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Supplementary Figures and Tables 

 

Fig. S1 SEM images of the CNT ribbon. (a) The morphology of the CNT ribbons. (b) 

The cross-section of the CNT ribbon 
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Fig. S2 The optical images of the resistance test of the CNT ribbon. The 20 cm-CNT 

ribbon has a resistance of 200.7 Ω. The line resistance of the CNT ribbon is about 10 

Ω cm–1 

 

Fig. S3 The strain-stress curve of CNT ribbon. The failure strain is 10.8% and the 

breaking strength is 104.5 MPa 
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Fig. S4 The ex-situ Raman peak shift of CNT yarn at different charged and discharged 

states by using CV scan at 10 mV s−1. The ex-situ Raman spectroscopy was 

performed by using a HeNe laser with a wavelength of 532 nm. The G peak can be 

fitted into three peaks: peaks 1, 2, and 3 are assigned to the G peak after splitting, the 

appeared new peak, and the D′ peak, respectively 

 

Fig. S5 The Raman shifts of the fitted peaks in Fig. S2. The G peak (peak 1) blue-

shifted slightly from 1585 cm−1 to 1590 cm−1 with increasing the potential from 3 V to 

4.2 V. As the coiled CNT yarn was charged to 5 V, the split new peak (peak 2) and the 

G peak after splitting blue-shifted to the maximum of 1612 and 1603 cm−1, 
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respectively. The two peaks gradually combined into one peak for the G band at 1588 

cm−1 during the potential back to 3 V. The D′ peak (peak 3) was stable during the 

charge and discharge process. 

 

Fig. S6 The schematic illustration of the apparatus for contractile stroke 

characterization 

 

Fig. S7 CV curves of DIYM using CV scan from different onset potentials to 5 V at 

50 mV s−1 and the applied load was 10 MPa 
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Fig. S8 CV of DIYM using CV scan from 3 V to different end potentials at 50 mV s−1 

and the applied load was 10 MPa 

 

Fig. S9 The decay rates of the catch index of the DIYM when the power was off for 

500 s. The artificial muscle yarn was charged from 3 V at a scan rate of 50 mV s−1 to 

4.5, 4.8, and 5 V, respectively, and then the power is off. The catch index at different 

end potentials of 4.5, 4.8, and 5 V were 91.2%, 95.8%, and 96.4%, respectively, and 

the decay rates of the catch index were 0.02, 0.008, and 0.007 %ꞏs−1, respectively 

 

Fig. S10 The curves of contractile stroke of the DIYM versus time at different scan 

rates during CV measurements from 3 V to 5 V at the applied load of 10 MPa 
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Fig. S11 The curves of contractile stroke of the RCYM versus time at different scan 

rates during CV measurements from 3 V to 5 V at the applied load of 10 MPa 

 

Fig. S12 The maximum contraction work and energy conversion efficiency of DIYM 

during CV scan from 3 V to 5 V and the RCYM during CV scan from 0.2 V to 2.2 V 

at different scan rates and the applied load is 10 MPa 

 

Fig. S13 Comparison of the contractile stroke of DIYM with mammalian skeletal 

muscles (20%), [1] electrochemical muscles (SWNT sheet (0.1%), [2] CNT-rGO yarn 

(8.1%), [3] CNT@PVDF yarn (10.4%), [4] Nylon/CNT (14.3%), [5] Two-ply CNT 

yarn (16.5% MPa), [10] CNT yarn (18.1%), [6] and ITAP CNT yarn (47.2%) [7] 
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Fig. S14 The curves of contractile stroke of the DIYM versus time at different on/off 

frequencies when a 3 to 5 V square wave with a 50% duty cycle and tension stress of 

10 MPa were applied 

 

Fig. S15 The curves of contractile stroke of the RCYM versus time at different on/off 

frequencies when a 3 to 5 V square wave with a 50% duty cycle and tension stress of 

10 MPa were applied 

 

Fig. S16 The effects of applied tensions on the contractile stroke and the generated 

contraction work of the DIYM when a 3 to 5 V square wave at 0.14 Hz with a 72% 

duty cycle (5 V for 5 s and 3 V for 2 s) were applied 
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Fig. S17 The cyclic stability of the DIYM. The potential of 5 V was held for about 0.9 

s, then switched to 3 V for about 0.9 s, and the response frequency was 0.24 Hz, while 

a pre-tensile tension of 10 MPa was applied.  

 

Fig. S18 The cyclic stability of the DIYM. The potential of 5 V was held for about 0.9 

s, then switched to 3 V for about 0.9 s, and the response frequency was 0.24 Hz, while 

a pre-tensile tension of 10 MPa was applied.  

 

Fig. S19 The mechanical properties of the CNT yarns before and after 10,000 

continuous rapid contraction cycles. (a) The stress-strain curves. (b) The comparison 

of the failure strain and the breaking strength between the artificial muscle before and 

after actuating. The failure strain and the breaking strength of the CNT yarn before the 

test are 109.3% and 193.4 MPa, respectively. And, after 10,000 continuous rapid 

contraction cycles, the failure strain and the breaking strength of the CNT yarn before 

the test are 82.4% and 251.7 MPa, respectively. 
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Fig. S20 The schematic illustration of the apparatus for isometric stress characterization 

 

Fig. S21 The curves of isometric stress of the RCYM versus time at different scan 

rates during CV measurements from 3 V to 5 V at the applied load of 10 MPa 

 

Fig. S22 The comparison of the actuation performances of the DIYM and RCYM 
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Fig. S23 The curves of isometric stress of the RCYM versus time at different on/off 

frequencies when a 3 to 5 V square wave with a 50% duty cycle and tension stress of 

10 MPa were applied 

 

Fig. S24 The comparison of the isometric stress rate of the DIYM and RCYM at 

different frequencies when the 3−5 V and 0.2−2.2 V square wave were applied for 

DIYM and RCYM, respectively, and tension stress was 10 MPa 

 

Fig. S25 The isometric stress of the DIYM under square waves with different 

potentials at 0.1 Hz. The potential for the returning process of yarn muscle was 3 V 

and the tension stress of was10 MPa 
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Fig. S26 Comparison of the generated isometric stress with mammalian skeletal 

muscles (0.35 MPa), [S1] electrochemical muscles (Bucky gel (0.1 MPa), [S8] SWNT 

sheet (0.75 MPa), [S2] CNT-rGO yarn (4 MPa), [S3] ITAP CNT yarn (4.2 MPa), [S7] 

CNT@PVDF yarn (10.8 MPa), [S4] and CNT yarn (14.6 MPa) [S6] 
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