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HIGHLIGHTS 

• Convincing candidates of flexible (stretchable/compressible) electromagnetic interference shielding nanocomposites are discussed in 
detail from the views of fabrication, mechanical elasticity and shielding performance.

• Detailed summary of the relationship between deformation of materials and electromagnetic shielding performance.

• The future directions and challenges in developing flexible (particularly elastic) shielding nanocomposites are highlighted.

ABSTRACT With the extensive use of electronic communication technol-
ogy in integrated circuit systems and wearable devices, electromagnetic 
interference (EMI) has increased dramatically. The shortcomings of conven-
tional rigid EMI shielding materials include high brittleness, poor comfort, 
and unsuitability for conforming and deformable applications. Hitherto, 
flexible (particularly elastic) nanocomposites have attracted enormous 
interest due to their excellent deformability. However, the current flexible 
shielding nanocomposites present low mechanical stability and resilience, 
relatively poor EMI shielding performance, and limited multifunctional-
ity. Herein, the advances in low-dimensional EMI shielding nanomateri-
als-based elastomers are outlined and a selection of the most remarkable 
examples is discussed. And the corresponding modification strategies and 
deformability performance are summarized. Finally, expectations for this 
quickly increasing sector are discussed, as well as future challenges.
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Abbreviations
EMI  Electromagnetic interference
EM  Electromagnetic
SoC  System-on-chips
SIP  System-in-package
RFIC  Radio frequency integrated circuits
SE  Shielding efficiency
CNTs  Carbon nanotubes
AgNPs  Silver nanoparticles
AuNPs  Gold nanoparticles
CB  Carbon black
AgNWs  Silver nanowires
CuNWs  Copper nanowires
SET  The total SE of EMI
SER  Reflection loss
SEA  Absorption loss
SEM  Multiple reflection loss
Rsq  Square resistance
FL  Few-layer structure
ML  Multilayer structure
MF  Melamine foam
TPI  Trans-1,4-polyisoprene
PU  Polyurethane
PDMS  Poly(dimethyl siloxane)
SBS  Poly(styrene-butadiene-styrene)
SEBS  Poly(styrene-co-ethyl-enebutylene-co-styrene)
CNF  Cellulose nanofibers
NCG  Nickel-coated graphite
HCB  Hollow carbon black
WPU  Waterborne polyurethane
PEDOT:PSS  Poly(3,4-ethylenedioxythiophene)-

poly(styrene sulfonic acid)
PVA  Polyvinyl alcohol
PET  Polyester
SWCNTs  Single-walled carbon nanotubes
MWCNTs  Multiwalled carbon nanotubes
PIFs  Polyimide foams
WF  Wheat flour
HPMC  Hydroxypropyl methylcellulose
CVD  Chemical vapor deposition
rGO  Reduced graphene oxide
GO  Graphene oxide
CNH  Carbon nanohorn
HMTA  Hexamethylenetetramine
PMMA  Polymethyl methacrylate
ANF  Aramid nanofiber
GNSs  Graphene nanosheets
NR  Natural rubber
GNR  Graphene nanoribbon
LM  Liquid metals

SA  Sodium alginate
PPy  Polypyrrole

1 Introduction

In the information society, electromagnetic (EM) waves, as 
an important medium for information dissemination, have 
covered all aspects of production and life in all aspects. 
With the rapid development of 5G and even 6G wireless 
communication networks running in the GHz band and the 
prosperity of portable devices, the problem of EM pollu-
tion has risen to an unprecedented level [1].

Integrated circuits as the cornerstone of the mod-
ern information society, with the rapid development of 
Moore’s law, a single die integrated hundreds of millions 
of transistors. Meanwhile, on the other hand, three-dimen-
sional heterogeneous microsystem stack integrated a large 
number of memories, converters, sensors, micro-core pro-
cessors and other electronic devices. Such high-density 
integration maximizes the performance of the system, 
but at the same time introduces serious electromagnetic 
interference (EMI) between the devices, especially in the 
system-on-chips (SoC), System-In-Package (SIP), radio 
frequency integrated circuits (RFIC), and analog circuits 
(Fig. 1). EMI may cause part of the normal operation of 
the system failure, so that a significant difficulty chal-
lenges the IC dependability [2–5]. In addition, EMI has 
also produced certain hazards to human health. Studies 
have shown that a large amount of EM radiation can cause 
a series of diseases including various cancers, Alzheimer’s 
disease, and reproductive system damage, in addition to 
making people palpitations and dreamy, increased anxiety, 
resulting in psychological problems [6].

More demanding specifications have been proposed 
for flexible wearable devices in recent years due to the 
advancement of flexible electronics research. Wearables 
should be able to maintain flexibility, while preserving 
device performance which is slightly affected by specific 
deformation circumstances (such as bending, folding, 
pressing, and stretching) for moving joints and other parts 
[7–10]. Therefore, EMI shielding films used for weara-
bles are expected to make sure that the EMI shielding 
efficiency (EMI SE) can still be higher than the minimum 
value necessary under a particular amplitude of stretching 
or compression because it is one of the crucial guarantees 
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for the regular operation of sensitive components [11]. 
The flexible EMI shielding film represented by metallic 
mesh and ultrathin silver layer sandwiched by oxides film 
has the characteristics of thinness, transparency and high 
SE, thus providing optoelectronic applications with robust 
safety and reliability under RF radiation [12, 13]. Simi-
larly, flexible shielding films prepared with graphene and 
silver nanowires (AgNWs) as conductive fillers also have 
the characteristics of flexibility and transparency. At the 
same time, after replacing the elastic matrix, the elastic 
shielding film can be formed by matching with the con-
ductive network. Additionally, compared to the previously 
extensively investigated shielding materials that can be 
folded and coiled, elastic EMI shielding materials are sig-
nificantly improved in terms of comfort in joints and other 

areas of the body where the body moves more frequently, 
particularly for ultrasound imager and tactile simula-
tion (Fig. 1) [14]. Therefore, the development of flexible 
wearable devices depends on the creation of stretchable/
compressible EMI shielding elastomers. In addition, EMI 
shielding materials with deformation capabilities suit for 
conformal surface in modern engineering applications, 
such as for aircraft and radar [15, 16]. Therefore, a key 
goal for EM protection is the development of new stretch-
able and compressible EMI shielding materials with great 
deformation capacity to protect sensitive objects, ena-
bling improved safety protection for people as well as the 
regular operation of electronic gadgets [17]. For elastic 
EMI shielding materials, traditional metal plates, metal 
nets (etched from metal plates), and other traditional rigid 

Fig. 1  Schematic of the materials and applications of flexible nanocomposite conductors for EMI shielding. Image for “Ultrasound imager”: 
Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International license (https:// creat iveco mmons. org/ licen ses/ 
by/4.0) [280]. Copyright 2023, The Authors, published by Springer Nature. Image for “Artificial skin”: Reproduced with permission [44] [307]. 
Copyright 2019, Wiley-VCH. Reproduced with permission. Copyright 2018, Wiley-VCH. Image for “wearable wireless communication”: Repro-
duced with permission [184]. Copyright 2019, Wiley-VCH

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0


 Nano-Micro Lett.          (2023) 15:172   172  Page 4 of 50

https://doi.org/10.1007/s40820-023-01122-5© The authors

protective materials obviously cannot act as elastic EMI 
shielding protection.

In recent years, there is a resurgence of interest in low-
dimensional nanomaterials such as 0D metal nanoparticles 
and magnetic nanoparticles, 1D metal nanowires, carbon 
nanotubes (CNTs), carbon fibers, and other fibrous nanome-
tallic chains, 2D graphene (and its derivants), MXene, and 
metal nanosheets [18, 19]. These nanomaterials need to form 
a lattice-like percolation network in order to facilitate the 
smooth passage of electrons through the junctions as well as 
the materials themselves. Thanks to the randomly structure 
of the conductive network, the materials have a certain abil-
ity to stretch and compress deformation [20]. Therefore, EMI 
shielding films, fabrics, and porous materials prepared based 
on these nanomaterials have many similarities in physical 
and chemical properties, such as high electrical conductivity 
and good mechanical properties. Furthermore, the creation 
of elastic EMI shielding materials also appeals to conductive 
polymers, liquid metals, and biomass [17, 21]. Elastomers 
are typically added as matrix to couple with the materials 
to generate such composite materials as conductive fillers-
matrix in order to further improve the mechanical stability 
and electrical stability of EMI shielding films when stretched 
and compressed. Below is a thorough review of conductive 
materials for EMI shielding elastomer.

This review aims to summarize the current research pro-
gress on EMI shielding elastomers. According to applied 
force, we divide the elastic EMI shielding materials into 
stretchable shielding materials and compressive materials. 
To better comprehend how elastic EMI shielding films are 
made, the EMI shielding mechanism (Sect. 2) and mechani-
cal properties of elastomer (Sect. 3) are briefly introduced 
in the first part. The conductive fillers are analyzed from the 
material dimension in Sect. 4. In the section, we firstly pro-
vide an overview of zero-dimensional nanomaterials, includ-
ing conductive nanoparticles (e.g., metal nanoparticles-sil-
ver nanoparticles (AgNPs), gold nanoparticles (AuNPs), 
carbon nanoparticles-carbon black (CB), graphite) and 
magnetic nanoparticles (e.g., ferrites, transition metal nano-
particles), and the resultant elastic composites. Immediately 
after, one-dimensional nanomaterials-based elastomers, such 
as AgNWs, copper nanowires (CuNWs) and CNTs, and a 
few corresponding post-treatment techniques are summa-
rized. Next, two-dimensional nanomaterials-based elasto-
mers, such as graphene and MXene, and some modifica-
tion strategies for mechanical resilience, stretchability and 

conductivity will be briefly summarized. Apart from that, 
several other special and newfangled materials (e.g., con-
ductive polymers, liquid metals, and biomass) will also be 
reviewed. Eventually, the urgent need for solutions to the 
issues will be highlighted along with some of the current 
research directions for stretchable/compressive EMI shield-
ing films.

2  Fundamental Mechanisms of EMI Shielding

When the incident EM waves interact with the surface of 
the shielding material, four mechanisms of boundary reflec-
tion, absorption, internal multiple reflection, and transmis-
sion are generated on the surface and inside the material 
(Fig. 2) [22]. The first three mechanisms will make some 
attenuation (can be artificially adjusted) of the EM waves, so 
as to achieve EMI shielding. We generally use the EMI SE 
to measure the shielding effectiveness of shielding materials 

Fig. 2  EMW propagation model in EMI shielding material under 
stretching
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against EMI. Defined as the logarithmic ratio of the field 
measured at the shielded point and the field measured at the 
same point without shielding, in decibels [12].

where E, H, and P are electric field strength, magnetic field 
strength, and EM wave power, respectively. At the same 
time, combined with the mechanism of EM wave action in 
the material, Schelkunoff’s formula states that the EMI  SET 
is an important indicator of the attenuation ability of the 
material, which consists of reflection loss, absorption loss, 
and multiple reflection loss [23]. See below for details:

When EM waves pass through the shielding material, 
the dipole in the material interacts with the EM field to 
convert the EM wave energy into heat, then dissipating 
the caused [24]. From the formula, the absorption loss is 
related to the thickness of the material, magnetic perme-
ability, electrical permeability, and the frequency of EM 
waves. The absorption of EM waves is caused by dielectric 
and magnetic losses [25]. Therefore, the larger the loss 
factor, the more favorable the absorption of EM waves, 
where d denotes the material thickness, f denotes the inci-
dent wave frequency, μ denotes the magnetic permeability, 
and σ denotes the electrical conductivity.

However, when the impedance of the shielding material 
does not match the transmission impedance of EM waves 
in space, the charged particles of the shielding material 
will interact with the electric field and be reflected by the 
interface, resulting in reflection loss [26]. As shown in 
Eq. (4), the higher conductivity and lower the permeability 
of the materials, resulting in greater reflection loss. For 
example, the reflection loss of traditional metal materi-
als (copper plate, silver plate, etc.) is high, and it can be 
assumed that its shielding mechanism for EM waves is 
almost totally reflection.
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There is also a loss mechanism, when the EM waves 
in the shielding body at multiple interfaces inside the 
repeated reflection and transmission caused by the loss of 
EM waves [20]. It is known that the skin effect that high-
frequency EM waves will be concentrated on the surface 
of the material. If the thickness is much greater than the 
skin depth δ, multiple reflections can be ignored, while if 
the thickness is close to or even less than δ, then multiple 
reflections must be considered.

In addition, it is currently one of the research hotspots in 
the field of EMI shielding to improve the multiple reflec-
tion loss inside the material and increase the dissipation of 
EM waves by reflecting them multiple times at the reflec-
tion interface provided inside the shielding materials [27]. 
It is worth noting that in some scenarios, the EM waves are 
supposed not to be mostly reflected and deteriorate the EM 
environment in the surrounding space, hence expecting the 
EMI shielding material to increase the absorbing loss and 
decrease the reflecting loss [28].

In general, the total shielding efficiency of electromag-
netic waves  (SET) is subject to the combined effects of 
reflection loss  (SER), absorption loss  (SEA), and multi-
reflection loss  (SEMR), which arise from the behavior of 
mobile charge carriers, the presence of electric (or magnetic) 
dipoles, and the interactions of waves with various surfaces 
or interfaces, respectively [29, 30]. Notably, strain-induced 
changes of electrical properties and composite microstruc-
ture and monolithic thickness jointly impact the overall 
EMI SE in deformable shielding armors. When subjected to 
deformation, the strengthening or weakening of the conduc-
tive circuit has a direct impact on the movement of charge 
carriers, leading to a change in conduction loss. Simultane-
ously, the change of thickness affects the propagation path 
of EM wave in the lossy medium [31]. In the process of 
propagation, the interaction with the electrical (magnetic) 
dipole will generate dielectric or magnetic losses, result-
ing in more absorption dissipation. And eventually residual 
EM waves dissipate in the form of heat energy. Moreover, 
the 3D microstructures introduce abundant conductive sur-
faces and facilitate multiple reflection/scattering and sub-
sequent absorption of the EM waves inside the conductive 
network when stretching [23]. The individual contribution 

(5)SEMR = 20 log
[
1 − exp

(
2d

�

)]



 Nano-Micro Lett.          (2023) 15:172   172  Page 6 of 50

https://doi.org/10.1007/s40820-023-01122-5© The authors

of the aforementioned factors governing the shielding per-
formance in flexible matrices can vary significantly, thereby 
necessitating a meticulous assessment tailored to the specific 
material architecture.

Experimentally, the EMI SE is typically determined by 
measuring the scattering parameters, S11 and S21, using 
a vector network analyzer (VNA), with their relationship 
expressed by Eq. (6):

When an electromagnetic (EM) wave encounters the 
surface of a shielding material, the total of its reflection 
coefficient (R), absorption coefficient (A), and transmis-
sion coefficient (T) must be conserved [23]. They can be 
calculated by scattering parameters and expressed as:

In the field of wearable devices, in addition to meeting 
the requirements of EMI shielding, shielding materials 
also need to pursue the ‘thin, light’ (thin-shielding mate-
rial thickness is small; light-low density) to improve the 
comfort of wearable devices. In addition, in aerospace, 
integrated circuits, and other fields, lightweight materials 
can effectively reduce the overall weight, saving energy 
and space [32]. In order to measure the performance of the 
materials and fully consider the influence of thickness and 
density on the SE of the materials, we defined the follow-
ing three specific shielding effectiveness as follows [33]:

Specific shielding effectiveness (SSE) combines three 
key parameters (SE, thickness d, and density ρ) and is 
important in measuring the EMI SE of lightweight and 

(6)SE(dB) = −10 log
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thin materials. The larger the value, the thinner and lighter 
the material is, and at the same time the better the shield-
ing effectiveness itself [30]. This parameter has been 
widely used in the field of porous EMI shielding materi-
als and ultrathin EMI shielding materials.

For thin stretchable shielding films, the conductivity is 
generally measured by the square resistance (Rsq). A theo-
retical analysis of the relationship between the EMI SE in a 
high frequency (higher than 30 MHz) and Rsq can be sum-
marized with an empirical formula as follows [34–36]:

where Z0 is the impedance of free space (377 Ω).

3  Mechanical Properties of Elastomer

The mechanical properties of elastomer are related to the 
response of an object made of that elastomer to an applied 
force, called loading, thus determining the specific appli-
cation and deformable limit [37, 38]. The most important 
properties include strength, hardness, ductility, and frac-
ture toughness. Note that the elastomers have the capac-
ity of returning to their original state and size after stress 
relaxation has been removed; however, materials that are 
merely elastic are not elastomers [39]. However, elastomers 
may fracture (for stretchable elastomers) or collapse (for 
compressible elastomers) when subjected to loads that are 
beyond their tolerance. This is a crucial problem in the field 
of elastic electronics, as standards are not yet fully estab-
lished and the statistical repeatability of newly reported 
materials/devices is frequently uncertain.

Elastomers can be broadly divided into stretchable 
and compressible elastomers in terms of force direction 
and application scenarios. Tension is a type of loading in 
which two sides of an object are pulled apart. When ten-
sion is applied, a material that resembles a regular wire, 
for instance, deforms. Thus, in this scenario, the stress is 
a vector simply given by strength = F/A, with a unit meas-
ure of N  m−2, termed the pascal (Pa). Deformation under 
stress is measured by a quantity called strain (ε), which 
is defined as the object’s reaction to the tension. Strain, 
in percentage terms, for a wire under tension stress is the 
percentage of elongation over the initial length, or strain 
(%) =  ΔL/L0 × 100% (Fig. 3a) [40]. The straight line segment 

(13)SE = 20 log

(

1+
Z0

2Rsq

)
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of this curve represents an elastic deformation, where the 
shape of the object is restored to its pre-stress condition 
when the stress is removed (Hooke’s law) [41]. Young’s 
modulus is a measure of a material’s stiffness that is equal 
to the gradient of the line of elastic region. As the tensile 
force exceeds the range of elastic deformation, the defor-
mation of the material turns into plastic deformation, i.e., 
the material cannot recover its initial length after stretching. 
After this, the material shows signs of necking until it breaks 
completely [42].

Compression is the inverse action of tensile loading, and 
it is accomplished by forcing the material together. Com-
pressible elastomers may not achieve a return to 100% of 
their original height during compression-release testing due 
to partial collapse and deformation of the internal struc-
ture [43]. This is largely dependent on differences in skel-
eton flexibility due to different processes of compressible 

material preparation. Also, for lightweight compressible 3D 
monoliths such as sponge, foam and aerogel, the compres-
sion strength is generally low, remaining only in the KPa 
range. In this case, the ratio of the remaining height (H’) to 
the initial height (H0) after different number of compression 
cycles at different stresses is generally used to reflect the 
fatigue resistance of compressible materials (Fig. 3b) [44].

4  EMI Shielding Materials

The EMI SE of deformable shielding composites mainly 
depend on the components and microstructures of electronic 
fillers [45]. In general, materials with superior shielding 
effectiveness, such as good EM wave reflection and dissipa-
tion capacity, as well as inherent softness and mechanical 
deformability, are potentially excellent electronic filler. The 
foregoing can broadly summarize the harmful EM interfer-
ence and thoroughly reveal the fundamental mechanisms of 
EMI shielding. In this section, the research highlights on the 
design of: (i) zero-dimensional (0D), (ii) one-dimensional 
(1D), and (iii) two-dimensional (2D) nanomaterials are dis-
cussed below (Fig. 4).

4.1  0D Materials

Compared with conventional metallic materials (e.g., metal 
sheets, metal blocks, and metal meshes, etc.), 0D materi-
als developed in recent years have become more prospec-
tive alternatives for EMI shielding on account of their large 
specific surface area, less thickness, low cost and excellent 
compatibility with other conductive fillers. [46]. Depending 
on the components of fillers, the functional 0D materials 
used for EMI shielding can be divided into two categories: 
One is the conductive nanoparticles, and the other is the 
magnetic nanoparticles.

4.1.1  Conductive Nanoparticles

4.1.1.1 Metal Nanoparticles Metal nanoparticles with 
diameter 20–200 nm offer great potential as a low-cost and 
efficient alternative to expensive and high-density conven-
tional metallic materials used for EMI shielding owing to 

(14)Height retention (% ) =
H�

H0

× 100%

Fig. 3  a Tensile strength–strain of stretchable materials. Inserts are 
representation of tensile load to a wire and corresponding equations. 
b Compressive strength–strain curves of compressible materials. 
Inserts are the schematic diagram showing the compression-recovery 
process
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their ultrahigh electrical conductivity, super-large specific 
surface area, as well as low cost [47]. Owing to their high 
electronic conductivity, metal nanoparticles, including Ag, 
Au, and others, can be used for EMI shielding as domi-
nant conductive materials in polymer composites, which 
are employed in both industry and scientific research for 
EMI shielding [48–51]. Furthermore, the broad processing 
window and reduced number of process steps available for 
metal nanoparticle production confer a high degree of sim-
plicity and scalability on their production. Meanwhile, due 
to the low preparation cost and mild reaction conditions of 
the wet chemical process, it has become the main prepara-
tion method for the synthesis of metal particles [52–57].

Considering the filler concentration and deformability 
of the composites, this multiphase composite system is 
prepared by compounding the polymer matrix with metal 
nanoparticles. The commonly used assisted matrixes 
include polyurethane (PU) [58–60], poly(dimethyl silox-
ane) (PDMS) [61, 62], Poly(styrene-butadiene-styrene) 
(SBS) [63], poly(styrene-co-ethylenebutylene-co-styrene) 
(SEBS) [64], cellulose nanofibers (CNF) [60, 65], mela-
mine–formaldehyde foam, etc. [61, 66]. With regard to the 
construction of the dense conductive network, metal ions in 

solution could be firstly reduced to form metal nanoparticles, 
and then be uniformly wrapped on any surface so that the 
composite could be rendered abundantly conductive to be 
employed in EMI shielding [58–60, 63, 64, 66]. The suffi-
cient metal nanoparticles can offer numerous mobile charge 
carriers, which boost enormously conductivity and result in 
the massive ohmic and eddy current losses for a very high 
EMI dissipation [67, 68]. Moreover, when the residual EM 
wave enters inside the composite film, the large conductiv-
ity mismatch between conductive metal nanoparticles and 
insulating polymer matrixes are beneficial to the polarization 
relaxation and charge accumulation which help to dissipate 
the EM wave by interfacial effect [59, 69].

Furthermore, in stretchable composites with metal nano-
particles, interfacial friction and mechanical interlocking 
between metal nanoparticles increase during stretching, 
hence increasing their mechanical properties [70]. The 
capacity of the elastomer’s macromolecular movement is 
intact since metal nanoparticles are linked to its surface, 
meaning that the rigid nanofillers don’t hinder the mem-
brane from elongating when stretched. As a result, this load-
ing method enhances the mechanical characteristics of the 

Fig. 4  Commonly used electronic fillers for elastic EMI shielding materials. Image for “Carbon Black”: Reproduced with permission [72]. Cop-
yright 2021, Elsevier Ltd. Image for “Ag Nanoparticle”: Reproduced with permission [64]. Copyright 2019, Wiley–VCH. Image for “Fe3O4”: 
Reproduced with permission [91]. Copyright 2021, American Chemical Society. Image for “Carbon Nanotube”: Reproduced with permission 
[281]. Copyright 2012, Wiley–VCH. Image for “Cu Nanowire”: Reproduced with permission [282]. Copyright 2022, Elsevier B.V. Image for 
“graphene”: Reproduced with permission [283]. Copyright 2018, American Chemical Society. Image for “MXene-few-layer structure (FL)”: 
Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International license (https:// creat iveco mmons. org/ licen ses/ 
by/4.0) [106]. Copyright 2021, The Authors, published by Springer Nature. Image for “MXene-multilayer structure (ML)”: Reproduced with 
permission [284]. Copyright 2019, The Society of Powder Technology Japan. Image for “Liquid metal”: Reproduced with permission [260]. 
Image for “All-carbon foam”: Reproduced with permission [273]

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
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elastomer membrane without diminishing its stretchability 
[60]. Nevertheless, the metal nanoparticles on the surface 
of a highly elongated sample tend to decrease the electri-
cal conductivity by crack formation when subjected to large 
stress. For instance, Kang et al. [63] fabricated the AgNPs/
SBS porous composite by template methods. The results 
show that when the AgNPs content is 66.5 wt%, the con-
ductive � and EMI SE of the composites are ~ 7800 S  m−1 
and over 45 dB, respectively, which are approximately 42 
and 33% less than those of the composites under stretch-
ing up to 100 times with 60% strain (Fig. 5a), whereas, as 
for compressive sponge/foam/aerogel, the existent isolated 
nanoparticles coating on the sponge hole walls prevent the 
efficient carrier movement. Upon compression, these gaps 

are sharply reduced, and thereby the connective percola-
tion improves, leading to lower contact resistance and better 
electrical conductivity for composites (Fig. 5b) [65, 66]. Gu 
et al. [58] prepared the PU/PDA/AgNPs composites based 
on the AgNPs coated on the surface of PU sponge by the 
in situ reduction. The results show that the composite has a 
high EMI SE (~ 84 dB) with the help of AgNPs (Fig. 5c). As 
such, it is discovered that as the conductivity of composites 
increases ~ 100% at strain of 80%, their capacity to effec-
tively shield EM fields would change as well [71].

Apart from as the predominant conductive fillers, hybrid 
fillers combining the CB [72], CNTs [62, 73], graphene 
[74, 75], and MXene [76] have also been reported for the 
formation of the elastic EMI shielding composites. Clear 

Fig. 5  Nanoparticle based elastic EMI shielding composites. a SEM images of silver NPs/SBS composites before elongation and after elonga-
tion at strain of 10% and 50%. b Illustration for the change of nano/micro gaps in the compressive AgNPs sponge. c Schematic diagram of EM 
waves transmission in the AgNPs sponge. d The SEM images of AuNPs/carboned MF. e Stress–strain curves of carboned AuNPs/ MF-PDMS 
composite. f Schematic illustration of a unit cell structure of spinel  MFe2O4. g X-band average EMI SE values of WPU-3wt%  NiFeO2 (W-N3), 
WPU-5wt% MXene (W-M5), and WPU-5wt% MXene-3wt%NiFeO2 (W-M5-N3). h SEM images of AgNWs/Fe3O4/MF foam. i Magnetic field-
induced compression along the radial direction of  Fe3O4/graphene aerogel. a Reproduced with permission [63]. Copyright 2016, Royal Society 
of Chemistry. b, c Reproduced with permission [73]. Copyright 2020, Elsevier Ltd. d, e Reproduced with permission [81]. Copyright 2018, 
Elsevier Ltd. fReproduced with permission [99]. Copyright 2021, Elsevier B.V. g Reproduced with permission [126]. Copyright 2021, American 
Chemical Society. h Reproduced with permission [91]. Copyright 2021, American Chemical Society. i Reproduced with permission [84]. Copy-
right 2015, American Chemical Society
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evidence proves that inserting the metal nanoparticles into 
the hosting conductive system diminishes the pristine resist-
ance via providing extra conductive routes, thereby yielding 
a greater conduction loss for better shielding properties [77]. 
Liao et al. [61] introduced Au nanoparticles into the carbon-
ized melamine foam (cMF) carrying systematic structural 
modifications with graphene,  Fe3O4 and PDMS to obtain a 
specifically engineered EMI shielding composite (Fig. 5d). 
Due to the improvement of system by Au nanoparticles, the 
cMF-Au-graphene-Fe3O4/PDMS composite exhibited excel-
lent electrical conductivity (81.3 S  m−1) and distinguished 
EMI SE (30.5 dB) at the thickness of 2 mm. Simultaneously, 
in contrast to composites containing merely conductive fill-
ers, the enhancement in the elastic characteristics of hybrid 
nanocomposites was accomplished by the high load trans-
fer efficiency of metallic nanostructures in the other matrix, 
hence improving the tenacity of elastic behavior (Fig. 5e) [74]. 
For example, AgNPs/CNTs with SBE elastomer have been 
combined synergistically to prepare the highly compressible 
conductive composite foam. Compared with pure CNTs/SBS 
foam, the addition of AgNPs can form double efficient con-
ductive paths, thus greatly improving the electrical conduc-
tivity as well as EMI shielding performance of the composite 
foam. Moreover, after deposition of AgNPs on the CNTs/SBS 
foam, it is worth noting that the compressive modulus and 
compressive strength of the composite foam have increased 
significantly at the strain of 50% [73]. In another case, Gong 
et al. [62] reported an Au@CNTs/sodium alginate/PDMS 
flexible composites with high flexibility and good EMI per-
formance. The EMI SE value of Au@CNTs/SA/PDMS com-
posites with 1% content is 10 dB higher than that of CNTs/
SA/PDMS composites with the same content, representing a 
significant improvement. Additionally, the composite materi-
als basically go through elastic deformation when their elon-
gation is less than 10%, which exhibits great flexibility.

4.1.1.2 Carbon Graphite and carbon black (CB) were used 
as conductive fillers long ago to prepare EMI protection 
materials such as conductive rubber and wave-absorbing 
coatings [78–80]. In terms of loss mechanism, the loss of 
carbon particles is resistive loss type. When the macroscopic 
current caused by carriers increases, it promotes the conver-
sion of EM energy into thermal energy, thus improving the 
EMI shielding performance. It also relies on the electron 

polarization, ion polarization, molecular polarization, and 
interfacial polarization attenuation of the medium to absorb 
EM waves. In practical applications, the incorporation of 
carbon particles into polymer elastomers, such as SBS [72] 
and silicone [80–82], allows the preparation of stretchable, 
high-performance conductive elastomers that shares the 
inherent advantages with silicone, including excellent ther-
mal stability and climate resistance. Currently, the major-
ity of elastomers use carbon black as an extra conductive 
material for EMI shielding system construction. In one 
case, Sun’s group prepared the CB-Ag@SBS hybrid foam 
by templates assisted fabrication using the CB and AgNPs 
as the conductive filler, SBS as the polymer matrix [72]. 
The result indicated that with the CB fraction of 15 wt% and 
a silver fraction of 0.63 vol%, the EMI SE of the CB-Ag@
SBS hybrid foam reaches 81.3 dB at a thickness of about 
5 mm. Simultaneously, adding the CB can improve the elec-
trical stability at cyclic compression-release measurement 
of the foam. The results mentioned above present that the 
uniform distribution of carbon black in the SBS matrix can 
not only increase the interfacial stability of Ag nanoparticles 
with CB/SBS framework but also improve the mechanical–
electrical stability of hybrid foams [83].

Furthermore, studies have shown that for carbon particles, 
which are traditional EMI shielding materials, surface treat-
ment and hollowing treatments can take their performance to 
the next level. Zhao’s group firstly synthesized the conductive 
silicone rubbers composite filled with nickel-coated graphite 
(NCG) in order to boost the conductivity and EMI SE by coat-
ing the nickel [82]. In another study, Zhang’s group prepared 
the hollow carbon black (HCB)-based conductive rubber 
composites. The unique hollow morphology produced a better 
compression recovery of HCB than other solid carbon black, 
such as acetylene black [81]. Due to the hollow structure, the 
conductive silicone rubber composites were featured by high 
stretching resilience, fast compression recovery and excellent 
conductivity to satisfy the EMI shielding requirements.

As a 0D conductive filler, from the perspective of con-
structing a conductive network, the filler level is too high, 
and the corresponding expense will increase while the 
tensile stability decreases, according to the percolation 
theory. Therefore, 0D nanoparticles should act more as the 
secondary filler in EMI shielding films, used to enhance 
the shielding ability of conductive networks built of 1D or 
2D nanofillers, rather than being used alone.
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4.1.2  Magnetic Nanoparticles

4.1.2.1 Ferrites Ferrites are typically ceramic materials of 
the ferrous group and one or more other appropriate metallic 
elements which, in terms of their electrical conductivity, are 
semiconductors, but are employed as magnetic media. Addi-
tionally, benefited by its distinctive crystal structure and 
excellent magnetic properties, spinel-type ferrite  MeFe2O4 
(M = Fe, Mn, Ni, Zn, Mg, etc.) stands out among them due 
to an extremely wide range of potential applications in the 
microwave domain (Fig.  5f) [84].  MeFe2O4 components 
may contribute to EMI shielding performance by virtue of 
their enhanced impedance matching and mild magnetic loss, 
resulting in greater EM wave dissipation [85–87].

Whereas, the conductivity of EMI shielding materials is 
intended to exceed the target value (1 S  m−1) in commer-
cial applications, hence the absence of a conductive filler 
renders a magnetic material ineffective for shielding [88]. 
Therefore, novel methods for enhancing the conductive 
property while maintaining magnetic loss are strongly pre-
ferred for effectively shielding EMI; this is seen as a desir-
able option. Yu and co-workers [89] exploited the  NiFe2O4 
to improve impedance and enhance magnetic attenuation 
of the MXene  Ti3C2Tx/waterborne polyurethane (WPU) 
composites and then developed a  NiFe2O4-MXene/WPU 
hybrid aerogel through freeze-drying. The results show 
that the EMI SE of the  NiFe2O4-MXene/WPU hybrid aero-
gel reaches 26 dB when the MXene and  NiFe2O4 content 
are 5 and 3 wt%, respectively, which are largely higher 
than those of pure  NiFe2O4 aerogel that is merely as low 
as about 5 dB. As illustrated in Fig. 5g, it is interesting to 
note that a sizable synergistic impact is observed because 
both  SET and  SEA of hybrid aerogel are higher than the 
sum of their individual peers. Evidently, the magnetic–die-
lectric synergistic effect derives mostly from enhanced 
absorption as opposed to reflection [90]. Likewise, 
Zhao’s group prepared the  Fe3O4–AgNW/melamine–for-
maldehyde foam by dip-coating method using  Fe3O4 and 
AgNWs as fillers and MF foam as matrix (Fig. 5h) [91]. 
At a high-conductivity system, the  SET values increase 
from 0.06 dB for the  Fe3O4/MF components aerogel to 
49.0 dB for  Fe3O4–AgNWs MF aerogel with a thickness 
of 5 mm in the X-band. And the later aerogel demonstrated 
superior absorption-dominated EMI shielding ability with 
a particular EMI shielding effectiveness value of 4537 dB 
 cm2  g−1. Moreover, in comparison with pure MF foam, the 
stress strain of composite foam took an upward trend with 

the load of  Fe3O4, which could still complete the entire 
cyclic process, indicating outstanding elastic stability.

Some studies have focused on manipulating magnetic 
field-induced variations concerning about the distribution 
feature of 0D nanomagnets and the geometrical morphol-
ogy of overall composites, both of which determine the 
EMI shielding behavior closely.

It is reasonable to believe that the gradient structure was 
beneficial to improve the impedance matching, which allow 
more EM waves to enter the composite material instead of 
being reflected, further improved the EM wave absorption effi-
ciency of the composite material [92–94]. Simultaneously, it 
is straightforward and feasible to wirelessly control the gradi-
ent arrangement of magnetic particles. For example, Zhang 
and co-workers [95] employed the freeze-casting method 
to fabricate a hydrogel by filling  Fe3O4 nanoparticles into 
poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) 
(PEDOT:PSS) and polyvinyl alcohol (PVA) composite aque-
ous solution. Automatically, a gradient hierarchical structure 
is self-assembled with PVA under the effect of magnetic field 
force, and the induced dipole force may resist the sinking action 
of gravity, adding to the superior mechanical properties of the 
hydrogel. Consequently,  Fe3O4 nanoparticles will absorb the 
energy and avoid local energy accumulation when the hydrogel 
is subjected to a large tension strain (> 100%), thereby enhancing 
the mechanical capabilities of hydrogel.

Additionally, the magnetic field-induced phenomena, 
apart from that of nanomagnets dispersion for the EMI 
shielding performance and elasticity of composites, include 
the deformation about geometrical morphology of overall 
composites as well [96–98]. Yury’s group [99] synthesized 
3D graphene aerogels decorated with  Fe3O4 nanoparticles 
by freeze-dried. The results show that the ultralight mag-
netic aerogels exhibit up to 52% reversible magnetic field-
induced strain and strain-dependent electrical resistance, 
both of which could be utilized to monitor the degree of 
compression/stretching of the material (Fig. 5i). Available 
evidence indicates that the EMI SE may alter with the thick-
ness, conductivity, and internal 3D porous architecture of 
aerogel under applied strain, and thus it might pave the way 
for the development of reconfigurable EMI shielding materi-
als with the wireless control.

4.1.2.2 Transition Metal Transition metals, including Fe, 
Co, and Ni, have an innate magnetic property that allows 
their particles to interact strongly with high-frequency EM 



 Nano-Micro Lett.          (2023) 15:172   172  Page 12 of 50

https://doi.org/10.1007/s40820-023-01122-5© The authors

waves and, in theory, effectively lose EM waves [77, 100–
104]. It is intriguing seeing as interacting with EM waves, 
the transition metal particles exhibit characteristics that fall 
midway between those of the previously discussed ferrites 
and highly conductive nanoparticles. In contrast to fer-
rite, ferromagnetic metal particles have a very straightfor-
ward crystal structure. Consequently, there is no magnetic 
moment extinction across magnetic sublattices in these par-
ticles, as there is in ferrite. Therefore, the magnetic charac-
teristics of transition metal particles are stronger than those 
of ferrite, and their saturation magnetization strength is typi-
cally greater than four times that of ferrite, which can result 
in exceptionally significant magnetic loss [105]. Due to the 
confinement effect and the tiny size effect of the nanopar-
ticles, the ferromagnetic resonance was primarily respon-
sible for the magnetic loss of the transition metals nano-
particles, where natural resonance acted at low frequencies 
(< 10 GHz) and exchange resonance functioned at high fre-
quencies (> 10 GHz) [106].

When the Ni particles were included in the composites, 
the values of ε’ and ε″ shot up significantly, indicating an 
increased capacity for dielectric loss [107]. This is primarily 
attributable to the elevation in conductivity that has taken 
place. While the conductivity of nickel particles isn’t quite 
up to the level of silver’s, they can nevertheless increase the 
conductivity of the composite as a metal, particularly when 
compared to ferrite. Furthermore, such an acceptable con-
ductivity was helpful in reducing the impedance mismatch 
at the air-composite contact interface. It enabled more EM 
waves to enter the sponge and subsequently be absorbed 
within the sponge, resulting in lowering the reflection loss. 
The remnant EM waves will be partially absorbed and dis-
sipated as a result of magnetic hysteresis loss and eddy 
current loss [108, 109]. As with ferrite, however, magnetic 
loss alone is insufficient for effective EMI shielding. The 
inclusion of nickel particles is like the cherry on top for 
EMI shielding of material. Wu and co-workers synthesized 
the decorated polyester/Fe3O4 textile composites by an in 
situ formation of  Fe3O4 and then obtain the Ni@decorated 
polyester/Fe3O4 composites by electroless deposition of Ni 
on a PET fabric. The result shows that Ni@decorated poly-
ester/Fe3O4 exhibited a moderate EMI SE (13.4 dB), while 
being much more than that of Ni@decorated polyester/Fe3O4 
(0.02 dB). Unfortunately, it still falls short of EMI shielding 
requirements. To achieve good EMI shielding performances, 
it was required to strike a compromise between the electrical 
and magnetic properties of the composite sponge [110]. For 
instance, Wang’s group prepared the Ni/Polypyrrole (PPy)/

Polyethylene terephthalate (PET) fabrics by in situ polym-
erization and subsequent electroless plating of nickel. The 
Ni particles is uniformly distributed on the PPy/PET fibers, 
thus constructing the heterogeneous structure automati-
cally [101]. With the help of this coaxial structure, multiple 
reflections at interfaces can be efficiently facilitated, and the 
electrical and magnetic properties for EM attenuation may 
be greatly integrated. The results show that when the nickel-
plating time and the in situ polymerization time are both 2 h, 
the EMI SE of the Ni/PPy/Non-woven PET fabric and the 
Ni/PPy/Warp knitted PET fabric are 77.87 and 62.60 dB at 
the X-band regime, respectively. Besides, due to the nature 
of the metal and the deposition process, Ni layers have a 
very restricted elongation at break and are invariably broken 
before polyester layers.

There are two development avenues for the use of transi-
tion metal particles in elastic EMI shielding films. The first 
involves enhancing the inherent morphology of the particles, 
shrinking the size of the particles, and creating high-aspect-
ratio transition metal nanowires [24]. The unique effect of 
nanoparticles and the anisotropy of nanowires can be lever-
aged to improve EMI shielding performance. The second 
involves changing the particle system to form a core–shell 
structure out of materials with increased conductivity, pro-
moting interfacial polarization and numerous reflections at 
the interface [45].

4.2  1D Material

4.2.1  1D Nanocarbon

In recent years, a fresh upswing in EM wave shielding has 
recently been brought about by the introduction of 1D nano-
carbons. Additionally, their exceptional chirality and electric 
characteristics indicate exceptional potential for EM wave 
shielding and absorption. 1D nanocarbons may be divided 
into CNTs, carbon nanofibers, and carbon nanocoils based 
on structural distinctions, of which CNTs are by far the most 
popular and thus will be highlighted below.

CNTs with large aspect ratios have been performed to 
ameliorate the EMI SE of the material as one of the most 
common fillers, which showed lightweight, excellent 
mechanical properties, electrical conductivity, good ther-
mal conductivity and low-cost [111, 112]. Among the most 
attractive advantages of these materials is their ultrahigh 
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anisotropy ratio for increasing dielectric loss capacity. Mean-
while, it is widely accepted that an ideal shield must block 
all the EM waves by the means of absorption. In contrast 
to metals, proper conductivity may lessen the impedance 
mismatch between nanocarbons and the incident space of 
EM waves, enabling greater absorption rather than reflection 
of EM waves [113]. When compared to other nanocarbons, 

CNTs with high aspect ratios need less fractional volume to 
obtain equivalent conductivities, and hence their composites 
often exhibit higher elastic characteristics.

According to the number of concentric graphene cylin-
ders, CNTs could be divided into two types, including sin-
gle-walled carbon nanotubes (SWCNTs) and multiwalled 
carbon nanotubes (MWCNTs). While single-walled carbon 

Fig. 6  a Basic forms of planar graphene sheet, SWCNT, and MWCNT (from left to right). b Modeling of tunneling effect among neighboring 
CNTs applied tensile strain. c Digital images of CNTs/PU-Ecoflex composite foam under the stretching strain of 0–50%. d Digital images of the 
excellent compressibility of CNTs/PIF-PDMS composite foam. e Schematic illustration of EMI shielding mechanism for compressible foam. f 
SEM images of CNTs-Wood aerogel in the pristine state  (S1) and compressed state  (S2). g SEM images of microstructures of porous MWCNT/
WPU composites at various percentages of original thickness. h EMI SE (Left) and RL (Right) of a CNTs/PU-Ecoflex composite foam under 
various stretching strains. i Left: SE curves of CNTs/ PU-TPI foam (~ 0.20 vol% CNTs) during multiple compressive deformation and recov-
ery cycles. Right: RL curves of CNTs/ PU-TPI foam (~ 10 mm in thickness) under different compressive strains. a Reproduced with permis-
sion [305]. Copyright 2005, Springer Nature. b Reproduced under the terms of the CC-BY Creative Commons Attribution 2.0 Generic license 
(https:// creat iveco mmons. org/ licen ses/ by/2.0) [128]. Copyright 2012, The Authors, published by Springer Nature. c, h Reproduced with permis-
sion [123]. Copyright 2019, Elsevier Ltd. d Reproduced with permission [285]. Copyright 2022, Tsinghua University Press. e Reproduced with 
permission [262]. Copyright 2021, American Chemical Society. f Reproduced with permission [21]. Copyright 2021, Elsevier Inc. g Repro-
duced with permission [111]. Copyright 2017, Wiley-VCH. i Reproduced with permission [125]. Copyright 2022, Elsevier Ltd

https://creativecommons.org/licenses/by/2.0
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nanotubes (SWCNTs) are the simplest kind of nanotube and 
are made by curling sheets of graphite, multiwalled carbon 
nanotubes (MWCNTs) are generated when carbon tubes of 
varying diameters stack up in a multilayer structure due to 
van der Waals interactions (Fig. 6a) [114]. Theoretically, 
the current carried by CNTs should be substantially greater 
than that of traditional metal wires owing to the ballistic 
transport characteristics of electrons in CNTs. Due to the 
preparation process’s limitations and flaws, it was not, how-
ever, achieved. Certain experimental findings show that the 
overall conductivity of single-walled carbon nanotube net-
works (~ 17 ×  107–2 ×  107 S  m−1) is much higher than that 
of MWCNTs (~ 5 ×  103–5 ×  106 S  m−1) due to the difference 
in intrinsic resistance [115, 116]. Likewise, when MWC-
NTs and SWCNTs are combined with polymers to create 
composites, the mechanical strength and strain-to-failure 
(εb) of the resulting materials vary depending on the CNT 
composition [117]. Consequently, both and their composites 
exhibit distinct variations in EMI shielding characteristics 
and deformability.

Moreover, the conductivity of the CNTs percolation net-
work drifts under strain conditions, which in turn causes a 
change in EMI SE [118]. Hu et al. [119] first theoretically 
demonstrated that the contribution of the piezoresistivity 
of CNTs on the total piezoresistivity of the nanocompos-
ite is comparatively small, compared with those from the 
change of the internal conductive network and tunneling 
effects in junctions (Fig. 6b). It further reveals that CNT-
based elastic EMI shielding materials change shielding 
performance due to deformation of the entire percola-
tion network and changes in tunneling distances between 
CNTs [120]. In particular, for well-developed percolation 
networks of highly concentrated composites, increasing 
applied strain results in network deformation and displace-
ment, but does not result in a discernible SE reduction 
since there are still plenty of conductive routes available. 
Therefore, effective EMI shielding exists while there are 
still a sufficient number of nanotube interconnections. Lu 
et al. [121] successively prepared a flexible spongy CNTs 
consisting of self-assembled, interconnected CNT skel-
etons, with a density of 10.0 mg  cm−3, which directly used 
as EMI shielding film. The freestanding CNTs sponge with 
a thickness of 1.8 mm shows highly EMI SE and SSE of 
54.8 dB and 5480 dB  cm3  g−1 in X-band, respectively. It 
is noteworthy that the composite still maintains its high 
SE performance and structural integrity even after 1000 

cycles of stretching tests. However, subsequent transition 
to poor shielding occurs when disconnection of conductive 
fillers after highly stretching cycles becomes unavoidable. 
Feng et al. [122] fabricated segregated CNTs/PU compos-
ites by the intense selective sintering methods. Besides, 
they experimentally demonstrated that the EMI SE of 
CNTs/PU composites decreases from ~ 35 dB (2.00 mm) at 
pristine state to ~ 12 dB (0.91 mm) at 200% tensile strain. 
Likewise, Huang et al. [123] fabricated the CNTs/PU foam 
with hierarchical buckling structure and then filled with 
Ecoflex by vacuum infiltration so as to obtain a stretchable 
EMI shielding materials (Fig. 6c). It is gratifying to note 
that the EMI SE of CNTs/PU-Ecoflex composites can still 
reach 20 dB under 30% stretching strain. Generally, these 
drastic changes can be attributed to the reduction of mate-
rial thickness due to stretching and the physical discon-
nection of some of the CNTs. Meanwhile, inherent expo-
nential drop of the EMI SE is seen to be determined by the 
tunneling mechanism of CNT/polymer nanocomposites.

In addition to acting as a filler for pulling stretchable 
EMI shielding films, carbon nanotubes are also used to 
construct lightweight, efficient, and stable compressible 
porous EMI shielding materials [124]. Recently, Sun et al. 
[125] introduced CNTs to carbon skeletons derived from the 
isocyanate-based aromatic polyimide foams (PIFs) so as to 
fabricate the high-performance CNTs/PIF-PDMS composite 
foams for EMI shielding. The result shows that the EMI SE 
decreased from the original value of ~ 57.6 to ~ 54.6 dB at 
30% strain after the first compression, followed by ~ 48 dB 
(at 50% strain) and ~ 40 dB (at 80% strain). This shows that 
the foam can still adequately meet the EMI shielding require-
ments even at a high compression of 80%, further demon-
strating the stability of the conductive network formed by the 
CNTs. Meanwhile, the cyclic compression test also shows 
that the foam has excellent compression resilience, which 
can withstand repeated deformation of flexible electronic 
devices while maintaining the morphological function intact 
(Fig. 6d).

Furthermore, compared with traditional non-deformable 
materials, such as dense CNT films, CNT compressible 
foams can be explored to probe the connection between key 
factors such as material thickness and electrical conductivity 
with EMI shielding performance by simply applying differ-
ent strains to the same material. This not only facilitates the 
elucidation of the endogenous mechanism of the variation 
of EMI shielding performance of compressible shielding 
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materials, but also helps to explore the potential relation-
ships between the influencing factors, further contributed 
to the design of other non-compressible EMI shielding 
materials.

According to Eqs. 3 and 4, the EM wave loss resulting 
from EMI shielding of the material is roughly related to the 
material thickness and conductivity, which should logically 
apply to CNT foam.

(i) Thickness

Chen et al. [126] uniformly mixed CNTs and wheat flour 
(WF) in a surfactant solution to form a stable sol system, and 
then heat to transform from sol to gel, which was directly 
freeze-dried to obtain the CNT/WF aerogels with a homo-
geneous porous structure. The average  SEtotal value of the 
CNT/WF (3%) foam with a thickness of 5 mm was about 
40.1 dB, which far exceeds the requirements for the prac-
tical use of EMI shielding materials. The CNTs wrapped 
around the gluten protein backbones made touch with one 
another when the force was applied to the WF/CNT foam. 
As a consequence, the distance between the CNTs was 
greatly decreased, increasing the CNTs’ contact area and 
decreasing the electrical resistance. Although the electrical 
conductivity increases with the compact CNT contact dur-
ing the compression deformation, the decreasing thickness 
gave less opportunities for the interference of the incoming 
waves with the CNT and cell walls, resulting in the poor 
EMI shielding of the CNT/WF foam (Fig. 6e). From the 
Eq. 3, it is obvious that the thickness weighs more heavily 
in the  SEA than the conductivity-related impact.

 (ii) Conductivity & complex permittivity.

The conductivity also becomes the most important compo-
nent in determining the EMI shielding performance when 
it varies dramatically and exponentially in comparison with 
the thickness. Liu et al. [21] used acidulated-CNTs as the 
conductive filler, wood sponge as the matrix to prepare the 
wood/CNT sponge composites via dip-coating. Due to the 
special pore structure inside the wood sponge, it will make 
the carbon nanotubes adhere to the pore surface, thus losing 
contact and not forming a complete and stable conductive 
pathway (Fig. 6f). This insufficient conductive network will 
make the overall electrical conductivity of the sponge drop 
significantly. And the material conductivity only will be 
significantly increased when compressed because the pore 

walls are in contact with each other. This steep change in 
conductivity can also lead to a dramatic change in EMI SE, 
from wave-transparent to perfectly shielded. Meanwhile, the 
change in conductivity during compression also affects the 
complicated permittivity of CNT composites. Moreover, 
Wang et al. [127] synthesized the CNT/PU foams and test 
them with the increasing of compressive strain. This behav-
ior leads to more physical contacts between cell skeletons 
and benefits to the formation of more horizontal conductive 
path perpendicular to the incident direction of EM waves, 
further yielding a rise in complex permittivity during com-
pression process. And this may increase the  SER due to the 
enhancement of ε’.

 (iii) Interior structure

The inner pore structure variation of the material also 
impacts the EMI loss power, including multiple reflections, 
in addition to the material’s macroscale electrical and geo-
metric properties. Zeng et al. [128] focused on the intrinsic 
shielding mechanism of the porous materials. They demon-
strated that the compression reduces the pores and in in turn 
the multiple reflections by an in situ compression experi-
ment (Fig. 6g). Besides, in the porous CNT-materials, the 
absorption behavior dominates the total shielding, whereas 
in the final-state dense CNTs films, the significant contribu-
tion from the reflection makes  SET even higher than that of 
the porous material at the low CNT mass ratios because of 
deteriorative impedance mismatch.

Notably, in composites with low concentrations of carbon 
nanotubes (less than ~ 10 wt%), the conductivity is relatively 
low and may only meet the minimum requirements for EMI 
shielding, if at all [31]. But the material may potentially 
be converted into a superior microwave-absorbing material 
when combined with the ideal reflective layer needed for 
such materials [129]. Huang et al. [123] introduced different 
volume concentrations of CNTs into swelled PU foam and 
subsequently filled with Ecoflex by vacuum infiltration to 
obtain EMI shielding composite foams (~ 4.3 vol% CNTs) 
and microwave-absorbing composite foams (~ 0.43 vol% 
CNTs), respectively. With the stretching of the material, the 
EMI SE of shielding composites has a certain decline, while 
the minimum reflection loss (RL) (i.e., the peak absorption 
point) of the microwave absorption composites occurs in the 
direction of low-frequency shift, due to changes in thickness 
and structure (Fig. 6h). Likewise, Wang et al. [127] branched 
different concentrations of CNTs and trans-1,4-polyisoprene 
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(TPI) to endow the PU frameworks as EMI shielding foams 
(~ 0.2 vol% CNTs) and microwave absorbent (~ 0.04 vol% 
CNTs) to protect against EM wave disorder interference 
using the template method. The experiments showed that 
the foam for EMI shielding was resilient and could repeat 
500 compression-recovery tests while maintaining the per-
formance, while the absorption material also produced peak 
shifts (Fig. 6i). For the dynamic conductivity of CNTs, it 
is possible to use the same functional material to prepare 
two EM protection materials with different functions. At the 
same time, the preparation just needs to modify the intro-
duced concentration, which simplifies the process stages and 
encourages large-scale scalable manufacturing.

4.2.2  Noble Metal Nanowires

Despite the widespread use of nanocarbon as a conductive 
filler, the material’s subpar EMI SE performance remains a 
significant barrier to widespread adoption in shielding appli-
cations. As an alternative, noble metal-based nanowires are 
becoming effective shielding fillers because of their high 
electrical conductivity by nature [130]. Particularly, illustra-
tive metal nanowires including gold nanowires (AuNWs) 
[131–135], AgNWs [136–140], copper nanowires (CuNWs) 
[141] are utilized in a range of stretchy conductive materials 
due to their ultrahigh anisotropy ratio, which facilitates the 
formation of a more stable conductive network. In addition, 
the composites made from nanowires with high aspect ratios 
tend to exhibit superior elastic characteristics because these 
nanostructures require smaller fractional volumes to obtain 
the same conductivities as conventional 0D or 2D nanoma-
terials [57]. Nonetheless, the frequency of scientific research 
and industrial applications of each nanowire in elastic EMI 
shielding films varies greatly in the view of the difficulty of 
preparing noble metal nanowires, the cost of preparation, 
and the properties of the corresponding bulk metal [18]. 
This section gives a thorough explanation of AgNWs and 
CuNWs for elastic EMI shielding materials depending on 
their application range and performance.

4.2.2.1 AgNWs AgNWs are considered the most promis-
ing noble metal nanowires owing to the highest bulk electri-
cal conductivity (6.3 ×  107 S  m−1) and exceptional air-stabil-
ity, making it commonly used in EMI shielding field. These 
AgNWs, once embedded as the EMI shielding materials, 
would form mesh-like percolation network structures that 

facilitate the free movements of carriers through contact 
junctions and the filler materials, even when mechanically 
deformed by applied strains. Since electrical conductivities 
can be increased generally, this stable structure may cause 
a considerable impedance mismatch with the space medium 
incident on the EM wave. Therefore, the majority of the EM 
waves are reflected at the interface due to this impedance 
mismatch, which is directly caused by the free electrons 
that have accumulated on the surface of the extremely con-
ductive network for AgNWs (Fig. 7a). For example, Zeng 
et al. [29] constructed the AgNWs percolation network in 
the form of aerogel using the unidirectional freeze-drying 
process. The AgNW aerogel with 2.3 mm thickness exhibits 
the conductivity of approximately 1400 S  m−1 and the maxi-
mum EMI shielding performance of 72.5 dB at a density of 
27.6 mg  cm−3.

Additionally, the highest electronic conductivity and high 
anisotropy ratio of AgNWs can both be used to modify the 
dielectric permittivity of hybrid materials. For instance, Li 
et al. [142] compared the complex permittivity of compos-
ites before and after the introduction of AgNWs. They dis-
covered that AgNWs can increase the dielectric loss due to 
both the conductivity and interface of composites, which 
will primarily endow the composites with superior EMI 
shielding ability.

It is highly challenging to create a stable self-supporting 
structure for AgNWs-based EMI shielding elastomers using 
only AgNWs, and even when it is possible, such as aerogel 
(Fig. 7b), it still has a low mechanical strength at low densi-
ties, which limits its application [29]. Typically, one of the 
widely used methods to produce high-performance shielding 
elastomers is to combine silver wire with aided polymer to 
create a high-quality composite. The efficient infiltration of 
assisted polymer could not only support the whole architec-
tures but also enhance the mechanical properties of compos-
ites (e.g., Young’s moduli and tensile strengths), which plays 
a key role in protecting the percolated AgNWs network by 
dissipating the applied strain [57]. Depending on the loading 
conditions, common assisted polymers are mainly divided in 
two categories: one is the stretchable polymers and the other 
is compressive polymers.

The matrix polymer of stretchable assistance materials, 
including PDMS, PU, etc., possess exceptional mechanical 
toughness and intrinsic deformability. When the stretchable 
polymers are added to the mix, they help to constantly sta-
bilize the morphology of the AgNWs network and improve 
the mechanical stability of the overall composites. Li and 
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co-workers compared the configurations of AgNWs and 
AgNWs/PU and proposed that nonaffine deformations (reor-
ientation and buckling) of AgNWs are greatly reduced by the 
mechanical constraint from the PU layer [143]. And poly-
mer can also bestow the composites with good stretchability 
and EMI shielding effectiveness beyond just stabilizing the 
AgNWs network. Sun et al. [144] first presented the trans-
parent, stretchable and self-healable EMI shielding materi-
als by taking designed PDMS-based silicone elastomer as a 
substrate for embedding AgNWs. The EMI shielding per-
formance gradually decreases from ~ 32 dB at pristine state 
to ~ 22 dB at 50% tensile strain because of the destruction 
of the conductive network caused by stretching (Fig. 7c). 

Moreover, Jung et al. [36] first reported a highly stretch-
able EMI shielding layer with silver nanowire percolation 
network on elastic PDMS-based substrate and then test its 
tensile performance (Fig. 7d–f). They noted that for the per-
colation network with dense distribution of AgNWs, i.e., a 
surface density of 666 mg  m−2, the EMI SE is maintained at 
20 dB or larger even at a large strain of 50%.

Meanwhile, sustaining EMI SE after numerous redupli-
cated stretching–retracting cycles is very vital for stretch-
able EMI shielding materials to effectively shelter the next-
generation wearable electronics from EMI. Appropriately, 
the polymer elastic matrix can create the robust interfacial 
adhesion with the AgNWs framework, which makes these 

Fig. 7  AgNWs-based EMI shielding composites. a Schematic illustration of shielding mechanism of AgNWs composites. b SEM image of 
microstructures of the AgNWs-PVP aerogels in longitudinal planes (scale bars are 100 μm). c Schematic diagram of the stretched AgNWs com-
posite against EMI. d EMI SE change plotted against sheet resistance. e Schematic illustration of proposed description for up-shifted shielding 
effectiveness during stretching. f Digital images of EMI shielding test under stretching condition. g Finite element analysis (FEA) of AgNWs 
sponge stress condition during single skeleton was being compressed, and strained. Color bar: MPa. h EMI SE of the AgNWs/MXene hybrid 
sponge before and after the 500-cycle fatigue test with a compressive strain of 60%. i Schematic showing the proposed EMI shielding mecha-
nism of the lamellar porous AgNWs/CNF aerogels. j TEM image showing the good attraction between the CNFs and AgNWs and adhesion of 
CNFs on the AgNWs. k Comparison of several characteristics for CNF, AgNWs, and the composite sponges. a Reproduced with permission 
[306]. Copyright 2022, American Chemical Society. b Reproduced with permission [29]. Copyright 2020, American Chemical Society. c Repro-
duced with permission [144]. Copyright 2021, The Royal Society of Chemistry. d-f Reproduced with permission [36]. Copyright 2022, Ameri-
can Chemical Society. g Reproduced with permission [148]. Copyright 2019, Wiley–VCH. h Reproduced with permission [287]. Copyright 
2021, The Royal Society of Chemistry. i-j Reproduced with permission [30]. Copyright 2020, American Chemical Society. k Reproduced with 
permission [142]. Copyright 2020, American Chemical Society
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composites very mechanically/electrically stable. Jia et al. 
[145] integrated AgNWs and conformal PU layers on a car-
bon fiber fabric in order to fabricate a highly electrically 
conductive fabric with the ultrahigh EMI shielding perfor-
mance. Due to the good mechanical deformability of PU, 
it was worth noting that conductive fabric with seven dip-
coating cycles maintained a superior EMI SE of 87.7 dB 
even after 100 stretching–retracting cycles, indicating 83% 
retention of the original EMI SE.

Considering assisted polymers for compressive AgNWs 
networks, these polymers, such melamine, cellulose, and other 
forms of polymer, have the capacity to support AgNWs in the 
formation of stable composites with good strain recoverable 
compressibility and fatigue resistance [43]. Certainly, there 
should be no doubt that EMI shielding performance is guaran-
teed even after compressive deformation at any strain. Due to 
the unique morphology of silver nanowires, it is more suitable 
for wrapping and winding on the surface of other polymeric 
compressed elastomers, known as the self-locking structure 
(Fig. 7g), to act as an EMI protection network rather than form-
ing a stand-alone film. Recently, Wang et al. [146] report on 
lightweight MXene/AgNWs/melamine hybrid sponges featur-
ing porous structures that are fabricated by dip-coating method 
(Fig. 7h). Benefiting from the support of matrix, the sponges 
exhibit a large recoverable compression strain (80%), and 
fatigue resistance. The average EMI SE of the hybrid sponge 
only decreases from 24.3 to 22.3 dB, exhibiting a high retention 
of 91.8%, after the 500-cycle fatigue test with a compressive of 
60%. In another study, Lin et al. [147] revealed that the pres-
sure to AgNWs is higher than that of melamine sponge skeleton 
because of the self-locking structure of AgNWs, and indicate 
that during loading process, the hybrid sponge acts as coil spring 
to assist sponge skeleton structure rebound (Fig. 7g). This silver 
coil spring of this design may distribute force evenly across a 
pliable base, halting any creep deformation that could other-
wise occur. Additionally, this self-locking structure is benefit 
to maintain the  SER during compressing intensely. Reversely, 
the excess strain render cracks in a commercial EMI shielding 
sponge (Ni-coated), thus causing dramatically decrease of  SER.

Contrary to elastic polymers, the significant hydrogen-
bonding interactions between PVP on the AgNWs and the 
CNFs help to bind the cellulose nanofibers (CNFs) that are 
employed to help build the AgNW network (Fig. 7i, j). These 
strong interactions contribute to the successful assembly of 
the ultralight yet robust AgNW-embedded biopolymer aero-
gels. And the compressive strength and moduli display an 

initial increasing behavior due to the more effective inter-
faces between the AgNWs and CNFs [30]. Greiner and co-
workers reported that a wood-inspired composite sponges 
consisting of CNFs and high-aspect-ratio AgNWs were gen-
erated with anisotropic properties by the directional freeze-
drying [148]. It is worth mentioning that the sponge with 0.4 
vol% AgNWs could exhibit a high EMI SE over 80 dB at 
X-band regime. Simultaneously, compared with the pristine 
brown–gray AgNW-only aerogel, the introduction of CNFs 
can enhance the physical and chemical interactions to form 
an effective continuous structure among AgNWs, avoiding 
collapsed with a very little force (Fig. 7k). Furthermore, the 
investigation conducted by Zeng and co-workers indicated 
that increasing AgNWs content in the porous nanocom-
posites may cause aggregation of the nanofillers, resulting 
in more stress concentration zones in the porous structure 
erected by AgNWs; consequently, the aerogels collapse 
more easily under the external compressive load [143, 149].

Notably, a post-treatment of the already constructed 
AgNWs conductive network can significantly increase the 
overall reflection loss in addition to the strengthening of 
polymer on the elastic EMI shielding material. The elec-
trical percolation of a AgNWs network depends strongly 
on the effective point contact at nanowire–nanowire [150]. 
However, many as-prepared nanowire films suffer from high 
contact resistance due to the nanogaps or weak contact at the 
junctions. This large contact resistance between nanowires 
would limit the conductivity of AgNWs network and slash 
the  SER,  SEA inevitably inhibiting their application in EMI 
shielding. Meanwhile, poor wire–wire contact also affects 
the mechanical deformability of the AgNWs elastic com-
posites because the loosely stacked nanowires would easily 
move under deformation, leading to deteriorated conductiv-
ity [130]. The conventional but effective method to reduce 
the high junction resistance of AgNWs is welding (Fig. 8a) 
[151]. A variety of post-treatment techniques have been 
developed with the assistance of heating [152–154], light 
[155, 156], electricity [157], mechanical pressure [158], cap-
illary force [159, 160] or chemical reagent [161] (Fig. 8b), 
while all have concerns in the application of flexible devices. 
Depending on the welding mechanism, these post-treatment 
techniques are mainly divided in two categories: One is the 
physical welding and the other is chemical welding.

Physical welding techniques could reduce the contact 
resistance by fusing the junctions of nanowires. When 
high thermal, mechanical, or optical energy is applied to 
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a network of nanomaterials, they can be welded together, 
enabling facile electron transfer across the conductive filler 
network and then improve the shielding performance of the 
composites. For instance, Wong’s group fabricated a welded 
AgNWs aerogel through thermal treatment at 200 °C, further 
backfilled with PDMS to obtain AgNWs/PMDS elastomer 
[152]. Compared with pristine AgNWs/PDMS elastomer, 

the EMI SE sharply rises from ~ 20 to 35 dB after thermal 
welding. And shielding performance also exhibits good 
mechanical stability after 1000 stretching cycles derived 
from welded AgNWs skeleton and backfilling of an elas-
tic polymer. Recently, Chen et al. [155] used rGO confor-
mally wrapped AgNWs (AgNWs@rGO) as the conductive 
filler and PDMS as the substrate to prepare a AgNWs@

Fig. 8  Welding techniques for AgNWs percolation network. a Schematic illustration of the welding technique. Reproduced with permission 
[131]. Copyright 2019, Royal Society of Chemistry. b SEM images of AgNW junctions before and after various welding methods. Image for 
“pristine”, “mechanical”, “thermal”: Reproduced with permission [156]. Copyright 2011, Tsinghua University Press and Springer-Verlag Berlin 
Heidelberg. Image for “light”: Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 International license (https:// creat 
iveco mmons. org/ licen ses/ by/4.0) [159]. Image for “moisture”: Reproduced with permission [165]. Copyright 2017, American Chemical Society. 
Image for “H2O2”: Reproduced with permission [166]. Copyright 2016, American Chemical Society. Image for “N2H4”: Reproduced with per-
mission [161]. Copyright 2019, Elsevier Ltd. Image for “NaF”: Reproduced with permission [162]. Copyright 2017, American Chemical Soci-
ety. c Schematic of the progression of spheroidization of a long cylinder. Perturbations with a wavelength of approximately λmax tend to evolve 
fastest and cause the formation of spheres, indicating failure of the nanowire. Reproduced with permission [160]. Copyright 2020, Wiley-VCH 
GmbH. d Schematic diagram for combined flash light welding process of silver nanowire with HPMC binder. Reproduced under the terms of 
the CC-BY Creative Commons Attribution 4.0 International license (https:// creat iveco mmons. org/ licen ses/ by/4.0) [159]. e Schematic illustrating 
the evaporation & soldering procedure of a transparent MXene/AgNWs film. f Soldering mechanism of the MXene/AgNWs film. g Resistance 
changes of the AgNWs film in the soldering process. e–g Reproduced with permission [150]. Copyright 2020, American Chemical Society

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
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rGO/PDMS transparent composite via selective electro-
deposition and pulsed laser irradiation treatment, which 
can enhance the EMI SE and the stability during stretching 
of composites. It is noted that the one of the reasons about 
enhancement of EMI SE is both ε’ and ε’’ were obviously 
enhanced, ascribable to the improvement in the material’s 
electrical conductivity based on free electron theory and 
effective medium theory. In a nutshell, these welding tech-
niques result in significantly reduced overall resistance and 
improved mechanical deformability. However, those tech-
niques frequently have a lot of flaws [159]. For example, 
thermal heating requires an accurate control over the heating 
temperature and time to prevent spheroidization fracture of 
the metal nanowires (Fig. 8c) and damage to heat-sensitive 
substrates (e.g., PDMS, PU) [162, 163]; mechanical pressing 
may not be applied to some devices as the high pressure (up 
to 80 GPa) may destroy some useful structures or the func-
tional layers and cause irreparable surface defects, particu-
larly optical devices [164]. Apart from these conventional 
welding methods, flash light welding technology has been 
developed to address the high temperature intolerance of 
flexible substrates. At the same time organic solvents such 
as hydroxypropyl methylcellulose (HPMC) binders can be 
removed while effectively soldering silver wires (Fig. 8d) 
[156]. Moreover, Liu et al. [159] proposed another inter-
esting approach to weld junctions via a self-limited cold-
nanowelding technique in virtue of powerful capillary force 
at the nanoscale, hence also called capillary-force-induced 
welding (Fig. 8e). On nanoscale, the pressure between two 
contacting particles induced by capillary force can achieve 
MPa to GPa level, which is comparable to the pressure of 
mechanical pressing for the welding of AgNWs. This weld-
ing can result in significantly reduced network resistance 
and improved mechanical flexibility, without inducing any 
significant change in the optical transmittance for transpar-
ent application.

Chemical welding techniques is another typical welding 
methods, which reduce the contact resistance by redeposit-
ing  Ag+ ions near the junctions via the redox reaction with 
the help of chemical reagent (e.g.,  H2O2 [165],  N2H4 [166], 
sodium halide salts [161], ionic liquid [167]). Unlike other 
types of welding, chemical welding method does not require 
any external energy because it takes place in a solution envi-
ronment. Cho and co-workers developed a method of chemi-
cally welding AgNWs using an aqueous solution containing 
sodium halide salts (NaF, NaCl, NaBr, or NaI) [161]. The 

halide welding dramatically reduced the sheet resistance of 
the AgNWs because of the strong fusion among nanowires 
at each junction and enhanced the mechanical flexibility of 
AgNWs. The optimized AgNWs electrodes exhibited a sheet 
resistance of 9.3 Ω  sq−1 at an optical transmittance of 92%. 
As opposed to thermal and plasmonic welding techniques, 
the chemical welding could be applied to AgNWs films with 
a variety of deposition densities because the halide ions uni-
formly contacted the surface or junction regions. Recently, 
Li’s group employed an ionic liquid (IL)-type reducing agent 
containing  Cl− and a dihydroxyl group to control the reduc-
tion process of silver during welding process in wire–wire 
junctions precisely [167]. This delicate welding technique 
can facilitate an atomic-level contact between the AgNWs 
and the reduced Ag, which can decrease the sheet resist-
ance, and enhanced the mechanical stability of AgNWs in 
like manner.

Another soldering technique differ from welding tech-
niques in terms of the use of additives (a conductive sol-
der) to fuse the junctions. Apart from the reactive silver ink 
as additives, PEDOT: PSS [168], GO [169], MXene [160] 
are employed as additives for soldering. Simultaneously, 
combining the above-mentioned ways for reducing junction 
resistance not only reduces resistance further, but also makes 
it better suited for specific extreme processing conditions. 
A representative example is provided by Chen et al., who 
fabricate a transparent and conductive AgNWs film with 
both high EMI shielding performance and high light trans-
mittance by a soldering with MXene and cold-nanowelding 
technique (Fig. 8e) [160]. This capillary-force-induced weld-
ing method can enhance mechanical strength to the soldered 
junctions as well as significantly reduced contact resistance 
during the drying process, without the requirement of any 
treatment with heat or force (Fig. 8f, g). Likewise, mechani-
cal roll process with high temperature is prevalent to sinter 
the AgNWs, which combine the mechanical welding and 
thermal welding [158, 170].

When considering the drawbacks of AgNWs used for 
shielding materials, the most notable ones are high cost, 
susceptibility to oxidation, and poor stability. The prepara-
tion of AgNWs involves a variety of chemical reagents and 
equipment, with multiple preparation parameters requiring 
strict control, all of which contribute to their elevated cost 
[148]. Furthermore, the chemical properties of the AgNW 
surface are highly susceptible to environmental oxidation, 
leading to decreased electrical conductivity upon exposure 
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to air. To mitigate this issue, measures such as utilizing 
chemical modifiers or polymer coating agents can be imple-
mented to safeguard the surface of AgNWs [171]. Addition-
ally, the stability of AgNWs is suboptimal, making them 
easily influenced by environmental factors. To address this 
concern, approaches such as utilizing stabilizers to manage 
surface chemical reactions or adjusting their morphology, 
structure, and surface chemistry can be pursued to improve 
their stability.

4.2.2.2 CuNWs CuNWs with outstanding electrical con-
ductivity (~ 5.7 ×  107 S  m−1) and ease of manufacture are 
also applied as conductive metal nanofillers for EMI shield-
ing composites [172, 173]. Since CuNWs have remarkable 
electrical conductivity as well, the conductive network they 
produce has a similar EM shielding process to that of silver 
nanowires [174]. Likewise, the elastic EM shielding materi-
als created employing CuNWs as conductive fillers can also 
have good tensile properties [175], strong EMI SE stability, 
and effective compression recovery [176]. And the wire-to-
wire lap joint also produces a junction resistance that is sig-
nificantly larger than the intrinsic resistance when CuNWs 
form a percolation network, therefore the junction welding 
procedure is equally crucial [177, 178]. Significantly, they 
are more affordable than AgNWs. However, bare CuNWs 
have a harmful propensity for oxidizing when exposed to 
air, which would cause a rapid decline in performance [27].

4.3  2D Material

4.3.1  Graphene

Graphene is the first two-dimensional (2D) atomic crystal 
available to us, which possesses an impressive range of 
material properties, including excellent electrical and ther-
mal conductivity, mechanical stiffness, strength, and elastic-
ity [179, 180]. The common methods to produce graphene 
powders are mechanical exfoliation, redox and SiC epitaxial 
growth, while the method to produce thin films is usually 
chemical vapor deposition (CVD). Due to the advantages 
displayed by their crystal flaws, reduced graphene oxide 
(rGO) is used in the majority of EM function studies [28]. 
Notably, a sp3-hybridized region for enhanced dielectric 
polarization, grafted function groups for simple composit-
ing and structuring, and established and large-scale produc-
tion technology are some of these benefits [181]. Graphene 
oxide (GO), which also uses graphene as a basic material, 

is hardly utilized in EMI shielding. In part that is because 
these resultant composites often display a low electrical con-
ductivity and an insufficient EMI SE level, which is mainly 
because of the high structural defects (oxygen functional 
groups, heteroatoms, dangling bonds and vacancies etc.) of 
GOs caused by the oxidative process [182]. Even though 
GO is not used as the ultimate EM protection material in 
most cases, GO is usually employed as popular building pre-
cursors via reduction because of abundant oxygen groups 
associated with excellent dispersibility in aqueous solutions. 
But while the electrical conductivity of GO-based compos-
ites can be partially enhanced through chemical or thermal 
reduction processes to yield rGO, there is still a gap toward 
practical applications [183]. To boost the EMI shielding 
performance of graphene composites under the premise of 
ensuring the rational deformability of those, there have been 
two main ways as follows:

(i) Grafting other materials

There are essentially two types of additional modified 
materials that were incorporated into the graphene sys-
tem: one is the high-conductivity materials such as CNTs 
[182, 184, 185], carbon nanohorn (CNH) [186], AgNPs 
[74, 187], AgNWs [142, 188], MXene [184, 188], that can 
substantially mention the conductive loss of graphene EMI 
shielding materials; the other is the nanomagnets such as 
 Fe3O4 [31, 186], FeCo [189] nanoparticles that can mag-
netize graphene materials, hence boosting the magnetic 
loss. Clear evidence proves that the introduction of pristine 
SWCNT creates an exceptional 3D conducting and rein-
forcement skeleton, which can not only provide double fast 
channels for electron transport but also effectively transfer 
external load [183]. Accordingly, the resultant composite 
first achieves the EMI SE of a rather high 31 dB over the 
X-band frequency range and an intriguing conductivity of 
120 S  m−1 with an ultralow loading of 0.28 wt%. Guided 
by the foregoing, graphene composites were decorated with 
other foregoing high-conductivity nanomaterials to pre-
pare various graphene-based hybrid EMI shielding elastic 
materials with multiple-percolation networks. For example, 
 Ti3C2Tx/rGO hybrid aerogel presented a higher EMI SE of 
over 54.8 dB than pure rGO aerogel, which possessed good 
compression resilience (~ 30% strain,  100th) as well [190]. 
Likewise, AgNWs/rGO and AgNPs/rGO hybrid composites 
have exceptional EMI SE over the X-Band regime of ~ 45.2 
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and ~ 67.3 dB, respectively; these values are better than those 
of rGO-only shielding armors [187, 191]. In addition to sta-
bilizing the 3D graphene shape and absorbing some external 
pressures, the aforementioned nanosilver can also increase 
the overall deformability.ii) Heteroatom doping

One of the best and most direct ways to change the electri-
cal conductivity and EMI SE of graphene is doping [192]. 
Doped graphene has exceptional properties as a result of its 
large specific surface area, high density of defects, strong 
electrical and thermal conductivity, and narrow tunable band 
gap (due to doping) [193]. Structural defects in the carbon 
lattice due to doping also help to decrease microwave energy 
by scattering and multiple internal reflections [192]. More 
importantly, this structural design does not cut the good 

mechanical stiffness, strength, and elasticity of graphene so 
drastically that it overly affects the overall deformation.

Typically, boron (B) [194], nitrogen (N) [195, 196], phos-
phorus (P) [197], and sulfur (S) [198] as doping element for 
pristine graphene have all been studied with the purpose of 
designing improved EMI shielding materials. For instance, 
Lin et al. [199] fabricated the 6.6-μm-thick nitrogen-doping 
rGO film, which possesses ultrahigh electrical conductivity 
of 8796 S  cm−1, leading to outstanding EMI SE (~ 58.5 dB) 
and the SSE/t (43,902 dB  cm2  g−1) (Fig. 9a). And the EMI 
SE of ~ 48 dB and conductivity of 1575 S  cm−1 of pristine 
rGO film are both much less than those of nitrogen-dop-
ing rGO film. Interestingly, some special nitrogen-doping 
sources served as a nitrogen dopant and reducing agent in 
the hydrothermal reaction process, but also played a role 

Fig. 9  a Schematic map of N-doped graphene. b SEM images of loading states of rGO aerogel under uniaxial compression (scale 
bar = 250 mm). c SEM image of graphene/CNF aerogel. d Digital images of (Left) rGO/CNF-PMMA aerogel (Center) being loaded and (Right) 
released under a strain of 80%. e SEM image of GO/PVA/ Ni foam. f Schematic illustration of multi-reflection of EM waves in the cellular 
structure built by stretched rGO sheets in graphene foam. g SEM image of “obstacle walls” graphene foams fabricated by fluid-assisted method. 
a Reproduced with permission [199]. Copyright 2019, Springer Science Business Media, LLC, part of Springer Nature. b Reproduced with per-
mission [212]. Copyright 2015, Wiley-VCH. c Reproduced with permission [217]. Copyright 2017, Elsevier Ltd. d Reproduced with permission 
[288]. Copyright 2021, Elsevier Ltd and Techna Group S.r.l. e Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 
Generic license (https:// creat iveco mmons. org/ licen ses/ by/4.0) [214]. f, g Reproduced with permission [179]. Copyright 2019, The Authors
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as modifier in the self-assemble formation process of the 
porous hydrogels [200, 201]. Moon et al. [193] employed 
hexamethylenetetramine (HMTA) as a reducer and a nitro-
gen source to prepare ultralight N-doped rGO aerogels with 
a density of ~ 3.20 mg  cm−3. During hydrolysis in an aqueous 
solution, however, HMTA releases ammonia and hydroxide 
ion [202]. An abundance of hydroxide ion and ammonia can 
reduce graphene oxide to rGO by removing oxygen-con-
taining functional groups and can simultaneously introduce 
nitrogen atoms into the graphene skeleton by substituting 
carbon atoms, respectively [203, 204]. Besides, as illustrated 
in Fig. 9b, the nitrogen-doping rGO aerogels have a stable 
structure and good compression resilience. And the conduc-
tivity of the nitrogen-doping rGO aerogel upon unloading 
was ~ 11.74 S  m−1, whereas under ~ 80% compressive strain 
(ε), it was ~ 704.23 S  m−1. This remarkable aerogel has great 
potential in the field of elastic EMI shielding due to the huge 
advantages described above.

There has also been a great deal of effort to obtain highly 
deformable graphene materials for EMI shielding. The 
resulting 3D skeletons (such as aerogel, hydrogel, foam, 
and sponge) are more ideal for use in compression scenarios 
because of the natural sheet-like and in-plane structures of 
graphene, such as piezoresistive sensor [205] compressible 
EMI shielding armors [206, 207], rather than stretchable 
application. Additionally, for each of these application sce-
narios, graphene must be resilient, repeatable, and able to 
endure numerous cycles of compression and release. More-
over, the mechanical properties of graphene aerogels are 
mainly controlled by the strong and robust sheet-to-sheet 
interfaces, facilitating the efficient load transfer, impacted 
by inherent van der Waals forces between layers. However, 
the resultant graphene-only 3D aerogel skeletons, formed 
by self-assembly methods, still have generally failed to 
exhibit high compressive strain (more than 80%) and 
excellent fatigue resistance owing to the instability of the 
three-dimensional structure and fragile nature of graphene 
[208]. Significantly, the mechanical properties may also be 
influenced by hydrogen bonding, or even covalent bonding 
provided by insulating polymers or amorphous carbon with 
low conductivity, which depended on other materials for 
synthesis support of aerogels [209]. Therefore, bridging the 
polymeric materials during “sol–gel” process, such as poly-
imide (PI) [124, 209], polymethyl methacrylate (PMMA) 
[208, 210], CNF [208, 211], aramid nanofiber (ANF) [190], 
with the rGO sheets can effectively enhance the mechanical 

properties and meet the demand for repeated rebound by 
creating new bonds. Wong’s group fabricated rGO/cellulose 
fiber (CF) hybrid aerogel through lyophilization and car-
bonization process [212]. The resultant aerogel exhibits high 
EMI SE of ~ 47.8 dB after annealing at 1000 °C. Moreover, 
the wrinkled topology of CF (see orange arrow in Fig. 9c) 
caused by thermal treatment plays an important role in pro-
moting the mechanical interlocking and load transfer with 
graphene sheets, which could enhance the mechanical prop-
erties of rGO/CF sponge. Moreover, the hybrid aerogel pos-
sesses excellent mechanical resilience even with large strain 
(80% reversible compressibility) and outstanding cycling 
stability. Guided by the foregoing, Liao et al. [208] added 
PMMA to the rGO/CNF aerogel to enhance the mechanical 
elasticity. The resultant rGO-CNF/PMMA exhibits super 
compressibility and excellent elasticity, and can resist an 
extreme compressive strain of 99.3% while maintaining 
92.6% of the height retention after 5000 cycles at the strain 
of 80% (Fig. 9d). The elasticity and fatigue resistance can 
also be significantly enhanced by the carbonized version of 
the aforementioned polymer when it is used as an enhancer. 
Although the “sol–gel” method for 3D rGO skeletons is 
simple, serious shrinkage and deformation accompany the 
reduction of GO, resulting in the obtained 3D rGO skeletons 
are inhomogeneous and very fragile, which is very detri-
mental to the backfill of polymer matrix and the shaping 
processing of polymer composites [142].

Additionally, there are some examples of how to create 
porous compressible EMI shielding armors utilizing differ-
ent kinds of commercial sponges as templates, including PU 
and melamine. Polymer-based sponges, which have good 
strength and porous structure, are usually used as cleaning, 
soundproofing, and packaging materials. With the introduc-
tion of sponge, the 3D network characteristic of sponge and 
the advantages of graphene sheets are combined. Recently, 
graphene composites based on PU sponge have been devel-
oped by simple solution dip-coating by Zhen’s group [213]. 
The resultant graphene/PU foams had a density as low as 
∼0.027–0.030 g  cm−3 and possessed good comprehensive 
EMI shielding performance of ~ 57.7 dB in the X-band 
range together with an absorption-dominant mechanism, 
possibly due to both conductive dissipation and multiple 
reflections and scattering of EM waves by the inside 3D 
conductive graphene network. Moreover, the average SE 
total of the graphene/PU foams with thicknesses of ∼6 cm 
did not show an observable decrease during 50 cycles with 
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different compressive strains (undergoing an extreme strain 
of 75%), indicating an excellent cycling stability. Inspired by 
this strategy, Fu et al. [32] successfully fabricated graphene 
nanosheets (GNSs) wrapped MF (GNSs@MF) by repeated 
dip-drying method using MF skeleton as substrate. Impor-
tantly, the excellent EMI SE of 35.6 dB in the X-band is 
reliable even the prepared composites undergoing vigorous 
physical damages and long-term compression cycles due to 
the protection of TPU layer and inherent elasticity of MF. 
However, due to the unsatisfactory adhesion of graphene to 
the polymer foam matrix, the coating rGO nanosheets may 
severely fall off during the compression, and thus the EMI 
shielding performance may be degraded [214, 215].

Ni foam have also attracted considerable interest as skel-
eton materials. Compared with polymer-based sponges, 
metal Ni foam possesses considerably high conductivity 
(σbulk Ni≈1.443 ×  107 S  m−1) and permeability, reflecting 
the large number of incoming EM waves, which frequently 
serves as rational EMI shielding armor [216]. Combined 
with rGO, the synergistic effect of dielectric and mag-
netic loss improves the EMI SE of the materials. Recently, 
Li et al. [217] have successfully prepared Ni foam/GO/
PVA composite aerogels were by a freeze-drying method 
(Fig. 9e). The maximum EMI SE of resultant composite 
can reach 87 dB at the thickness of 2.0 mm due to syn-
ergistic effect of Ni foam and GO. Simultaneously, the 
deformation is mainly elastic deformation when the com-
pression strain below 5%, which can be recovered after 
unloading. Unlike polymer foam templates, Ni foam can 
also act as a framework to prepare graphene foam by CVD 
method due to its high temperature resistance. Wang et al. 
[218] fabricated a graphene foam by CVD and the EMI SE 
of resultant composites was 32 dB with 0.4 wt% graphene. 
Under the stress of 1000 kPa, the EMI shielding coefficient 
of the proposed composite was 25 dB, which was reduced 
by 21.9%. In some processes, the Ni foam is used as an 
intermediate template to form the pure graphene foam, 
rather than accompanying the graphene to form the final 
EMI shielding material. After the graphene foam is pre-
pared, it is eliminated by etching with solutions such as 
 FeCl3 and HCl [187, 218].

Another highlight in the research and development in this 
field is the nanostructure manipulation of graphene sheets. 
In most works, graphene nanosheets were indeed wrapped 
rather than stretched (as showed in Fig. 9f), on the skeletons 
of foams to hinder the propagation of EM waves [219, 220]. 

The coated rGO nanosheets may, however, significantly 
come off under compression due to the inadequate adher-
ence of graphene to the polymer foam matrix. In particu-
lar, for the polymer-based foam templates, the EW leak-
age would easily occur once most of the skeletons are not 
wrapped, leading to a weak EMI shielding performance 
[221]. For obtaining stretched-graphene nanosheets, Guo 
et al. [214] employed a fluid-assisted method to make gra-
phene nanosheets cover on the pore of sponge formed the 
“obstacle walls” (Fig. 9f). The resultant foam demonstrates 
the EMI SE of 37.2 dB with rGO content of 0.105 vol%, 
and the specific EMI SE up to 3410 dB·cm3  g−1 with the 
density as low as 0.011 g  cm−3. Notably, stretched-graphene 
foam presented a higher EMI SE of over 37 dB than that of 
wrapped-graphene composite foam (~ 7 dB) (Fig. 9g). The 
stretched composite foam also exhibited robust mechani-
cal property, and a small amount EMI SE reduction was 
observed with 50 cyclic of compression.

When used as a stretchable EMI shielding material, the 
brittle percolation network structure of graphene, which is 
attributable to the low aspect ratio, stiff characteristics, and 
in-plane structures, tends to shatter during deformation and 
hence loses its EMI shielding capabilities (Fig. 10a). The 
compressible graphene EMI shielding material discussed 
above has a porous structure that makes it unsuitable for 
significant bending and stretching since this would cause the 
already brittle conducting network to disintegrate [188, 222]. 
Not only that, but the graphene-coated film is also unable to 
withstand the damage caused by a large pull-up. Currently, 
there has been an influx of exploration on how to enhance 
the tensile properties of graphene composites. The relevant 
methods are summarized as follows:
i) Enhancing the conductive path

Generally, graphene is homogeneously dispersed in the 
matrix, and the constituted conductive path is more frag-
ile due to the relatively low concentration of graphene per 
unit area. Therefore, localizing graphene, in other words, 
increasing the concentration used for constructing the 
conductive pathways, can mechanically enhance the con-
ductivity stability of graphene EMI shielding films after 
stretching strain, thus fundamentally solving the problem 
of decreased EMI SE generated by stretching. For example, 
Wang et al. [223] prepared the rGO/Fe3O4/natural rubber 
composites with a segregated network was by electrostatic 
self-assembly. As a result, the conductive particles formed 
by rGO-Fe3O4 are bound around the small pores formed by 
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natural rubber to act as pore walls, increasing the concentra-
tion of conductive filler within the pore walls (Fig. 10b). In 
comparison with the identical structure manufactured from 
rGO/natural rubber (GNR) composites, the EMI shielding 
property of the resulting composites is more stable during 
tensile deformation and long-term cycling conditions and 
has a higher sensitivity to stretch strain. The EMI SE value 
of GNR composites reduces by no more than 2.9% under 
different tensile permanent deformation, cyclic stretching, 
and cyclic bending conditions, while that of GNR compos-
ites reduces by approximately 16% in the worst case. Chen 
et al. [224] fabricated rGO woven fabrics (rGWF)/ PDMS 
composites through a facile template-directed reduction 
method followed by dip coating. The fabricated composite 
possesses a highly ordered and hierarchical porous struc-
ture, containing the unique hollow tubes constructed by 3D 

interconnected dense graphene networks (Fig. 10c). The 
unique porous structure containing high-quality graphene 
architecture makes the composite exceptional EMI shielding 
properties. The composite containing four layers of rGWF 
delivers a remarkable EMI SE of 46 dB and a specific SE 
of 295 dB  cm3  g−1. Apart from this property, the composite 
also exhibits excellent durability and is capable of retaining 
over 94% of the original SE after 100 stretching-releasing 
cycles. Wang et al. [225] fabricated rGO/PDMS lattices 
through the 3D printing technique (Fig. 10d). Benefiting 
from the unique 3D interconnected and robust conductive 
network, the resultant lattice delivers excellent stretchabil-
ity of 130%, tunable EMI SE as high as 45 dB, along with 
exceptional durability, showing over 90% retention of EMI 
SE even after 200 cycles of repeated stretching and releas-
ing at strains up to 100%. In addition, the lattice exhibits 

Fig. 10  Graphene-based stretchable EMI shielding composites. a FEA of laminated graphene film under 6% tensile strain. Reproduced with 
permission [227]. Copyright 2021, Elsevier B.V. b TEM images of the GNR-6 composites before (S1) and after (S2) the rubber permanent 
deformation with 100% strain (15 mm stretched length). Reproduced under the terms of the CC-BY Creative Commons Attribution 4.0 Generic 
license (https:// creat iveco mmons. org/ licen ses/ by/4.0) [223]. c Optical image of rGWF/PDMS composites. Reproduced with permission [224]. 
Copyright 2019, IOP Publishing Ltd. d Digital photographs of graphene/PDMS lattice film. Reproduced with permission [225]. Copyright 2021, 
Elsevier Ltd. e Resistance as a function of strain for the graphene/AgNWs/graphene film and the AgNW-only network. Insets image: the sche-
matic diagrams showing the stretched samples. Reproduced with permission [226]. Copyright 2021, This is a US government work and not 
under copyright protection in the USA; foreign copyright protection may apply. f Cross-sectional SEM images of graphene/PDMS composite. 
Reproduced with permission [199]. Copyright 2019, Springer Science Business Media, LLC, part of Springer Nature. g SEM images and digital 
photos of crumple-textured GO/MXene/SWCNT coating under various areal strains. Reproduced with permission [184]. Copyright 2019, Wiley-
VCH

https://creativecommons.org/licenses/by/4.0
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outstanding shielding stability, because the deformation of 
lattice structure effectively shares the external strain, and 
the filaments perpendicular to the loading direction act as 
stabilizing layers preventing the steep resistance changes. 
As described above, these exceptional combinations of 
mechanical properties and EMI shielding performance of 
the composite provide a brand-new perspective for ultra-
stretchable graphene EMI armor.
ii) Incorporating other nanoconductors

A nanofiller can bridge adjacent graphene nanosheets to 
provide additional conductive paths, which minimizes the 
effect of conducting path breaks when graphene receives 
external deformation. Among them, the one-dimensional 
materials such as AgNWs, CuNWs, and CNTs mentioned 
in the previous section can bring unexpected effects to the 
construction of ultra-stretchable graphene EMI shielding 
film (Fig. 10e) [185, 226].
iii) Optimizing the graphene geometric morphology

Graphene nanoribbon (GNR) immediately attracted 
worldwide attention since appearance as a bridge between 
graphene and CNT [227]. Theoretically, due to the large 
aspect ratio, GNR are considered to be the most suitable 
graphene-based electronic fillers for stretchable composites 
as they can easily form the percolation network structures 
within matrix [228]. Park and coworkers synthesized GNR 
by unzipping MWCNTs and the resultant PU composites 
[229]. The EMI SE of GNR/TPU composite was 24.9 dB, 
which is considerably greater than that of MWCNT/TPU 
composite (9.3 dB) at 8.2 vol%. Moreover, the stretched 
composite foam also exhibited robust mechanical property, 
whose stretch strain over 100%.

In addition to the above three methods to enhance the 
intrinsic stretchability of graphene composites, pretreat-
ment of the substrate can also achieve the overall structural 
stretchability enhancement, which can extend the stretch-
able deformation range and enhance the stretch-invariant 
electrical conductivities stability [135]. Generally, pre-
stretching the stretchable polymer substrate to form a 
wavy wrinkle structure can effectively improve the material 
tensile properties at a later stage, which is also the more 
popular pretreatment method (Fig. 10f). For example, Lin 
et al. [199] obtained the rGO/PDMS stretchable shielding 
composite by fixing the rGO film on the pre-stretched wavy 
substrate, which exhibited the constant EMI SE of 56.3 dB 
after repeated stretching. The pre-stretched wavy sub-
strate allows the multilayer graphene film to achieve wavy 

structure after strain release, which is capable of bearing ten-
sile strain up to 32.6%. Furthermore, this special pleated sur-
face also facilitates the attenuation effect of microwaves, and 
the increase in pleats at high pre-stretching is more prominent 
in the attenuation effect of microwaves [230].

Hybrid methods combining the four improvement meth-
ods mentioned above has also been reported for enhancing 
the stretchability of graphene EMI armor. For example, Li 
et al. [184] fabricated an ultra-stretchable EMI shielding 
composite with a hierarchical conductive system by depos-
iting a crumple-textured coating composed of GO, 2D 
 Ti3C2Tx nanosheets and SWCNTs onto latex, which can be 
fashioned into high-performance EMI shields. The result-
ing GO-MXene-SWCNT (S-MXene)/latex devices have the 
capacity to sustain up to an 800% areal strain and exhibit 
strain-insensitive resistance profiles during a 500-cycle 
fatigue test (Fig. 10g).

4.3.2  MXene

MXenes are a unique family of two-dimensional (2D) transi-
tion metal carbides and/or nitrides with the formula  Mn+1XnTx, 
where M is an early transition metal (e.g., Ti, Zr, V, Nb, Ta, or 
Mo) and X is carbon and/or nitrogen. Owing to the aqueous 
medium used during synthesis, MXene flakes are terminated 
with surface moieties  (Tx), such as a mixture of –OH, =O, and 
–F [231, 232]. MXenes may intercalate organic molecules and 
ions, which makes them a viable choice for usage in polymer 
composites for EMI shielding due to their metallic conductiv-
ity, high mechanical characteristics, and hydrophilicity. About 
20 different MXenes have already been reported [233, 234]. 
Among various MXenes,  Ti3C2Tx has demonstrated consider-
able potential for EM functions due to its ultrahigh conductivity 
and abundant surface functional groups and defects (Fig. 11a) 
[235].  Ti3C2Tx films have shown the highest conductivity among 
all the MXenes studied so far, and it was assumed that they 
offer the best shielding properties. Yury’s group first synthesis 
 Ti3C2Tx film with an EMI SE value of 92.0 dB at an extremely 
small thickness of 45 µm; these numbers are superior to those 
that have been reported for graphite, graphene, CNTs, and 
metals. From that point on, this marvelous research ignites 
academia’s enthusiasm for MXene-based superefficient shield-
ing armors with surface treatment, micro-/macrostructure 
engineering, corresponding composites design and various 
matrix options.
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From the point of view of the morphological properties 
of the material itself and the mechanical strength, the spe-
cific usage and areas in need of improvement of MXene and 
graphene, which also has a two-dimensional structure, are 
very similar in tensile/compression fields [235]. In contrast, 
MXene materials are more often used in the preparation of 
high-performance compressed EMI shielding materials due 
to their accordion-like multilayer structure. Self-assembly 
and the template approach are still the most popular ways to 
construct compressed MXene during the preparation phase 
[236]. The complexity of the two processes and the degree to 
which auxiliary materials are required for sample production 
varies, which is eventually reflected in the density and dura-
bility of the compressible MXene composites. Statistically, 
freeze-drying is the most pervasively used means of con-
structing 3D MXene, attributed to the ability to effectively 
avoid MXene agglomeration and to spontaneously form 
lightweight porous compressible materials with easy EM 
waves absorption [237, 238]. For example, Wu et al. [239] 
fabricated the lightweight MXene/sodium alginate (SA)-
PDMS hybrid aerogel via freeze-drying with an outstanding 
conductivity of 2211 S  m−1 and a high average EMI SE of 
70.5 dB (Fig. 11b). Furthermore, the PDMS-coated MXene 
foam with 6.1 wt% of MXene reserves its high EMI SE of 

48.2 dB after 500 compression-release cycles, which dem-
onstrated it possessed excellent compressibility and durabil-
ity. Likewise, the construction of elastic MXene aerogels 
usually requires the assistance of polymers or low-dimen-
sional nanomaterials that could interact with MXene by van 
der Waals forces, hydrogen bonding, or covalent bonding 
(Fig. 11c, d) [237]. Otherwise, MXene-only aerogel cannot 
recover to initial state (~ 100% height) and thus induce to do 
harm to its inner nanostructure.

Notably, the self-supporting films formed of MXene alone 
are more brittle, extremely fracture-prone, and incapable of 
performing the duty of large-scale stretching for stretch-
able MXene composites. Therefore, methods to enhance 
the tensile properties similar to stretchable graphene com-
posites are needed, including but not limited to grafting 
other stretchable nanoconductor [240, 241], introducing 
stretchable-shaped structures [242], etc. Chen et al. [243] 
prepared the  Ti3C2Tx MXene/PDMS films by constructing 
wrinkled MXene patterns on a flexible PDMS substrate to 
create a hierarchical surface with primary and secondary 
surface wrinkles (Fig. 11e-g). The self-controlled microc-
racks created in the valley domains of the hierarchical film 
via a nonuniform deformation during pre-stretching/releas-
ing cycles endow the hierarchical MXene/PDMS film with a 

Fig. 11  a Proposed EMI shielding mechanism of MXene flakes. Reproduced with permission [237]. Copyright 2016, American Association 
for the Advancement of Science. b High-magnification SEM image of MXene/SA-PDMS composite channels. Reproduced with permission 
[289]. Copyright 2019, Elsevier B.V. c Experimental snapshots of the first compression cycle of MXene aerogel (MA) and MXene-CNTs aero-
gel (MCA-1), respectively. Reproduced with permission [290]. Copyright 2021, American Chemical Society. d Schematic inner-microstructure 
changes of the MXene composites during compress—recover cycles. Reproduced with permission [232]. Copyright 2022, American Chemical 
Society. e Digital photographs of the MXene/PDMS film for EMI shielding under stretching deformations. The surface morphology of pre-
stretching-formed ridge structures of MXene/PDMS: f initial state and g final state with a tensile strain of 100%. e–g Reproduced with permis-
sion [243]. Copyright 2021, American Chemical Society
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high stretchability (100%), strain-invariant EMI SE (~ 30 dB 
at a tensile strain of 50%), and stable SE over a 1000-cycle 
fatigue measurement. Zhang et al. [240] fabricated EMI 
shielding textile based on hybrid  Ti3C2Tx MXene and other 
1D CNTs coated TPU non-woven fabric via dip-coating 
approach and pre-stretching method. The synergistic effects 
of carbon nanotubes and stretchable structures in MXene/
CNTs conductive layer are beneficial for denser microcrack 
structure and more significant bridging effect, causing stable 
EMI shielding under stretching (~ 25 dB under 50% strain 
over 1000 cycles).

Interestingly, unlike the two-dimensional monolayer 
structure of graphene, MXene can be classified as either 
multilayer structure (ML-MXene) or few-layer or single-
layer structure (FL-MXene) depending on the exfoliation 
method. Due to the fluctuation in the structure’s anisotropy 
and the distinction between the values of in-plane and out-
of-plane conductivity, this must be discussed individually 
[244, 245]. The main differences in EMI shielding can be 
broadly divided into the following two items.

First off, FL-MXene has a greater specific surface area, 
which makes it easier for a complete conductive network to 
form. The stability of the conductive network in the stretched 
condition may be maintained more easily due to the wide 
FL-MXene layer-to-layer contact area [15]. However, the 
large specific surface area can cause FL-MXene to be 
extremely prone to stacking and agglomeration. In contrast, 
the dispersion of ML-MXene solution is significantly better.

Secondly, in the highly filled state, the imaginary part of 
the dielectric constant ε″ of FL-MXene is much higher than 
that of ML-MXene due to its better conductive properties. 
Further, it is also shown that FL-MXene possesses stronger 
EM loss capability. Recently, Ma’s group demonstrated that 
3D  Ti3C2Tx MXene aerogel with the ~ 40 wt% filler amount 
of FL-Ti3C2Tx has an average ε″value of ~ 200, while the ε″ 
value of ML-Ti3C2Tx is merely ~ 1 with same filler amount 
[246].

Besides, versatile chemical transformation of surface 
functional groups in MXenes is one of the most significant 
ways to improve the performance of MXene [247]. These 
modified MXenes show distinctive structural and electronic 
properties, whose surface groups also control superconduc-
tivity of extraordinary MXenes. However, there has been 
less research in this direction in the field of EMI shielding, 
probably because the modification process is complex and 
the conductivity of MXene itself is sufficient for shielding. 

Even so, the modification of the layer spacing and conduc-
tivity should provide better protection against EMI interfer-
ence, which is one of the promising works [248].

Due to severe agglomeration and poor filler-matrix bond-
ing, the drawback of nanofillers is that high loading can 
drastically reduce the mechanical flexibility and process-
ability of composites. These nanofillers are both expensive 
and challenging to manufacture on a big scale. For these 
nanomaterials, a laborious purification or functionalization 
process is typically required.

4.4  Other Material

4.4.1  Liquid Metal

Liquid metals (LM) possess the ultrahigh electrical conduc-
tivity of the metal itself (~ 1.1 ×  104 S  m−1 with volume ratio 
of 50%) and the superb deformability, especially stretch-
ability (theoretically infinite), given by the liquid properties 
[23, 249, 250]. Early studies utilize Hg, which is toxic [251, 
252]. Low toxicity liquid metals based on Ga metal have 
been studied, including Ga alloyed with In (EGaIn), and 
with In and Sn (Galinstan) [253]. Contrary to the delicate 
but fragile conductive paths created by conductive nano-
fillers, the conductive paths created in the EMI shielding 
materials by liquid metals are significantly stronger and 
do not easily break and fail with deformation. This makes 
them superior to the conductive nanofillers mentioned in 
the previous subsections [254–256]. Additionally, they can 
maintain metallic conductivity while being infinitely mal-
leable, which has recently drawn a lot of interest to create 
composites with superior stability and conductivity to their 
solid filler-based competitors.

Despite their very high conductivity and stretchability, 
there exists a major challenge in patterning liquid metals 
due to their ability to flow [257]. The typical approach for 
the preparation of the LM composites is to encapsulate LM 
micro-/nanonetworks into the elastomer matrix. Yao et al. 
[23] first fabricated a stretchable LM/Ecoflex composite 
with a 3D conductive network via sugar template method, 
which exhibited an obvious increase of EMI SE when 
stretched (from ~ 45 dB of pristine state to ~ 80 dB of the 
stretch to 400%) (Fig. 12a, b). Interestingly, stretching LM 
causes it to deform together with the surrounding matrix, 
which enhances electrical conductivities and EMI SE. And 
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the excellent stretchability of LM-based elastic conductors 
should be attributed to the high deformability of LM, which 
matches well with the mechanical behavior of elastomer 
matrices and ensures continuous straight LM conductive 
paths even under very large strains. Zhang et al. [258] used 
the amalgam composed of  GaIn24.5, NiNPs and gallium 
oxide  (Ga2O3) as the conductive functional layer and Ecoflex 
as substrate to fabricate the highly stretchable composite film 
by coating techniques. This film demonstrated excellent EMI 
SE of over 75 dB of pristine state and ~ 60 dB even at strains 
of up to 75% at frequencies of 100 kHz–18 GHz (Fig. 12c). 
3D printing of liquid metals has also been utilized to ration-
ally assemble LM into an elastomer lattice for restrict the 
flow of LM more handily. Wang et al. [17] prepared the 3D 
interconnected LM/PDMS lattice skeleton by 3D printing, 
yielding the resultant composites high electrical conductiv-
ity (1.98 ×  106 S  m−1), stretchability (180%), and EMI SE 
(72 dB). Furthermore, LM is not limited to shield the EMI 
in the form of inner filler in the matrix, instead of coat-
ing on the elastic polymer, thus dramatically reducing the 
usage amount [259]. Jia et al. [260] developed a LM coated 
conductive textile, which exhibits an outstanding EMI SE 

of 72.6 dB at a thickness of merely 0.35 mm while main-
taining EMI SE of 66.0 and 52.4 dB under strains of 30 and 
50%, respectively. The corresponding EMI SEs hold 91.7 
and 80.3% retention after 5,000 stretching –releasing cycles, 
respectively. The superior and durable EMI SE should be 
ascribed to the perfect connectivity and good deformability 
of conductive LM networks.

Alternatively, the LM-based materials will be endowed 
with the capability of compression when changing textile 
matrix into another compressible polymer. Wong’s group 
succeeded in changing textile matrix into expandable micro-
sphere and proposed an expandable microsphere/LM com-
posite via confined thermal expansion process (Fig. 12d). 
And the monolith presents outstanding performance of 
lightweight like metallic aerogel (0.104 g  cm−1), recorded 
SE (98.7 dB) over 8.2–40 GHz, super elasticity (90% strain) 
[261]. Notably, generic porous foams fabricated by other 
foaming method are also employed in the preparation of 
compressible LM composites [262].

As illustrated in Fig. 12e, LM-based elastic EMI shield-
ing materials have superb stretchability and excellent EM 
waves shielding performance, especially compared to other 

Fig. 12  Liquid metal-based elastic EMI shielding composites. a Schematic of the 3D LM composite. b Photographs of a highly stretchable 3D 
LM composite film with patterns. Scale bar, 2 mm. c Digital photograph of GaIn-Ni particles painted on Ecoflex and a simple description of the 
shielding performance during stretching. d Schematic of expandable microsphere/LMm preparation and macroscopic features demonstration. e 
The comparison between LM-based elastic materials with the other EMI shielding materials. a, b Reproduced with permission [23]. Copyright 
2017, Wiley-VCH. c Reproduced with permission [258]. Copyright 2019, The Royal Society of Chemistry. d Reproduced under the terms of the 
CC-BY Creative Commons Attribution 4.0 Generic license (https:// creat iveco mmons. org/ licen ses/ by/4.0) [249]. e Reproduced under the terms 
of the CC-BY Creative Commons Attribution 4.0 Generic license (https:// creat iveco mmons. org/ licen ses/ by/4.0) [291]
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nanofiller-based materials. However, there are still some prob-
lems that hinder the continued development of the LM, one 
of the more serious ones being the further worsening of the 
leakage problem at high fill volumes. Meanwhile, due to the 
limitations of liquid metal itself, it is challenging to create ani-
sotropy of the counterpart and graft with other nanomaterials.

4.4.2  Conductive Polymer

Conductive polymers hold great potential for enabling new 
EMI shielding applications due to the intrinsic electrical 
conductivity and biocompatibility as well as the favorable 
tissue-like mechanical properties and durability derived 
from the polymeric nature [263, 264]. Conductive polymer 
shielding materials, which are based on stable molecular-
level materials, are frequently utilized to build electronic 
devices with smooth interface requirements [265].

Amongst the family of conducting polymers, PEDOT:PSS 
has been extensively studied conducting polymer due to its 
high electrical conductivity, low density, and good environ-
mental stability [266]. Since it can be dispersed in water and 
some organic solvents, it can be processed using solutions 
processing procedures. However, due to the rigid conjugated 
backbone, PEDOT:PSS films have very limited stretch-
ability (Maximum strain ~ 5%) [267]. The method to make 
PEDOT:PSS more stretchy avoids the aggregation of other 
nanofillers by combining it with elastic polymer. Ouyang’s 
group prepared a stretchable PEDOT:PSS film by blending 
PEDOT:PSS with highly stretchable WPU [268]. The two 
polymers have good miscibility at a wide range of blend-
ing ratios. At a 20 wt% PEDOT:PSS loading, the composite 
films show a conductivity of 77 S  m−1 and an elongation 
at break of about 32.5%. More interestingly, they exhibit 
a high EMI SE of about 62 dB over the X-band range at 
0.15 mm. Apart from that, a plasticizer can also be used to 
create PEDOT:PSS that is extremely stretchy [267].

Furthermore, hydrogels made of soft (10–100  kPa 
Young’s modulus) conducting polymers have been devel-
oped. A hydrogel solely made of PEDOT:PSS showed a 
high conductivity of 4100 S  cm−1 and a stretchability of 
60% [269]. Improved mechanical properties and EMI shield-
ing performance have been obtained by the incorporation 
of another conductive fillers, such as MXene [270], ionic 
liquid [14],  Fe3O4 [95]. Another form of PETDOT:PSS is 
aerogel, which will obtained by taking out of water from the 

hydrogel thoroughly [271]. It is portable and compressible 
to have a porous structure.

Another class of conducting polymers, polypyrrole (PPy), 
has also been used as a stretchable shielding material in 
addition to PEDOT: PSS. As a coating, the formation of a 
coated EMI shielding stretchable fabric can further enhance 
the EMI performance (~ 40 dB) without compromising the 
tensile properties (~ 25%) [101]. Composites with PDMS 
showed a high EMI SE (~ 21 dB) and high stretchability 
(~ 100%) [272]

4.4.3  Biomass‑Derived Carbon Foam

As an alternative, carbon derived from biomass has been 
widely investigated with respect of EMI shielding due to 
their sustainable raw materials and unique conductive frame-
works. Among the most important renewable resources are 
lignin, carbon, wood, wheat, and lather. Some biomass can 
use its own porous carbon skeleton, which not only avoids the 
foaming process but also has a stable porous structure that is 
less prone to collapse and has strong compression capabili-
ties, to create the support structure of the new material [273, 
274]. For example, when the supporting lignin is removed, 
the softened cellulose-based wood has a unique hierarchical 
porous structure and is also compressible (> 50%) (Fig. 13a, 
b). After carbonization, loading on different conductive fill-
ers can achieve efficient EM protection, such as carbon black 
(25.5 dB) [21], CNT/MXene (~ 30 dB) [275], etc. Some other 
biomass can be interchanged with the nanofillers described 
above and, after carbonization, act as conductive pathways 
[276]. Chen et al. report herein a novel utilization of wheat 
flour with the introduction of CNTs to form an environmen-
tally friendly wheat flour/CNT composite foam (Fig. 13c-e). 
This foam displayed a high elasticity (nearly 100% shape 
recovery), recyclable (5000 cycles), high EMI SE (~ 40 dB). 
Unfortunately, after carbonization, these biomass skeletons 
generally have low conductivity and poor EMI SE, requiring 
grafting of other high conductivity filler modifications.

5  Summary and Future Perspectives

For the successful development of durable and efficient EMI 
shielding elastomers, it is necessary to produce functional 
materials with high electrical conductivity and mechanical 
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resilience. In this review, promising candidates for func-
tional materials are evaluated in terms of fabrication tech-
niques, pre/post-treatment, and physical properties, such as 
thickness, density, electrical conductivity, EM wave loss 
capacity, stretchability/compressibility, and inner structure. 
Table 1 lists the benefits and drawbacks of several functional 

materials used in elastic EMI shielding materials. And 
Fig. 14 shows the comparison of EMI SE after numerous 
strain cycles and tensile/compressive strain of the elastic 
EMI shielding materials. Below is a synopsis of where func-
tional materials are headed and some of the challenges they 
face.

Fig. 13  Biomass-derived carbon composites-based elastic EMI shielding composites. a Schematic illustration of the synthesis of the off/on 
switchable EMI shielding aerogel. b Digital photographs of natural wood (left, yellow), wood sponge (left, white), CB/wood sponge (left, black), 
and CB/wood aerogel (right, black). c Schematic diagram for preparation of wheat flour/CNT foam. d Schematic illustration for formation of the 
cross-linking backbone of gluten proteins. e Photograph of the different shapes of wheat flour/CNT foam. a, b Reproduced with permission [21]. 
Copyright 2021, Elsevier Inc. c–e Reproduced with permission [262]. Copyright 2021, American Chemical Society
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(i) Synergistic effect

Most functional materials, as shown in Table 3, have 
advantages and disadvantages. As a result, both in terms 
of EMI SE and mechanics, single material architectures 
are challenging barriers for EMI shielding materials to 
overcome. However, the synergy of one of the fillers with 
another filler with widely varying properties to construct 
an elastic EMI shielding material can sometimes effectively 
solve the problems that exist with a single material, thus 
improving the performance of the material as a whole. For 
example, the AgNPs-graphene and/or CNTs system not only 
effectively solves the problem of high use and consump-
tion of AgNPs, but also enhances the electrical conductivity 
exhibited by the nanocarbon, thus effectively improving the 
EMI SE of the material while reducing costs. In addition, the 
AgNWs or CuNWs-MXene system also effectively enhances 
the chemical and environmental stability of metal nanowires 
through graphene and/or MXene encapsulation by combin-
ing the tensile advantages of 1D materials with the large 
specific surface of 2D materials. And this initially resolves 

the issue of insufficient tensile properties of 2D materials by 
forming “island-bridge” structure. Notably, the most crucial 
synergistic strategy is to mix magnetic fillers with highly 
conductive fillers in order to jointly impose magnetic losses 
and conduction losses, which can further increase the EMI 
shielding performance in a way that neither filler can do on 
its own. Thus, the synergistic impact of “1 + 1 > 2” may be 
achieved by the effective combination of diverse functional 
materials, but this topic still has to be studied systematically 
in order to reach its full potential.

 (ii) Elasticity

In the previous analysis, for stretchable EMI films, for the 
formation of percolation networks to conduct electricity 
nanofillers can effectively enhance the material stretching 
performance, but their partial local conductive networks 
break as the stretching range increases, which can make the 
EMI shielding performance degraded, or even the overall 
break [277]. At the same time, during extremely large-scale 
stretching, the nanofillers are utterly unable to sustain the 
EMI shielding capability. At present, only LM can achieve 

Fig. 14  Comparison of EMI SE after numerous strain cycles and tensile/compressive strain of the elastic EMI shielding materials. Each symbol 
indicates a set of composites as follows: AgNWs (cyan short horizontal lines), MXenes (red solid stars), Metal-based NPs (blue open circles), 
LM (orange open diamonds), CNTs (green vertical lines & open circles), CB (black solid square), PEDOT:PSS (navy blue solid triangles) and 
graphene (green open triangles). Among them, the graphene-other functional nanofillers hybrid composites are represented by specific color 
hexagon, depended on hybrid nanofillers. Detailed data of each point are presented in Tables 1 and 2
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Table 1  Summary of stretchable EMI shielding materials

Filler/Matrix EMI SE Max. stretchability (%) Changes in EMI SE under 
applied strains

References

Thickness (mm) Conductivity (− dB)

AgNPs/SEBS 2.8  ~ 1000 S  m−1 55 100  ~ 28 dB at 100% strain [64]
AgNPs/SBS –  ~ 8000 S  m−1  ~ 45 60  ~ 30 dB after 300-cycle at 

60% strain
[63]

CB/ Chlorinated polyeth-
ylene

5 0.379 S  m−1  ~  40☆  ~ 100 – [292]

AgNWs/WPU-PDMS 1  ~ 180 S  m−1 28 60  ~ 25 dB after 1000-cycle at 
60% strain

[29]

AgNWs/silicon elastomer 0.5 4.58 ± 0.57 Ω  sq−1  ~ 32 50  ~ 22 dB at 50% strain [144]
AgNWs/textiles-PU 0.6 1227 S  m−1 63.9 60  ~ 52.4 dB after 5000-cycle 

at 60% strain
[143]

AgNWs/carbon fiber fabric-
PU

0.36 15,390 S  m−1 106 15  ~ 88 dB after 100-cycle at 
10% strain

[145]

AgNWs/PDMS – 3 Ω  sq−1  ~ 43 50  ~ 34 dB at 50% strain [36]
AgNWs/PDMS 1  ~ 7500 S  m−1 74.7  ~ 170 SE maintained at 60% strain [152]
AgNWs-rGO/PDMS – 3.3 Ω  sq−1 35.5 70 SE slightly decrease after 

1000-cycle at 40% strain
[155]

AgNWs-graphene/PDMS –  ~ 12 Ω  sq−1 37 60  ~ 30 dB at 50% strain [226]
AgNWs-CNTs/textiles 0.6  ~ 530 S  m−1 51.5  ~ 200 42.6 dB after 5000-cycle at 

30% strain
[293]

AgNWs-MXene/PDA poly-
ester fabric

0.6 150 S  m−1 44  ~ 445  ~ 30 dB after 1000-cycle [294]

CNTs/PU foam-Ecoflex 2.9  ~ 100 S  m−1  ~ 35  ~ 100 20.2 dB at 30% strain [123]
CNTs/TPU 2  ~ 10 S  m−1  ~ 34.5  ~ 240  ~ 30 dB at 50% strain [122]
CNTs/Natural rubber 2.6  ~ 100 S  m−1  ~ 45  ~ 200 35 dB after 5000-cycle at 

50% strain
[295]

CNTs sponge/PDMS 1.8  ~ 180 S  m−1 54.8 – SE maintained after 1000-
cycle

[121]

CNTs sponge/PDMS 1 53 S  m−1  ~ 35 40 SE slightly decrease after 
500-cycle

[296]

CNTs/PDMS microspheres 2.5 64.6 S  m−1 47  ~ 85 SE retention of 80% after 
1000-cycle at 30% strain

[297]

CNTs-MXene/PDA-TPU 
fabric

0.6  ~ 50 S  m−1 43  ~ 200 SE maintained after 1000-
cycle at 50% strain

[240]

CNTs-MXene-GO/Latex 0.1 ×  10–2 * 15 Ω  ~ 30  ~ 800 (area strain) SE maintained after 500-
cycle 800% areal strain

[184]

rGO-Fe3O4/Natural rubber 0.6  ~ 1600 Ω  ~ 12 75 SE maintained after 500-
cycle 25% strain

[223]

rGO/PDMS lattice 4.8  ~ 25 S  m−1  ~ 40  ~ 130  ~ 25 dB at 100% strain [225]
rGO/woven fabric-PDMS 1.2  ~ 40 S  m−1 45 – 42 dB after 100-cycle at 20% 

strain
[224]

N-doping rGO/Wrinkled 
PDMS

0.66 ×  10–2 * 8796 S  cm−1 58.5 – 56.3 dB after 100-cycle at 
32.6% strain

[199]

MXene/Wrinkled PDMS 0.3 ×  10–3 *  ~ 100 Ω  ~ 30 100 SE maintained at 25% strain [243]
MXene/Natural rubber 0.172 1400 S  m−1  ~ 25 200 SE maintained at 30% strain [298]
MXene/Wrinkled TPU fabric – –  ~ 30 70  ~ 20 dB after 50-cycle at 

70% strain
[241]

MXene-Fe3O4/Modified 
natural rubber

 ~ 0.571  ~ 1 S  m−1  ~ 36 317  ~ 30 dB after bended 140˚ 
and stretched 30% 1000 
cycles

[299]

LM/Ecoflex 2 106 S  m−1 34.5 400 86.2 dB at 400% strain [23]
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more than 400% effective stretching with high EMI shield-
ing due to its own characteristics, which break the bondage 
of the percolation network. Thus, one of the hottest areas 
of study in the future will be the hunt for the creation of 
novel functional materials capable of large-scale stretching. 
For compressive materials, the biggest challenge is how to 
achieve structural integrity and stable EMI shielding perfor-
mance after large-scale, multi-cycle compression of com-
pressible materials.

As far as we can see, it is difficult for the compression/
tension behavior not to have an impact on the EMI shield-
ing performance. Therefore, the intelligent use of changes 
in EMI shielding performance, resulting in a reconfigurable 
“on–off” smart EMI shielding film. And one of the most 
significant issues that radar and antenna transmitting sys-
tems face today is how to provide essential signals while 
adequately protecting against EMI interference.

 (iii) Stability

Currently, the majority of available EMI shielding films 
have already attained extremely effective shielding against 
EMI interference. However, there is not enough thorough 
and organized study on EMI shielding stability, which is 
required for the EMI shielding film to be marketed. Besides, 
it is an efficient strategy to capsulate functional components 

for effectively isolating them from oxygen and water due to 
the polymer matrix’s typically strong durability. Based on 
this, the encapsulation of metal nanowires using nanomate-
rials such as graphene is also one of the significant meth-
ods [155]. While improving the thermal stability as well 
as chemical stability of metal nanowires, it does not cause 
a significant increase in the overall material weight [278].

 (iv) Multifunction

 For different application scenarios, individuals prefer EMI 
shielding films to have other functions as well. For wear-
able devices, accurate sensing is essential to monitor human 
activity. And the ability to dissipate accumulated heat in 
time maximizes the comfort of the device. The rearrange-
ment of conductive filler alignment due to thin film defor-
mation has a significant impact on the heat dissipation of 
elastic EMI shielding films, which can be further utilized for 
thermal management [279]. At the same time, for scenarios 
such as the Internet of Things, the right transparency can 
be used without compromising the perception of the origi-
nal item. The development of multifunctional, elastic EMI 
shielding materials will therefore enable a further expansion 
of their application.

In general, such elastic materials with unique machanical 
properties will be the potential candidates in the field of 

Table 1  (continued)

Filler/Matrix EMI SE Max. stretchability (%) Changes in EMI SE under 
applied strains

References

Thickness (mm) Conductivity (− dB)

LM/Ecoflex 3.6 106 S  m−1 57 400 85 dB at 400% strain [291]
LM-NiNPs/Ecoflex 0.05 2.4 ×  106 S  m−1  > 75 300  > 45 dB at 300% strain [258]
LM/textiles-PDMS 0.35 1.4 ×  105 S  m−1  ~ 75 50  ~ 60 dB after 5000-cycle at 

50% strain
[260]

LM/PDMS lattice 3 1.98 ×  106 S  m−1 72 180 SE maintained after 1000-
cycle at 100% strain

[17]

PEDOT:PSS-Fe3O4/PVA 
hydrogel

1 0.31  > 45  ~ 904.5  > 28 dB at 800% strain [95]

PEDOT:PSS/WPU 0.15 7.7 ×  103 S  m−1  ~ 60  ~ 30 SE maintained after 100-
cycle at 15% strain

[268]

*The thickness of functional layer; ☆: This Reference is not tested for EMI SE in the X-band regime, while all other References are
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Table 2  Summary of compressive EMI shielding materials

*h thickness; MF melamine foam; TPI trans-1,4-polyisoprene; ☆: This Reference is not tested for EMI SE in the X-band regime, while all other 
References are; –: Only compress, not release

Filler/Matrix Method EMI SE Elastic 
modulus 
(kPa)

Fatigue resistance References

h* (mm) Conductiv-
ity (S  m−1)

(−dB) Cycle Strain (%) EMI SE

AgNPs/MF sponge MOD* 3.1 158.4  ~ 40  ~ 5 10 80 – [66]
AgNPs/PDA-PU sponge Electroless plating 2 1.24 82  ~ 100 400 80  ~ 75 [58]
AgNPs-CNTs/SBS foam Freeze-casting 2 582 63 20.6 1000 50  ~ 84 [73]
AgNP-graphene aerogel Freeze-casting 0.8 3.2  ~ 32  ~ 20 10 50 – [74]
AuNPs-graphene-Fe3O4/

Carbonized MF-PDMS 
composites

Dip-coating 2 100 30.5  ~ 50 1 80 – [61]

Hollow CB/silicon rubber Melt blending – –  ~  23☆  ~ 3 ×  103 4 48 – [81]
AgNWs/Modified MF Roll-to-roll 10 104 SER = 60 – 1000 50 58 [147]
AgNWs-MXene/MF sponge Dip-coating 2 103 25 26 500 60 23 [146]
AgNWs-MXene/MF sponge Dip-coating 2 75.3  ~ 30 – – 50 12.4 [287]
AgNWs-rGO aerogel Freeze-casting 5  ~ 0.2  ~ 45.2  ~ 62.5 10 60 – [191]
CuNWs-graphene aerogel Freeze-casting 5  ~  103  ~ 60  ~ 3 100 20 – [176]
CNTs/PU-TPI foam* Dip-coating 10 –  ~ 40 – – 80  ~ 30 [127]

500 50 35
CNTs/PI foam Dip-coating 12 –  ~ 57.6  ~ 17 1000 80  ~ 40 [125]
CNTs/Modified chitosan-PU 

foam
Dip-coating 40 498  ~ 36 – – 75  ~ 18 [285]

2000 80  ~ 30
rGO-Lignin derived carbon 

aerogel
Freeze-casting 9  ~ 30  ~ 80  ~ 5 100 50 76 [276]

Graphene/MF-TPU foam Dip-coating 2 45.2  ~ 35  ~ 400 100 –  ~ 34 [32]
GO/CNF-PMMA aerogel Freeze-casting 4 –  ~ 37  ~ 0.8 5000 80 – [208]
GO aerogel 3D printing 3 705.6  ~ 66  ~ 55 100 80 – [288]
rGO-CNTs/PI foam Freeze-casting –  ~ 22.5 28.2  ~ 12.5 10 50 – [124]
MXene/Sodium alginate-

PDMS foam
Freeze-casting 2  ~ 800 53.9 – 500 30 48.2 [239]

MXene/Wood aerogel Freeze-casting 10 37 72  ~ 50 400 20 – [289]
Modified MXene/ Natural 

wood derived carbon foam
Dip-coating 10  ~  10−7  ~ 26.3  ~ 50 – 60  ~ 16.1 [248]

MXene/MF-PDMS foam Dip-coating 2 183 44.7  ~ 25 200 60 37.6 [300]
MXene/MF sponge Dip-coating –  ~ 20  ~  5☆  ~ 12 – 80  ~ 42 [301]
MXene-CB/PANI decorated 

modified PP-PDMS foam
Dip-coating 12 –  ~ 27.7  ~ 666 – 40  ~ 16.2 [302]

500 40  ~ 25.5
MXene-rGO scaffolds 3D printing & Freeze-casting 3.4 1013  > 60  ~ 2400 100 50 – [303]
MXene-AgNWs/PU foam Freeze-casting 1.3  ~ 1100 47.4 – 1000 – 41.5 [304]
MXene-NiFe2O4/WPU 

aerogel
Freeze-casting 2 226.4 64.7  ~ 200 100 50 – [89]

Wheat flour-CNTs foam Freeze-casting 5 0.1  ~ 40  ~ 20 – 70  ~ 15 [126]
1 70  ~ 39

Wood-derived carbon/CB 
aerogel

Dip-coating 6.9 0.16  ~ 1.5  ~ 30 – 75  ~ 25.5 [21]

LM/PDMS foam Sugar template 10 800  ~ 45  ~ 100 – 50  ~ 80 [262]
104 50  ~ 50

PEDOT:PSS aerogel Freeze-casting 1.4  ~  10–4 15 – –  > 90 24 [271]
PEDOT:PSS-Fe3O4/PVA 

hydrogel
Self-assembly 1 0.31  > 45  ~ 35 10 90 – [95]
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EMI shielding in the future. We expect that this review will 
offer a thorough understanding of the obstacles and potential 
future development of unique elastomer shields as well as 
present more fresh possibilities for the development of next-
generation EMI shielding materials.
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