be described below.

Cole–Cole curves can reflect the polarization process 
inside the material. The mechanism of dielectric loss is 
revealed by the Debye dipole relaxation process, which can 
be described by Eq. 3 [46, 47]:

where εs is the static permittivity and ε∞ is the relative per-
mittivity at infinite frequency.

According to Fig. 3c1–c3, there are several Cole–Cole 
semicircles in NCA-2, CCA-2, NCCA-1, indicating that 
the existence of polarization sites can cause the change of 
surrounding charge potential and form polarization relaxa-
tion [48]. Compared with NCA-2, CCA-2, the Cole–Cole 
semicircles of NCCA-1 not only dominate in number, but 
also have more regular radius, indicating the existence of 
more dielectric loss mechanisms to attenuate the electro-
magnetic wave (e.g., dipole polarization from oxygen vacan-
cies and interfacial polarization between multi-component 
heterogeneous interfaces). The advantage in the number of 
semicircles may be related to the synergistic effect of NiCo 
bimetallic alloy nanoparticles, which are able to provide 
multiple types and numbers of dipoles and multiple het-
erogeneous interfaces and defects to form more relaxation 
processes. The evidence that conduction losses play a large 
role in the consumption of electromagnetic waves in comes 

(3)
(

�� −
�
s
+ �∞

2

)

+
(
���

)2
=

(�
s
− �∞

2

)2



Nano-Micro Lett.          (2023) 15:137  Page 7 of 16   137 

1 3

from the near-linear tails on the Cole–Cole plots of NCA-2 
and CCA-2 [49]. The relaxation time can be expressed by 
the Eq. 4:

According to Eq. 4, the relationship between ε′ and ε″/f is 
linear when the electric dipole polarization is the only way 
to dielectric loss. It is noteworthy that the relationship is lin-
ear at 8–18 GHz and nonlinear at 2–8 GHz for all samples, 
demonstrating the simultaneous existence of dipole polariza-
tion and interfacial polarization. Polarization relaxation time 
can be determined by the ratio of ε′ versus ε″/f. As shown 
in Fig. 3e1–e3, the relaxation times of NCA-2, CCA-2 and 
NCCA-1 are 0.86, 0.97, 1.12, respectively. The relaxation 
time of different samples may be different for the following 
reasons: (a) The electric field environment around dipoles 
is not the same, so the orientation of dipoles is uncertain; 
(b) The two types of polarization relaxation correspond to 

(4)�� =
1

2��

���

f
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different polarization relaxation times, and thus have differ-
ent attenuation abilities to electromagnetic waves [36, 50].

Figure S18a, b shows the μ′ and μ″ images of the three 
samples, respectively. Among them, the curves of μ′ and μ″ 
of the three samples show several fluctuations of different 
magnitudes in the range of 4–7 GHz (low frequency) and 
12–14 GHz (high frequency), indicating the existence of 
exchange resonance, eddy current effect, and natural reso-
nance multiple magnetic loss mechanisms [50]. Usually, we 
consider that the  C0 values remain constant over a certain 
frequency range when the cause of magnetic loss is mainly 
Eddy current resonance, and the  C0 values vary drastically 
when the cause of magnetic loss is mainly exchange reso-
nance.  C0 values can be expressed by Eq. 5 [51]:

From Fig. 3b, it can be seen that the  C0 value varies dras-
tically with frequency at low frequencies from 2 to 8 GHz. 

(5)C
0
= ���

(
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)−2
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Fig. 3  a1 Permittivity real part, a2 imaginary part, a3 tanδε values of NCA-2, CCA-2, NCCA-1. Cole–Cole of c1 NCA-2, c2 CCA-2, c3 NCCA-1. The 
curves of ε′ versus ε″/f of e1 NCA-1, e2 CCA-1, e3 NCCA-1. b  C0, d impedance matching, f attenuation constant of NCA-2, CCA-2, NCCA-1
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And the fluctuation is attributed to exchange resonance. At 
high frequencies from 13 to 18 GHz, the fluctuation caused 
by eddy current loss can be verified by the constant relation-
ship between  C0 value and frequency [52]. Therefore, it can 
be concluded that exchange resonance and natural resonance 
are the main sources of magnetic loss.

Figures 3a3 and S18c show the tanδε and Tanδμ curves 
of NCA-2, CCA-2, and NCCA-1. In general, the dielectric 
and magnetic losses of NCCA-1 are better than NCA-2 and 
CCA-2. Therefore, NCCA-1 has satisfactory EMA per-
formance. Relative to the weak reaction of magnetic loss, 
dielectric loss is the dominant factor of electromagnetic loss.

The impedance match (Z) and the attenuation constant 
(α) are two other important indicators of EMA perfor-
mance [53, 54]. When Z is close to 1, the electromagnetic 
waves are maximized to be incident inside instead of being 
reflected out. A larger α value represents a stronger abil-
ity to attenuate electromagnetic waves. We studied the 
normalized input impedance (Fig. 3d) at the thickness of 
2.2 mm. The impedance matching of NCA-2, CCA-2 is 
poor, while NCCA-1 can maintain good impedance match-
ing in a wide frequency range (12–15 GHz) with Z≈1. 
According to Maxwell–Garnett theory, the 3D structure 
facilitates impedance matching optimization, allowing 
more electromagnetic waves to enter the material. 3D 
nanofiber networks shape high-density 3D conductive 
networks, effectively expand the effective absorption 
bandwidth of NCCA-1, and obtain satisfactory dielectric 
parameters. Figure S33 gives the variation of Z with fre-
quency at the matched thickness of 1.5–3.0 mm. As the 
matched thickness increases, the value of the RLmin shifts 
toward lower frequencies. When the matched thickness is 
2.2 mm, the impedance match of the sample is close to 1 
and has the optimal absorption performance.

The attenuation constant α is one of the indexes to 
measure the attenuation ability of the absorber to electro-
magnetic waves and can be calculated by the Eq. 6 [55, 
56]:

where c denotes the speed of propagation of light in free 
space and f denotes the frequency.

As shown in Fig. 3f, the α values of NCA-2, CCA-2, and 
NCCA-1 reached 196.19, 161.57 and 168.86, respectively. 
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And the attenuation coefficients of NCCA-1 and NCA-2 
are relatively good. The factors that determine the wave 
absorbing performance of the absorber are multiple. Due 
to the poor impedance matching of NCA-2, the absorbing 
performance is still unsatisfactory, although its attenuation 
coefficient value is high.

To further analyze the EMA characteristics of NCA-
2, CCA-2, NCCA-1, we analyzed their 3D and 2D EMA 
performance curves at different thicknesses. As shown in 
Fig. 4a, the RLmin of NCCA-1 is − 60.67 dB at 2.2 mm 
(Fig. 4b); while the  RLmin of NCA-2 is − 57.99 dB at 
4.6 mm (Fig. S25a), and the  RLmin of CCA-2 is − 58.04 dB 
at 4.7 mm (Fig. S25b). The matching thickness of NCA-2 
and CCA-2 is thicker relative to NCCA-1. Therefore, 
NCA-2 and CCA-2 cannot meet the requirement of "thin" 
in practical applications, which will be limited in practi-
cal applications. The EAB is usually regarded as a very 
important indicator of the absorber. The 2D EMA perfor-
mance curve (Figs. 4c and S26) can intuitively reflect the 
EAB of the three samples. At the thickness of 2.3, 2.3, 
and 1.9 mm, the  EABmax of NCA-2, CCA-2, and NCCA-1 
are 5.20, 5.84, and 6.22 GHz, respectively The EAB of 
NCCA-1 is the largest, indicating that 90% absorption of 
electromagnetic waves in a wider frequency range can be 
achieved at a very thin thickness. 

Figure 4d1,  d2,  e1,  e2 depict the 3D and 2D bar plots of 
RL and EAB for the three samples at thicknesses of 1.5–2.5 
and 1.5–3 mm. From the column distribution plots, it is more 
intuitive that NCCA-1 has ideal RL and EAB values, indi-
cating that it can be used as an ideal absorber. As a result, the 
electromagnetic wave is propelled by the charge to create a 
high density vortex due to the synergistic impact of the metal 
alloy and the optimization of the permeability. The rela-
tively unstable lattice of the alloy is more likely to produce 
more lattice distortion, lattice strip loss, vacancy and defect, 
forming the center of polarization, leading to more relaxa-
tion loss. Figure 4d3,  e3 compare the present work with the 
published work related to EMA aerogels. It can be found that 
our prepared NCCA-1 is outstanding in both RLmin [57–64] 
and EAB [57, 59–63, 65, 66], indicating that NCCA-1 can 
be used as a potential absorber. A large number of uniformly 
dispersed metal alloy particles make up for the loss of mag-
netic and contribute significantly to the dielectric loss. The 
conductive network formed by 3D structure further increases 
the conductivity loss of the system. In addition, abundant 
heterogeneous interfaces are formed, resulting in a large 
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number of defects. This gives NCCA-1 excellent dielectric 
and magnetic loss capabilities, which has great potential to 
be an ideal material compared to other electromagnetic wave 
aerogels. More important is the practical application. The 
preparation method for the MOF aerogel in this study is uni-
versal and has reference relevance for other MOF in addition 
to its great performance. Also, the preparation procedure is 
straightforward and affordable, opening the door to large-
scale production. Remarkably, it can preserve a complete 3D 
structure compared to other minuscule rod-like materials. 
Also, unlike the layered structure, the odd rod-like structure 

may be changed to meet demand and various varieties of 
aerogel can be created to increase its functionality.

To verify the advantages of the 3D nanofiber structure 
formed by freeze-drying, we compared the wave absorp-
tion properties of NCCA-1 after freeze-drying, blast dry-
ing and vacuum drying. XRD and EDS showed that dif-
ferent drying methods had no effect on the final product 
(Figs. S2, S12 and S13). We compared the EAB and RLmin 
of NCCA-1, NCCA-2 and NCCA-3 and the corresponding 
matching thickness (Fig. 5a, d). As shown in Figs. 5b, c 
and S31, the RLmin of NCCA-3 is − 28.94 dB at 6.3 mm 

Fig. 4  a RL and corresponding matching thickness of NCA-2, CCA-2, NCCA-1. b 3D RL diagram and c 2D RL diagram of NCCA-1. d1 3D 
and d2 2D RL diagrams of NCA-2, CCA-2, NCCA-1 at 1.5–2.5 mm. d3 The RL comparison between previous works and this work. e1 3D and e2 
2D EAB diagrams of NCA-2, CCA-2, NCCA-1 at 1.5–3.0 mm. e3 The EAB comparison between previous works and this work
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and the EAB is 3.6 GHz at 7.2 mm, the RLmin of NCCA-2 
is − 22.47 dB at 10.0 mm and the EAB is 4.24 GHz at 
7.5 mm. The samples obtained by blast drying and vac-
uum drying, both EAB,  RLmin, and the best-fit thickness 
are far inferior to those obtained by freeze-drying. This 
is due to the collapse of the 3D fiber network structure of 
NCCA-2 and NCCA-3 (Fig. S8), which further verifies 
the advantage of the 3D structure. In addition, the values 
of ε′, ε", Tanδε, μ′, μ", and Tanδμ (Fig. S21) of NCCA-1 
are much larger than NCCA-2 and NCCA-3. NCCA-1 has 
more relaxation peaks, Col-Col semicircle (Figs. S24 and 
 3c3), and maximum attenuation constant (Fig. 5e). There-
fore, the polarization relaxation is more pronounced and 
the attenuation of electromagnetic waves is stronger. In 
addition, the advantage in impedance matching is one of 
the key factors (Fig. 5f). Besides, it can be concluded that 
vacuum drying and blast drying cannot maintain the 3D 
network fiber structure of the aerogel, which leads to the 
collapse of the final sample micromorphology and thus the 
aggregation, and the electromagnetic waves cannot enter 
the material better and have a negative effect on the final 

wave absorption performance. On the contrary, the 3D 
structure network has the following benefits for absorb-
ing electromagnetic wave: (a) promoting the absorption 
of penetrating electromagnetic wave through multiple 
reflections, effectively reducing the number of heat trans-
fer paths in the aerogel; (b) greatly improving the conduc-
tive permeability threshold of the material and improving 
the efficiency of electron transmission; (c) optimizing the 
impedance matching.

Combined with the above analysis, the potential wave 
absorption mechanism of NCCA-1 aerogel is shown in 
Fig. 6:

(1) The impedance matching and attenuation constants 
allow more incident electromagnetic waves to enter the 
material and dissipate rather than be reflected [67, 68].

(2) The electromagnetic wave reflects and scatters back 
and forth in the gap on the material surface, which increases 
the propagation path and attenuates the electromagnetic 
wave [69, 70].

(3) The oxygen vacancies and defects formed during the 
high temperature carbonization process can form dipole 
polarization to dissipate electromagnetic waves [71, 72].

Fig. 5  a RL and corresponding matching thickness of NCCA-1, NCCA-2, NCCA-3. b, c 2D RL diagram of NCCA-2, NCCA-3. d EAB and 
corresponding matching thickness of NCCA-1, NCCA-2, NCCA-3. e Attenuation constant and f impedance matching of NCCA-1, NCCA-2, 
NCCA-3
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(4) The free electrons in graphite carbon leave their 
equilibrium positions under the action of an applied elec-
tromagnetic field, forming a microcurrent, resulting in 
conductive losses [73, 74].

(5) The introduction of magnetic nanoparticles can form, 
exchange resonance natural resonance and eddy current loss 
[75].

(6) High-density contact interface between NiCo 
nanoalloy and graphitic carbon layer triggers interfacial 
polarization.

3.3  Superhydrophobic and Self‑Cleaning Properties

The aerogel has the property of low density due to the exist-
ence of enormous air-filled voids inside the aerogel [76]. To 
verify that the prepared aerogels have the attractive property 
of low density, we placed NCCA-1 on the blooming stamen 
(Fig. 7a), and NCCA-1 was able to make a stable stay on 
top of the flower without deforming the stamen. In addi-
tion, the prepared aerogels are hydrophobic. We measured 
the water contact angles of three samples. The maximum 
water contact angles of the three samples were 141.7, 142.6, 
and 143.4, respectively (Fig. 7d1–d3). The FT-IR spectra of 
NCA-2, CCA-2, and NCCA-1 are shown in Fig. 7c. The 
three samples show the same identical peak positions. The 
vibrational bands at 3434, 1612, and 1110  cm−1 correspond 
to the stretching vibrations of –OH, the aromatic C=C group 
and the C–O group [77, 78]. The sample does not contain 
hydrophilic functional groups after pyrolysis, which is one 

Fig. 6  Schematic diagrams of the potential microwave absorption 
mechanisms of NCCA-1

Fig. 7  a Photographs of NCCA-1 on top of a flower. b Self-cleaning experiment process of NCCA-1. c FT-IR pattern of NCA-2, CCA-2, 
NCCA-1. Water contact angle of d1 NCA-2, d2 CCA-2, d3 NCCA-1
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of the direct reasons for the hydrophobic properties of the 
aerogel. In addition, NCCA-1 has the highest peak inten-
sity, indicating that it contains the highest concentration of 
hydrophobic functional groups, which directly proves that 
NCCA-1 is more hydrophobic than NCA-2 and CCA-2. The 
mechanism by which a hydrophobic group is hydrophobic 
may be as follows: Hydrophobic groups cannot hydrogen 
bond with water, so it will break the hydrogen bond network 
of water. The broken hydrogen bonds are driven to rearrange 
as much as possible along the oriented structure, and a water 
"cage" structure forms around the nonpolar surface. But this 
breakdown in hydrogen bonds can’t fully compensate, result-
ing in an increase in the entropy of the water molecules. 
Therefore, the hydrophobic interaction induced by hydro-
phobic groups is the result of the entropy increase drive [79].

Due to the hydrophobicity of aerogel, it may have poten-
tial application in self-cleaning function [80]. Figure 7b tests 
the self-cleaning process of NCCA-1. NCCA-1 was placed 
on a clean slide, the surface of the aerogel was contami-
nated with blue dye, and then flushed with a steady stream of 
water. Water droplets slide on the surface of the aerogel and 
rinse the blue dye into the petri dish. When water comes into 
contact with the surface of the NCCA-1, a stable layer of air 
is formed, which keeps the droplets from penetrating into the 
aerogel [81]. In Fig. 7b, the blue dye floating in the water 
can be observed, indicating that the blue dye was success-
fully washed off the surface of the aerogel, which proves that 
the hydrophobic NCCA-1 has a good self-cleaning function. 
The aerogel prepared also has high elastic characteristics. 
Aerogel’s mechanical characteristics may be significantly 
enhanced by the 3D nanofiber structure and bonding net-
work, which also exhibits recoverable elasticity and flex-
ibility [82, 83]. When NCCA-1 is compressed slightly to 
a flat state and released, the aerogel can easily return to its 
original form (Fig. S36), with high compressive strength and 
good fatigue performance.

4  Conclusions

In this work, a simple self-assembly of NiCo-MOF hydro-
gels by water-induced self-assembly is explored to transform 
the conventional layered structure into nanofibrous and form 
NiCo/C aerogels by pyrolysis. Due to the suitable imped-
ance matching, excellent conductive loss, dipole polariza-
tion, interfacial polarization and special 3D mesh-like fiber 

structure, it has good attenuation ability for incident electro-
magnetic waves. The results show that the RLmin of NCCA-1 
is − 60.67 dB at 2.2 mm, and the  EABmax is 6.22 GHz at a 
matched thickness of 1.9 mm. In addition, the prepared aero-
gel has a nanofiber morphology endowed with hydrophobic, 
lightweight, and self-cleaning functions with strong stabil-
ity. It makes up for the application of traditional absorbing 
materials in practice, and provides a potential reference for 
further research on multifunctional absorbers.
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