Supporting Information for

Efficient CO₂ Reduction to Formate on CsPbI₃ Nanocrystals Wrapped with Reduced Graphene Oxide

Minh Tam Hoang^{1, 2, ‡}, Chen Han^{3, ‡}, Zhipeng Ma^{3, ‡}, Xin Mao^{1, 2, ‡}, Yang Yang^{1, 2}, Sepideh Sadat Madani^{1, 2}, Paul Shaw⁴, Yongchao Yang³, Lingyi Peng³, Cui Ying Toe^{3, 5}, Jian Pan³, Rose Amal³, Aijun Du^{1, 2}, Tuquabo Tesfamichael^{1, 2}, Zhaojun Han^{3, *}, Hongxia Wang^{1, 2, *}

¹ School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4001, Australia

² Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia

³ School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia

⁴ Centre for Organic Photonics & Electronics (COPE), School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia

⁵ School of Engineering, The University of Newcastle, Callaghan, NSW 2038, Australia

[‡] Minh Tam Hoang, Chen Han, Zhipeng Ma, and Xin Mao equally contributed to this work.

*Corresponding authors. E-mail: <u>hx.wang@qut.edu.au</u> (H.W.), <u>zhaojun.han@unsw.edu.au</u> (Z. H.)

Supplementary Figures and Tables

Fig. S1 EDX elemental mapping of $CsPbI_3/rGO$ composite showing the distribution of Cs, Pb and I on the C matrix

Fig. S2 XPS survey scan of CsPbI₃/rGO composite

Fig. S3 XPS spectra of CsPbI₃ and CsPbI₃/rGO NCs showing characteristic peaks of Cs 3d, Pb 4f, I 3d and C 1s

Fig. S4 Fourier-transform infrared spectra of CsPbI₃ and CsPbI₃/rGO showing clear vibration peaks of surface ligand

Fig. S5 Tauc plot showing the bandgap of CsPbI₃ NCs and CsPbI₃/rGO composite

Fig. S6 (a) UPS measurement of CsPbI₃ NCs showing fitting for valance band maximum and cut-off energy; (b) Illustration of energy band alignment between CsPbI₃ and rGO calculated from UPS and band gap measurement. With $E_{valance band} = E_{HeI} + E_{cutoff} - E_{VBM}$

Nano-Micro Letters

Fresh CsPbl₃ NCs

CsPbl₃/rGO after 163 days

Fig. S7 Picture showing solution of CsPbI3 and CsPbI3/rGO in hexane after storage in ambient condition for long time

Fig. S8 XRD spectra of CsPbI₃/rGO composite after keep in ambient condition for 60 days, in comparison with the XRD of the fresh samples

Fig. S9 Water contact angle measurement of CsPbI₃ NCs film and CsPbI₃/rGO film on glass substrate

Fig. S10 GC calibration curves of (a) H₂ and (b) CO

Fig. S11 EIS spectra of CsPbI₃ and CsPbI₃/rGO in CO₂ saturated 0.1 M KHCO₃ under 0 V_{RHE} and fitting graph of EIS spectra

Fig. S12 The CO₂RR performance of the CsPbI₃/rGO catalyst in a 2-electrode flow-cell system

Fig. S13 The performance of rGO catalyst under CO₂RR conditions at -1.45 V $_{RHE}$

Fig. S14 TEM images and corresponding EDX elemental mapping of CsPbI_3/rGO after stability test under -1.45 V_{RHE}

Fig. S15 TEM images and corresponding EDX elemental mapping of CsPbI₃ after stability test under -1.45 V_{RHE}

Fig. S16 XPS Cs 3d and I 3d spectra of fresh electrodes with CsPbI3 and CsPbI3/rGO

Fig. S17 Free-Energy Diagrams for the energetics of HER process when $CsPbI_3$ and $CsPbI_3/rGO$ were used

Fig. S18 Free-Energy Diagrams for the energetics of CO_2 reduction process when $CsPbI_3$ with Pb vacancy defects was used

$\boldsymbol{Q}_{\boldsymbol{x}} = \boldsymbol{Q}_{\boldsymbol{R}} \frac{\boldsymbol{I}_{\boldsymbol{x}}}{\boldsymbol{I}_{\boldsymbol{R}}} \frac{\boldsymbol{A}_{\boldsymbol{R}}}{\boldsymbol{A}_{\boldsymbol{x}}} \frac{n_{\boldsymbol{x}}^2}{n_{\boldsymbol{R}}^2}$	Absorbance (at 350 nm)	Integrated PL intensity	FWHM (nm)	PLQY (%)
Rhodamine 6G	0.098	27787.82	34.49	95.0
CsPbI ₃	0.101	21572.05	34.96	73.0
CsPbI ₃ /rGO	0.094	13878.30	38.70	50.5

Table S1 Relative PLQY detail calculation using Rhodamine 6G as reference dye [S1, S2]

Sample		A ₁ (%)	$ au_2 ext{(ns)}$	A ₂ (%)	τ ₃ (ns)	A ₃ (%)	$ au_{ave}$ (ns)
CsPbI3	11.508	15.0	28.659	61.9	93.603	23.1	62.11
CsPbI ₃ /rGO	12.546	40.6	61.100	37.5	2.050	21.9	51.48

The PL decay was fitted with a tri-exponential decay function [S3]:

$$I(t) = \sum_{i=1}^{3} A_i \exp\left(-\frac{t}{\tau_i}\right)$$

Table S3 Fitted data of the EIS measurement in Fig. S11

	Rs (Ω)	Rct (Ω)	Wo-R (Ω)
CsPbI ₃	23.06	111.3	23.91
CsPbI ₃ /rGo	21.37	60.91	38.1

	Sample	Products	Max. FE, %	Stability	Current Density (mA/cm ²)	Refs.
Perovskite	CsPbI ₃ /rGO	HCOO ⁻	95.9	10.5 h, FE _{HCOO-} 76.4%	12.7	This work
	CsPbBr ₃ nanocrystals	CH4, CO	32 for CH ₄ , 40 for CO	350 h		[S4]
	Cs ₂ PdBr ₆	CO	78	10 h		[S5]
	Cs ₃ Bi ₂ Br ₉	HCOOH	80	20 h		[S6]
	La _{0.5} Ba _{0.5} CoO ₃	HCOO ⁻	99	60 h, FE _{HCOO-} 90%		[S7]
	La ₂ CuO ₄	C_2H_4	40.3	-		[S8]
Pb-based catalysts	Sulfide- derived (SD)- Pb	HCOO ⁻	88	-	12	[S9]
	Pb-MOF	HCOOH	96.8	-		[S10]
	Sn–Pb	HCOO ⁻	79.8	-		[S11]
	Pd ₃ Bi	HCOO ⁻	~ 100	-		[S12]
Sn, Bi and In-based catalysts	Sn-pNWs	HCOOH	80	-		[S13]
	Bi nanodendrites	HCOO-	96.4	10 h	15.2	[S14]
	Sulfur-doped indium	HCOO-	93	-		[S15]

Table S3 Comparison of the performance of our developed CsPbI₃/rGO catalyst with other recently reported other perovskite-based and metal-based catalyst for electrochemical reduction of CO_2

Supplementary References

- [S1] D. Magde, R. Wong, P.G. Seybold, Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields. Photochem. Photobiol. 75, 327-334 (2002). https://doi.org/10.1562/0031-8655(2002)075<0327:FQYATR>2.0.CO;2
- [S2] G.A. Crosby, J.N. Demas, Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. C 75, 991-1024 (1971). <u>https://doi.org/10.1021/j100678a001</u>
- [S3] W. Chen, N.D. Pham, H. Wang, B. Jia, X. Wen, Spectroscopic Insight into efficient and stable hole transfer at the perovskite/spiro-OMeTAD interface with alternative additives. ACS Appl. Mater. Interfaces 13, 5752-5761 (2021). <u>https://doi.org/10.1021/acsami.0c19111</u>
- [S4] K. Chen, K. Qi, T. Zhou, T. Yang, Y. Zhang et al., Water-dispersible CsPbBr₃ perovskite nanocrystals with ultra-stability and its application in electrochemical CO₂ reduction. Nano-Micro Lett. 13, 172 (2021). <u>https://doi.org/10.1007/s40820-021-00690-8</u>
- [S5] D. Wu, C. Wang, B. Huo, K. Hu, X. Mao et al., Photo- and electrocatalytic CO₂ reduction based on stable lead-free perovskite Cs2PdBr6. Energy Environ. Mater. (2022). <u>https://doi.org/10.1002/eem2.12411</u>

- [S6] Y. Wang, C. Wang, Y. Wei, F. Wei, L. Kong et al., Efficient and selective electroreduction of CO₂ to HCOOH over bismuth-based bromide perovskites in acidic electrolytes. Chem. Eur. J. 28, 2201832 (2022). <u>https://doi.org/10.1002/chem.202201832</u>
- [S7] M.-N. Zhu, B.-W. Zhang, M.-R. Gao, P.-F. Sui, C. Xu et al., Electrochemically reconstructed perovskite with cooperative catalytic sites for CO2-to-formate conversion. Appl. Catal. B 306, 121101 (2022). <u>https://doi.org/10.1016/j.apcatb.2022.121101</u>
- [S8] R.P. Singh, P. Arora, S. Nellaiappan, C. Shivakumara, S. Irusta et al., Electrochemical insights into layered La₂CuO₄ perovskite: Active ionic copper for selective CO₂ electroreduction at low overpotential. Electrochim. Acta **326**, 134952 (2019). <u>https://doi.org/10.1016/j.electacta.2019.134952</u>
- [S9] J.E. Pander, J.W.J. Lum, B.S. Yeo, The importance of morphology on the activity of lead cathodes for the reduction of carbon dioxide to formate. J. Mater. Chem. A 7, 4093-4101 (2019). <u>https://doi.org/10.1039/C8TA10752A</u>
- [S10] D. Wang, S. Dong, L. Wen, W. Yu, Z. He et al., Highly selective electrocatalytic reduction of CO₂ to HCOOH over an in situ derived hydrocerussite thin film on a Pb substrate. Chemosphere **291**, 132889 (2022). <u>https://doi.org/10.1016/j.chemosphere.2021.132889</u>
- [S11] S.Y. Choi, S.K. Jeong, H.J. Kim, I.-H. Baek, K.T. Park, Electrochemical reduction of carbon dioxide to formate on tin–lead alloys. ACS Sustain. Chem. Eng. 4, 1311-1318 (2016). <u>https://doi.org/10.1021/acssuschemeng.5b01336</u>
- [S12] L. Jia, M. Sun, J. Xu, X. Zhao, R. Zhou et al., Phase dependent electrocatalytic CO₂ reduction on Pd₃Bi nanocrystals. Angew. Chem. Int. Ed. **133**, 21909-21913 (2021). <u>https://doi.org/10.1002/ange.202109288</u>
- [S13] B. Kumar, V. Atla, J.P. Brian, S. Kumari, T.Q. Nguyen et al., Reduced SnO₂ porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO₂-into-HCOOH conversion. Angew. Chem. Int. Ed. 56, 3645-3649 (2017). <u>https://doi.org/10.1002/anie.201612194</u>
- [S14] H. Zhong, Y. Qiu, T. Zhang, X. Li, H. Zhang et al., Bismuth nanodendrites as a high performance electrocatalyst for selective conversion of CO₂ to formate. J. Mater. Chem. A 4, 13746-13753 (2016). <u>https://doi.org/10.1039/C6TA06202D</u>
- [S15] W. Ma, S. Xie, X.-G. Zhang, F. Sun, J. Kang et al., Promoting electrocatalytic CO₂ reduction to formate via sulfur-boosting water activation on indium surfaces. Nat. Commun. 10, 892 (2019). <u>https://doi.org/10.1038/s41467-019-08805-x</u>