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Quasi‑Three‑Dimensional 
Cyclotriphosphazene‑Based Covalent Organic 
Framework Nanosheet for Efficient Oxygen 
Reduction

Jianhong Chang1, Cuiyan Li1, Xiaoxia Wang2, Daohao Li2 *, Jie Zhang1, Xiaoming Yu1, 
Hui Li1, Xiangdong Yao1, Valentin Valtchev3,4, Shilun Qiu1, Qianrong Fang1 *

HIGHLIGHTS

• JUC-610-nanosheet exhibits highly efficient oxygen reduction reaction (ORR) catalytic activity in alkaline electrolyte with half-wave 
potential of 0.72 V versus reversible hydrogen electrode, which is one of the best covalent organic frameworks (COF)-based ORR 
electrocatalysts reported so far.

• It has been confirmed by experiments and density functional theory calculations that the abundant electrophilic structure in Q3CTP-
COFs induces a highly density of carbon active sites, and the unique bilayer stacking facilitates the exposure of active carbon sites 
and accelerates the mass diffusion during ORR.

• JUC-610-nanosheet can also serve as a promising cathode for Zn-air batteries (power density of 156 mW  cm–2 at 300 mA  cm–2), 
which promotes the development of metal-free carbon-based electrocatalysts.

ABSTRACT Metal-free carbon-based materi-
als are considered as promising oxygen reduction 
reaction (ORR) electrocatalysts for clean energy 
conversion, and their highly dense and exposed 
carbon active sites are crucial for efficient ORR. 
In this work, two unique quasi-three-dimensional 
cyclotriphosphazene-based covalent organic 
frameworks (Q3CTP-COFs) and their nanosheets 
were successfully synthesized and applied as ORR 
electrocatalysts. The abundant electrophilic struc-
ture in Q3CTP-COFs induces a high density of 
carbon active sites, and the unique bilayer stack-
ing of [6 + 3] imine-linked backbone facilitates the 
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exposure of active carbon sites and accelerates mass diffusion during ORR. In particular, bulk Q3CTP-COFs can be easily exfoliated into 
thin COF nanosheets (NSs) due to the weak interlayer π–π interactions. Q3CTP-COF NSs exhibit highly efficient ORR catalytic activity 
(half-wave potential of 0.72 V vs. RHE in alkaline electrolyte), which is one of the best COF-based ORR electrocatalysts reported so 
far. Furthermore, Q3CTP-COF NSs can serve as a promising cathode for Zn-air batteries (delivered power density of 156 mW  cm–2 at 
300 mA  cm–2). This judicious design and accurate synthesis of such COFs with highly dense and exposed active sites and their nanosheets 
will promote the development of metal-free carbon-based electrocatalysts. 
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Abbreviations
ORR  Oxygen reduction reaction
COFs  Covalent organic frameworks
Q-3D  Quasi-three-dimensional
CTP  Cyclotriphosphazene
NSs  Nanosheets
MFMs  Metal-free materials
3D  Three-dimensional
2D  Two-dimensional
JUC  Jilin University China
LSV  Linear sweep voltammetry
ECSA  Electrochemically active surface areas
ZABs  Zn-air batteries
Cdl  Double-layer capacitance
TOF  Turnover frequency
K–L  Koutecky–Levich

1 Introduction

Oxygen reduction reaction (ORR) plays a significant role in 
clean and sustainable energy conversion, such as metal-air 
batteries and fuel cells [1–4]. Pt-based materials are cur-
rently considered as most efficient electrocatalysts for ORR. 
However, their high-cost, scarcity, and instability in opera-
tion conditions restrict the future large-scale applications of 
these energy conversion devices [5–7]. In the past decade, 
metal-free materials (MFMs), such as porous carbon and 
porous organic polymers, have exerted a great effect on the 
design of low-cost and efficient electrocatalysts for ORR 
[8–15]. Notably, covalent organic frameworks (COFs) are 
an emerging class of ORR electrocatalysts due to their high 
surface areas, tunable porous structures, structural tunabil-
ity, and well-defined building units [16–20]. Reasonably 
designing and synthesizing COF materials with chemically 

adjustable specific blocks can facilitate the development of 
MFM-based ORR electrocatalysts [21–23]. During ORR 
electrocatalysis process, efficient active sites and fast kinetic 
mass diffusion of electrocatalysts are indispensable ingredi-
ents. Expectantly, it has been confirmed through both experi-
ment and theory that the electronic redistribution of carbon 
(C) atoms in MFMs can optimize the adsorption and dissoci-
ation behaviors for reactant  (O2) and intermediates (OOH*, 
O*, and OH*) [24–26], inducing ORR catalytic activity. For 
example, Dai et al. [27] and Nakamura et al. [28] demon-
strated that the C atoms with Lewis basicity (positive charge 
density) were the efficient ORR active sites. Thus, construct-
ing electrophilic structures in COFs can induce positively 
charged carbon active sites. Furthermore, optimal pore struc-
tures to expose more active sites and excellent conductivity 
of electrocatalysts can accelerate mass diffusion and electron 
transport to facilitate the ORR catalytic process [29]. Hence, 
controllably and precisely synthesizing COFs with highly 
dense and exposed carbon active sites from the perspective 
of customizing structures is of great potential to develop 
highly active metal-free ORR electrocatalysts [30].

Among COF materials, three-dimensional (3D) COFs 
exhibit hierarchical pore structures to expose numerous open 
sites [31] profitably, but the structural instability and poor 
conductivity limit their practical applications as electrocatal-
ysis. Two-dimensional (2D) COFs with excellent interlayer 
regulation have significant advantages in stable structures 
and electron transport properties [32, 33] but are restricted 
by mass diffusion due to their 2D stacking [34, 35]. In view 
of this situation, it may be possible to construct efficient 
2D COF electrocatalysts with quasi-3D (Q-3D) structures 
and channel features through clever structural design. How-
ever, the emergence of structural units centered on the Q-3D 
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cyclotriphosphazene structure makes our hypothesis plau-
sible. The distinctive structure of Q-3D COF makes its 2D 
planar structure regularly distort, thus creating a new vertical 
multi-channel to enhance the pore permeability and the mass 
diffusion [36]. Moreover, the weak interlayered π–π interac-
tions of Q-3D COFs can be easily exfoliated into nanosheets 
(NSs) [37]. Due to large number of active sites, faster ion 
diffusion, and high conductivity of thin layers, COF NSs 
was expected to further improve the performance of elec-
trocatalysts [38–41]. Therefore, the active carbon sites and 
mass diffusion requirements of ORR electrocatalysts initiate 
us to judiciously design and accurately synthesize the novel 
Q-3D COF NSs with highly exposed carbon active sites for 
efficient ORR.

Herein, we report the design and synthesis of two unique 
Q-3D cyclotriphosphazene-based COFs (Q3CTP-COFs, 
namely JUC-610 and JUC-611, JUC = Jilin University 
China) with 2D stacking structures and their exfoliated 
nanosheet (JUC-610-CON) as efficient ORR electro-
catalysts. The electrophilic structures of N–P–O blocks 
in 6-node hexa(4-formyl-phenoxy) cyclotriphosphazene 
(CTP-6-CHO) and pyridinic-N in 2,4,6-Tris(4-aminophe-
nyl) triazine (TAPT) induce the highly dense C (positively 

charged) ORR active sites of JUC-610. The novel [6 + 3] 
imine-linked frameworks [42, 43] exhibit unique bilayer 
stacking to expose more active sites and promote mass dif-
fusion during ORR. Furthermore, the weak π–π stacking 
effect between layers of Q3CTP-COFs makes possible to 
exfoliate ultra-thin nanosheets (~ 4 nm) easily, which can 
act as an ORR electrocatalyst with half-wave potential of 
0.72 V versus RHE in alkaline electrolyte and the cathode 
for Zn-air batteries (ZABs) with the power density of 156 
mW  cm–2 at 300 mA  cm–2, which surpasses those of almost 
all reported COF materials [20–23]. This work represents a 
newly synthesized COF architecture for efficient ORR and 
demonstrates its promising potential in metal-air batteries.

2  Experiment and Characterization

2.1  Experiment and Structural Determination 
of Q3CTP‑COFs

As shown in Scheme  1 and experimental procedures, 
Q3CTP-COFs were synthesized by condensing CTP-6-CHO 
with TAPT or 2,4,6-Tris(4-aminophenyl)benzene (TAPB) in 

Scheme 1  Schematic illustration of constructing JUC-610, JUC-611 (in the mixed solution of o-DCB/n-BuOH under 120 °C for 72 h with the 
yields of 75% and 72% respectively), and JUC-610-CON
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the mixed solution of o-DCB/n-BuOH under 120 °C for 72 h 
with the yields of 75% and 72%, respectively. The powder 
X-ray diffraction (PXRD) patterns suggested that the crystal 

structures of Q3CTP-COFs well matched with simulated by 
using the Materials Studio software package (version 7.0) 
[44] based on the bilayer hcb net [45] (Fig. 1a, b). After 

Fig. 1  a, b Powder XRD patterns of JUC-610 and JUC-611. c, d  N2 adsorption–desorption isotherms at 77 K and pore-size distribution (inset) 
based on the NLDFT model to the adsorption data for JUC-610 and JUC-611. e, f FT-IR spectra of JUC-610 and JUC-611
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geometrical energy minimization by using the force field 
to optimize the geometry of the molecular building blocks, 
the unit cell parameters (a = b = 24.6620 Å, c = 5.9759 Å 
and α = β = 90°, γ = 120° for JUC-610; a = b = 25.6008 Å, 
c = 6.4398 Å and α = β = 90°, γ = 120° for JUC-611, respec-
tively) were obtained. Based on P3 space group (No. 143), 
Bragg peaks at 2θ = 4.14°, 7.18°, and 10.95° for JUC-610 
were correspond to the (100), (110) and (120) planes, and 
peaks at 2θ = 4.02°, 6.97° and 10.65° for JUC-611 were cor-
respond to the (100), (110), and (120) planes, respectively. 
The refinement results yielded unit cell parameters nearly 
equivalent to the predictions (Rwp = 1.65% and Rp = 1.30% 
for JUC-610; Rwp = 2.09% and Rp = 1.54% for JUC-611). A 
comparison between experimental and calculated PXRD 
curves (AA and AB stacking models) revealed that both 
COFs crystallized in AA stacking mode (Figs. S1–S2 and 
Tables S1–S4).

2.2  Characterization of Q3CTP‑COFs

Nitrogen adsorption–desorption analysis under 77 K of both 
prepared COFs showed a sharp uptake at a low pressure of 
P/P0 < 0.05, which is a typical characteristic of microporous 
material [46–48] (Fig. 1c, d). The pore size distribution was 
calculated on the basis of non-local density functional theory 
(NLDFT), resulting in a value of 14.0 Å for JUC-610 and 
15.1 Å for JUC-611 respectively, which is in good agree-
ment with those of the proposed models (15.6 Å for JUC-
610 and 15.8 Å for JUC-611). The Brunauer–Emmett–Teller 
(BET) equation revealed their surface areas, 475  m2  g−1 for 
JUC-610 and 694  m2  g−1 for JUC-611 (Figs. S4–S5). The 
Fourier transform infrared (FT-IR) spectra peak around 
1622  cm−1 for JUC-610 and 1624  cm−1 for JUC-611 indi-
cate the formation of C=N (Figs. 1e, f and S6–S7). Inter-
estingly, the FT-IR spectra of CTP-6-CHO, Q3CTP-COFs 
showed that the P=N/P–O–Ar bonds on the phosphazene 
ring had barely noticeable different shifts with the peaks of 
P=N bond at 1207, 1158, and 885  cm−1 and P–O–Ar bond 
at 959  cm−1 (Fig. 1e, f). Furthermore, the solid-state 13C 
cross-polarization magic-angle-spinning (CP/MAS) NMR 
spectra verified that the presence of carbons from the C=N 

bonds at 162 ppm for JUC-610 and 161 ppm for JUC-611 
(Figs. S8–S9). According to the thermogravimetric analysis 
(TGA), these prepared COFs showed excellent thermal sta-
bility and were thermally stable up to ~ 400 °C under nitro-
gen (Figs. S10–S11). The morphologies of prepared COFs 
were observed by scanning electron microscopy (SEM) and 
transmission electron microscope (TEM), in which Q3CTP-
COFs showed isometric crystals (Figs. S12–S13). The pow-
der X-ray diffraction (PXRD) patterns revealed that COFs 
were stable after immersing in acetone and THF solvents 
and alkaline aqueous solutions for 24 h (Figs. S14–S16). 
The FT-IR spectra of COFs showed that the C=N bonds 
still existed after treatment under 6 M KOH for 24 h (Figs. 
S17–S19). Interestingly, we elaborately selected CTP-6-
CHO with the structure of six cross-side arms outside the 
central plane as the node module of COFs. The CTP-6-CHO 
has a unique stereoscopic structure in which the O–P–O 
plane (β plane) is perpendicular to the aromatic ring plane 
of  N3P3 (α plane, see Experimental Procedures) [37, 49]. In 
addition, the TEM images with elemental mappings verified 
that C, N, O, and P atoms were homogeneously distributed 
in Q3CTP-COFs (Fig. 2d-f).

2.3  Experiment and Characterization of JUC‑610‑CON

In addition, given consisting of unique rhombus pores, 
large interlayer spacings, and the uniquely flexible struc-
ture of CTP-6-CHO units lead to the weakened interlayer 
conjugation and possess the larger c distance (Table S1) 
of JUC-610, and the bulk JUC-610 can be easily exfoli-
ated into ultrathin NSs (denoted as JUC-610-CON) in large 
quantities (see Supporting Information) only 3 h by using 
sonication method. The ultrathin nature of JUC-610-CON 
was uncovered by TEM and AFM technologies. Tyndall 
effect was observed when a green laser went through the 
solution of JUC-610-CON (Fig. S20), confirming its col-
loidal nature. The atomic force microscopy (AFM) image 
revealed that the thickness of the obtained JUC-610-CON 
was ~ 4 nm, corresponding to ~ 8 layers and a flake size 
of ~ 800 nm (Fig. 2a–c and Table S7). Meanwhile, JUC-
610-CON exhibited thin nanosheets by TEM and SEM 
(Figs. 2d and S21). To determine the crystal structure of 
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JUC-610-CON, XRD and nitrogen adsorption–desorption 
analyses were performed. The results indicate the crystal-
linity and porosity of JUC-610-CON are identical to that 
of the bulk JUC-610, but the intensities of the first XRD 
peak (100) and  N2 adsorption isotherm are decreased (Figs. 
S22–S23).

3  Results and Discussion

3.1  ORR Catalytic Activity

To survey the ORR catalytic activity of prepared COFs 
and their nanosheets, the rotating disk electrode (RDE) 
experiments were performed in  O2-saturated 0.1 M KOH 
electrolyte. In addition, JUC-612 was also synthesized 
by condensing 1,3,5-tri(1,3-Diformyl biphenyl)benzene 

(TBPB-6-CHO) and TAPT as a control sample for ORR 
performance (Figs. S24–S31). According to the linear sweep 
voltammetry (LSV) curves, JUC-610-CON and Q3CTP-
COFs exhibited higher ORR performance than that of JUC-
612, revealing that the existence of the Q-3D structures 
and abundant heteroatoms significantly induces positively 
charged carbon active sites and improves the ORR active 
sites (Figs. 3a, S32–S36, and Scheme 2). The ORR cata-
lytic activity of JUC-610 was superior to that of JUC-611, 
which indicates that N atoms in TAPT blocks also play an 
important role in improving the ORR performance. In addi-
tion, the half-wave potential of JUC-610-CON and the bulk 
JUC-610 were 0.72 and 0.69 V versus RHE, respectively 
(Fig. S37), suggesting that ultrathin nanosheet structure 
exposes more active sites and facilitates mass diffusion 
during ORR process, which can be comparable to previ-
ously reported COF materials and most of metal-based ORR 

Fig. 2  a AFM image of JUC-610-CON, and b the corresponding height curves for the selective areas in a. c Lateral size distribution histogram 
of JUC-610-CON, and Gaussian fit curve is colored in red. d TEM image of JUC-610-CON. e, f TEM and the related elemental mapping images 
of carbon, nitrogen, oxygen, and phosphorus for JUC-610 and JUC-611
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electrocatalysts (Fig. 3f and Tables S8–S9). The Tafel slope 
of JUC-610-CON (61.95 mV  dec−1) is lower than those of 
JUC-610 (65.8 mV  dec−1), JUC-611 (70.9 mV  dec−1) and 
JUC-612 (79.7 mV  dec−1), indicating the superior ORR 
kinetics of JUC-610-CON (Fig. 3b). The electrochemically 
active surface areas (ECSA) of prepared samples were con-
ducted by electrochemical double-layer capacitance (Cdl) 
(Figs. S38–S41). The Cdl of JUC-610-CON (19.2 mF  cm−2) 
is larger than those of JUC-610 (17.8 mF  cm−2), JUC-611 

(7.6 mF  cm−2), and JUC-612 (7.6 mF  cm−2, Fig. 3c). To 
further explore the intrinsic activity of the prepared COFs, 
the turnover frequency (TOF) was carried out at 0.7 V 
versus RHE, indicating that C atoms in adjacent N–O–P 
atoms are active sites, and the highly dense carbon active 
sites accelerate mass diffusion during ORR process. As 
shown in Fig.  3d, the TOF value of JUC-610-CON is 
0.0035   s−1, which has higher active site utilization effi-
ciency than Q3CTP-COFs and JUC-612. The mass activity 

Fig. 3  a LSV curves of JUC-610-CON, JUC-610, JUC-611, and JUC-612 at 1600 rpm in  O2-saturated 0.1 M KOH electrolyte. b Comparison of 
Tafel plots, c estimated electrochemical bilayer capacitance (Cdl). d TOF and mass activity, and e K–L plots for JUC-610-CON, JUC-610, JUC-
611, and JUC-612. f Plot of onset potential against half-wave potential in metal-free organic porous materials without pyrolysis of ORR reac-
tions. g Discharge curves of JUC-610-CON-based ZAB at different current densities (25, 100, 200, and 300 mA  cm−2). h The stability of JUC-
610-CON-based ZAB at 5 mA  cm−2 in ambient air conditions, and photographs of red “COF” LED panel powered by two ZABs in series (inset)
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of JUC-610-CON (3.43 A  g−1) is also larger than those of 
JUC-610 (2.89 A  g−1), JUC-611 (1.68 A  g−1), and JUC-612 
(0.46 A  g−1). These results thus reveal that the JUC-610-
CON exhibits the most efficient ORR catalytic performance 
due to ultrathin nanosheet structure and the highly dense 
carbon active sites. Moreover, all the electron transfer num-
bers (n) of JUC-610-CON, JUC-610, JUC-611, and JUC-612 
derived from Koutecky–Levich (K–L) plots at 0.2 V versus 
RHE (Fig. 3e) were closed to 4 (3.82, 3.43, 3.42, and 3.67 
respectively).

Subsequently, a ZAB was assembled using the JUC-
610-CON as the air cathode due to its excellent ORR 
activity in alkaline solutions. The current density of JUC-
610-CON-based ZAB was about 87.2 mA  cm−2 at 1.0 V, 
and the maximum peak power density at 0.60 V was about 
0.15 W  cm−2 (Fig. S42). In addition, the JUC-610-CON-
based ZAB also exhibited potential plateaus of 1.16, 0.95, 
0.76, and 0.64 V at discharge current densities of 25, 100, 
200, and 300 mA  cm−2, respectively (Fig. 3g). Such ZAB 
could operate for 200 h with negligible voltage loss by 
regular replacement of electrolyte (6 M KOH) and zinc 
plate (Fig. 3h). Two JUC-610-CON-based ZABs in series 
were able to light a 2 V rated “COF” LED (Fig. 3h inset), 

which indicates this material is very promising as elec-
trode material in metal-air batteries.

3.2  DFT Calculations

To reveal the location of carbon active sites for ORR in our 
samples, the DFT calculations were performed (Fig. 4). All 
calculations were carried out with the Gaussian 09 package 
and Vienna Ab-initio Simulation Package (VASP). The natu-
ral population analysis (NPA) was performed on the theoreti-
cal level of B3LYP/6-311G (d, p) using the NBO program. 
The electrostatic potential was considered in Gaussian 09 
to describe the charge distribution of two chemical systems 
[50, 51]. The average electrostatic potential of O atoms in 
CTP-6-CHO and N atoms in TAPT were smaller than those 
of their adjacent C atoms, indicating the relative electro-
philicity of the N and O atoms. The NPA charge results 
illustrated that both C atoms adjacent to the electrophilic O 
atom in CTP-6-CHO and the electrophilic N atom in TAPT 
showed positive charge, which are 0.31 and 0.47, respec-
tively (Fig. 4a, b). Moreover, for these active carbon sites 
in CTP-6-CHO and TAPT, the 3D charge densities of three 

Scheme 2  Proposed ORR processes on JUC-610-CON
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reactions of ORR exhibited obvious redistribution of elec-
trons between the intermediate and substrate structure, veri-
fying the favorable adsorption of positively charged C atoms 
to the ORR intermediate.

4  Conclusions

In summary, we have precisely and controllably syn-
thesized the unique Q3CTP-COFs and their nanosheets 

Fig. 4  a, b NPA charges and the corresponding surface electrostatic potential maps of CTP-6-CHO and TAPT calculated by DFT. c, d Side 
view of the 3D charge densities for the three ORR reaction steps of C site for CTP-6-CHO and TAPT. Gray, purple, red, blue and light pink balls 
represent C, P, O, N, and H atoms, respectively
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using CTP-based blocks, which can act as efficient ORR 
electrocatalysts for Zn-air batteries. It was confirmed that 
the electrophilic structures in such Q3CTP-COFs induced 
abundant positively charged carbon ORR active sites to 
facilitate  O2 adsorption and reduction, which has been 
supported by DFT calculations. The unique bilayer stack-
ing structures of Q3CTP-COFs promote the exposure of 
active carbon sites to accelerate ORR process and the 
mass (ions,  O2 and intermediate) diffusion efficiency 
during ORR. Furthermore, Q3CTP-COFs could be eas-
ily exploited into nanosheets, which improves their ORR 
catalytic activity (half-wave potential of 0.72 V vs. RHE 
in alkaline electrolyte) and can be applied for promising 
cathodes for Zn-air batteries (delivered power density of 
156 mW  cm–2 at 300 mA  cm–2). Thus, this work provides 
a new way to fabricate metal-free ORR electrocatalysts 
with atomically definite carbon active sites and promotes 
their extensive application in clean energy conversion 
devices.
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