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S1 Materials and Methods 

S1.1 Materials  

The reagents and solvents were purchased from commercial sources and used as 

received unless otherwise noted. 

S1.2 Synthetic Procedures of Intermediates and Polymers 
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Scheme S1 Synthetic routes of M1, N2200-BTBHTx and PTzBI-EHp-BTBHTx 

S1.2.1 4,7-Dibromo-5,6-difluorobenzo[c][1,2,5]thiadiazole (2) 

Under an argon atmosphere, compound 1 (1g, 5.8 mmol) was dissolved in 50 mL of 

concentrated sulfuric acid. Then 4.57 g (25.5 mmol) of N-bromosuccinimide (NBS) 

was added and the reaction mixture was slowly heated to 50 °C for 4 h. The reaction 

procedure was monitored by thin film chromatography (TLC) in real time. After the 

complete consumption of compound 1, the mixture was cooled to room temperature 

and then poured into the ice water. The precipitate was collected by filtration and 

washed with deionized water. Subsequently, the resulting white solid was dissolved in 

dichloromethane and washed with saturated brine for 3 times. The organic phase was 

dried with anhydrous magnesium sulfate, and then concentrated. The product 2 was 

purified by silica gel column chromatography with a yield of 57%. 

1H NMR (400 MHz, Chloroform-d) δ 7.26 (s, 1H). 

13C NMR (126 MHz, Chloroform-d) δ 152.94, 152.78, 150.86, 150.69, 148.88, 148.86, 

148.84, 99.57, 99.47, 99.40, 99.34, 99.28. 

S1.2.2 12-((4,7-dibromo-6-fluorobenzo[c][1,2,5]thiadiazol-5-yl)oxy)dodecan-1-ol (3) 

Under an argon atmosphere, 1,12-dodecanediol (0.92 g, 4.5 mmol) was dissolved in 60 

mL of tetrahydrofuran solution, and then 60% sodium hydride (0.14 g, 3.6 mmol) was 

added. The reaction mixture was stirred at 50 °C for 3 h, followed by which compound 

2 (1.0 g, 3.0 mmol) was added. The mixture was stirred at 50 °C overnight. The reaction 

mixture was poured into deionized water, and extracted with dichloromethane. The 

organic phase was collected, dried with anhydrous magnesium sulfate, and 

concentrated. The mixture was further purified by column chromatography with 
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petroleum ether and methylene chloride (1:3 vol%) as eluent. The product was obtained 

with a yield of 58%. 

1H NMR (400 MHz, Chloroform-d) δ 4.24 (t, J = 6.4 Hz, 2H), 3.65 (t, J = 6.7 Hz, 2H), 

1.89 (t, J = 7.4 Hz, 2H), 1.42 – 1.23 (m, 19H). 

13C NMR (126 MHz, Chloroform-d) δ 157.70, 155.64, 149.98, 149.45, 149.29, 149.14, 

149.10, 106.21, 98.66, 98.47, 75.82, 75.78, 75.15, 63.11, 32.81, 30.27, 30.12, 29.59, 

29.55, 29.52, 29.43, 29.28, 25.76, 25.75. 

S1.2.3 12-((4,7-dibromo-6-fluorobenzo[c][1,2,5]thiadiazol-5-yl)oxy)dodecyl3-(3,5-

di-tert-butyl-4-hydroxyphenyl)propanoate(M1) 

Under an argon atmosphere, compound 2 (0.9 g, 1.76 mmol) was dissolved in 60 mL 

of dichloromethane solution. 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid 

(0.54 g, 1.93 mmol) and 4-dimethylaminopyridine (0.023 g, 0.193 mmol) were added 

sequentially. The color of the resulting solution gradually became pale yellow. Then the 

solution temperature was cooled to 0 °C and N, N'-dicyclohexyl carbon diimide (0.4 g, 

1.93 mmol) was added. The color changed from light yellow to milky white, and the 

solution was restored to room temperature and stirred overnight. The reaction solution 

was filtered and the filtrate is collected. The mixture was further purified by column 

chromatography with petroleum ether and methylene chloride (2:1 vol%) as the eluent. 

The product M1 was obtained as the pale yellow liquid product with a yield of 82%. 

1H NMR (400 MHz, Chloroform-d) δ 6.99 (s, 2H), 5.07 (s, 1H), 4.23 (t, J = 6.5 Hz, 

2H), 4.07 (t, J = 6.8 Hz, 2H), 2.87 (t, J = 8.0 Hz, 2H), 2.59 (dd, J = 9.1, 7.0 Hz, 2H), 

1.89 (t, J = 7.5 Hz, 2H), 1.62 (t, J = 6.7 Hz, 2H). 

13C NMR (126 MHz, Chloroform-d) δ 173.37, 152.13, 149.98, 135.87, 131.16, 124.77, 

75.81, 75.77, 64.62, 36.52, 34.30, 31.03, 30.31, 30.12, 29.55, 29.53, 29.51, 29.29, 29.27, 

28.65, 25.92, 25.76. 

S1.2.4 Synthesis of the PTzBI-EHp-BTBHTx and N2200-BTBHTx (x=0.05, 0.1, 0.2) 

For the synthesis of polymer donors PTzBI-EHp-BTBHTx, Pd(PPh3)4 (5.0 mg) was 

added to a degassed solution of TzBI-EHp (0.1–0.1x mmol), M1 (0.1x mmol), and 

BDT-HT-2Sn (0.1 mmol) (x = 0 for PTzBI-EHp; x = 0.05 for PTzBI-EHp-BTBHT0.05; 

x = 0.1 for PTzBI-EHp-BTBHT0.1; x = 0.2 for PTzBI-EHp-BTBHT0.2) in toluene (3 

mL) and DMF (0.5 mL). For the synthesis of polymer acceptors N2200-BTBHTx, 

Pd2(dba)3 (3.0 mg) and tri(o-tolyl)phosphine (8.0 mg) were added to a degassed 

solution of NDIBr-C8C12(0.1–0.1x mmol), M1 (0.1× mmol), and 2ThSn (0.1 mmol) 

(x = 0 for N2200; x = 0.05 for N2200-BTBHT0.05; x = 0.1 for N2200-BTBHT0.1; x = 

0.2 for N2200-BTBHT0.2) in toluene (5.5 mL). Then, the mixtures were stirred at 

110 °C for 36 hours for PTzBI-EHp-BTBHTx and 18 h for N2200-BTBHTx, after 

which 2-(tributylstannyl)thiophene and 2-bromothiophene were sequentially added to 

the reaction with 2 h interval. After the mixture was cooled to room temperature, the 

product was precipitated in methanol and filtered. Then, the precipitate was purified by 

Soxhlet extraction with acetone, hexane, dichloromethane in sequence. The 
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dichloromethane fraction was collected and concentrated, which was then precipitated 

into methanol and then filtered. Finally, the solid precipitate was dried under vacuum 

for 48 h to remove the solvent. The polymer donors and acceptors were finally obtained 

as blue solid. 

S1.3 J-V and EQE  

The current density-voltage (J-V) characteristics of the devices were measured under 1 

sun, AM 1.5 G solar simulator (Taiwan, Enlitech SS-F5) by using a computer-controlled 

Keithley 2400 Source Meter. The light intensity was calibrated by a China General 

Certification Center (CGC) certified reference silicon solar cell (Enlitech) before test, 

giving a 100 mW cm-2 light intensity during test. The external quantum efficiency (EQE) 

data were recorded with a QE-R test system (Enlitech). 

S1.4 Light Operational Stability Measurements  

Encapsulated Test: The devices were encapsulated with epoxy glue and glass in N2 

protected box. Then the devices were transferred into atmosphere, where the 

temperature was around 25 °C and humidity between 30%-40%, for the stability test. 

Light exposure was performed using a LED source with light intensity calibrated to 

achieve the same device performance measured by the standard AM 1.5 G solar 

simulator. Unencapsulated Test: Devices without encapsulation in temperature 25 °C 

or so, the 30%-40% of the atmosphere humidity stability test. Light exposure was 

performed using an LED light source and the light intensity was calibrated to achieve 

the same device performance as measured by a standard AM 1.5G solar simulator. 

S1.5 Morphology Characterizations  

AFM images were tested by a Digital Instrumental DI Multimode Nanoscope Ⅲ in a 

taping mode. TEM imagines were tested by a JEM-2100F instrument. 
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S2 Supplementary Figures and Tables 

 

Fig. S1 1H NMR spectra of compound 2 (CDCl3)

 

Fig. S2 13C NMR spectra of compound 2 (CDCl3) 
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Fig. S3 1H NMR spectra of compound 3 (CDCl3) 

 

Fig. S4 13C NMR spectra of compound 3 (CDCl3) 
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Fig. S5 19F NMR spectra of compound 3 (CDCl3) 

 

Fig. S6 1H NMR spectra of compound M1 (CDCl3) 
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Fig. S7 13C NMR spectra of compound M1 (CDCl3) 

 

Fig. S8 1H NMR spectra of N2200 (1,1,2,2-C2D2Cl4) 
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Fig. S9 1H NMR spectra of N2200-BTBHT0.05 (1,1,2,2-C2D2Cl4) 

 

Fig. S10 1H NMR spectra of N2200-BTBHT0.1 (1,1,2,2-C2D2Cl4) 
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Fig. S11 1H NMR spectra of N2200-BTBHT0.2 (1,1,2,2-C2D2Cl4) 

 

Fig. S12 Comparison of 1H NMR spectra of N2200-BTBHTx 
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Fig. S13 1H NMR spectra of PTzBI-EHp (CDCl3) 

 

Fig. S14 1H NMR spectra of PTzBI-EHp-BTBHT0.05 (CDCl3) 
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Fig. S15 1H NMR spectra of PTzBI-EHp-BTBHT0.1 (CDCl3) 

 

Fig. S16 1H NMR spectra of PTzBI-EHp-BTBHT0.2 (CDCl3) 
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Fig. S17 Comparison of 1H NMR spectra of PTzBI-EHp-BTBHTx 

 

Fig. S18 The mass spectral data of compound 3 
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Fig. S19 The mass spectral data of compound M1 

 

Fig. S20 The gel permeation chromatography (GPC) of (a) PTzBI-EHp, (b) PTzBI-

EHp-BTBHT0.05, (c) PTzBI-EHp-BTBHT0.1 and (d) PTzBI-EHp-BTBHT0.2 
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Fig. S21 The gel permeation chromatography (GPC) of (a) N2200, (b) N2200-

BTBHT0.05, (c) N2200-BTBHT0.1 and (d) N2200-BTBHT0.2 

 

Fig. S22 Cyclic voltammetry curves of (a) polymer donors PTzBI-EHp-BTBHTx (x = 

0, 0.05, 0.1, 0.2), (b) polymer acceptors N2200-BTBHTx (x = 0, 0.05, 0.1, 0.2) and (c) 

ferrocene/ferrocenium 
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Fig. S23 (a, c) Thermal gravimetric analysis of polymer donors PTzBI-EHp-BTBHTx 

(x = 0, 0.05, 0.1, 0.2) and polymer acceptors N2200-BTBHTx (x = 0, 0.05, 0.1, 0.2), 

respectively. (b, d) DSC traces of polymer donors and polymer acceptors, respectively 

 

Fig. S24 UV-vis-NIR absorption spectra of PTzBI-EHp-BTBHTx: N2200 films under 

light and ambient condition; (a) PTzBI-EHp, (b) PTzBI-EHp-BTBHT0.05, (c) PTzBI-

EHp-BTBHT0.1, and (d) PTzBI-EHp-BTBHT0.2 
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Fig. S25 (a-d) AFM images of blend films of PTzBI-EHp: N2200-BTBHTx (x = 0, 

0.05, 0.1, 0.2) 

 

Fig. S26 (a-d) The TEM images of films of PTzBI-EHp: N2200-BTBHTx (x = 0, 0.05, 

0.1, 0.2) 
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Fig. S27 (a) Evolution of PCE of PTzBI-EHp-BTBHTx: N2200 (x = 0, 0.05, 0.1, 0.2) 

cells aged at mpp with continuous light illumination and ambient condition; (b) 

Evolution of PCE of PTzBI-EHp: N2200-BTBHTx (x = 0, 0.05, 0.1, 0.2) cells aged 

with continuous light illumination and ambient condition 

 

Fig. S28 The PCE track under 80℃ at inert atmosphere for encapsulated all-PSCs 

based on (a) PTzBI-EHp-BTBHTx (x = 0, 0.05, 0.1, 0.2): N2200 and (b) PTzBI-EHp: 

N2200-BTBHTx (x = 0, 0.05, 0.1, 0.2), respectively 
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Fig. S29 (a) Fresh and (b) aged 300 h light intensity dependence of Jsc of the PTzBI-

EHp-BTBHTx: N2200 (x = 0, 0.05, 0.1, 0.2) cells; (c) Fresh and (d) aged 300 h light 

intensity dependence of Jsc of the PTzBI-EHp: N2200-BTBHTx (x = 0, 0.05, 0.1, 0.2) 

cells 

 

Fig. S30 (a) J-V curves of the OPDs based on polymer acceptors N2200-BTBHTx (x 

= 0, 0.05, 0.1, 0.2) under dark condition; (b) The stability of Jd of corresponding OPDs 

after aging for several days 
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Fig. S31 (a, c) EQE curves and (b, d) spectral responsivity at zero bias of OPDs 

 

Fig. S32 Specific detectivity obtain from Jd of OPDs based on PTzBI-EHp: N2200-

BTBHTx (x = 0, 0.05, 0.1, 0.2) 
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Fig. S33 Actual noise (at −0.1V) curves of OPDs based on (a) PTzBI-EHp-BTBHTx: 

N2200 (x = 0, 0.05, 0.1, 0.2) and (b) PTzBI-EHp: N2200-BTBHTx (x = 0, 0.05, 0.1, 

0.2), respectively, after aging 

 

Fig. S34 (a, b) PPG signal fluctuations of OPD devices after aging 

Table S1 Photovoltaic parameters of all-PSCs 

BHJ Voc (V) Jsc (mA cm-2) FF (%) PCEMAX (%) 

PTzBI-EHp-BTBHT0.1: 

N2200- BTBHT0.05 

0.85±0.00 

(0.85) 

14.87±0.16 

(14.97) 

69.10±0.74 

(69.83) 

8.72±0.10 

(8.88) 

PTzBI-EHp-BTBHT0.2: 

N2200- BTBHT0.05 

0.86±0.00 

(0.86) 

14.91±0.13 

(15.10) 

65.97±0.86 

(66.32) 

8.44±0.19 

(8.61) 

PTzBI-EHp-BTBHT0.1: 

N2200- BTBHT0.1 

0.85±0.00 

(0.85) 

13.98±0.58 

(14.53) 

65.55±1.08 

(64.83) 

7.81±0.19 

(8.04) 

PTzBI-EHp-BTBHT0.2: 

N2200- BTBHT0.1 

0.86±0.00 

(0.86) 

13.54±0.23 

(13.79) 

62.22±1.85 

(13.77) 

7.24±0.17 

(7.45) 
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Table S2 The exciton dissociation probability P(E, T) values and the exciton 

dissociation probability (Gmax) of OSCs 

BHJ PTzBI-

EHp:N2200 

PTzBI-EHp-

BTBHT0.05:N2200 

PTzBI-EHp-

BTBHT0.1:N2200 

PTzBI-EHp-

BTBHT0.2:N2200 

PTzBI-

EHp:N2200-

BTBHT0.05 

PTzBI-

EHp:N2200-

BTBHT0.1 

PTzBI-

EHp:N2200-

BTBHT0.2 

P(E, T) 

(%) 

93.58 94.14 96.28 95.95 92.04 89.33 81.87 

Gmax 

(m-3 s-1) 

1.06 × 1028 1.03 × 1028 1.06 × 1028 1.04 × 1028 1.04 × 1028 8.69 × 1027 6.89 × 1027 

Table S3 Shut resistance values of OPDs 

BHJ PTzBI-

EHp:N2200 

PTzBI-EHp-

BTBHT0.05:N2200 

PTzBI-EHp-

BTBHT0.1:N2200 

PTzBI-EHp-

BTBHT0.2:N2200 

PTzBI-

EHp:N2200-

BTBHT0.05 

PTzBI-

EHp:N2200-

BTBHT0.1 

PTzBI-

EHp:N2200-

BTBHT0.2 

Rsh 

(Ω cm2) 

2.0 × 108 4.6 × 108 5.0 × 108 4.0 × 108 5.3 × 108 3.1 × 108 2.5 × 108 

Note S1 

The total noise of a photodiode contains shot noise (𝑆shot), thermal noise (𝑆thermal), 

1/f noise (𝑆1/f) , and generation-recombination noise (𝑆g−r)  components. The noise 

current can be expressed as follows: 

𝑆noise = √𝑆2
shot + 𝑆2

thermal + 𝑆2
1/f + 𝑆2

g−r    

The theoretical Sshot can be described by Equation 

𝑆sh =
𝑖sh

√𝐵
= √2𝑞𝐽d        

When the shot noise is dominant, the specific detectivity (D*) can be described by 

Equation 

𝐷∗ =
𝑅res√𝐴

𝑆noise
=

𝑅res

√2𝑞𝐽d
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