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Vertical 3D Nanostructures Boost Efficient Hydrogen 
Production Coupled with Glycerol Oxidation Under 
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Shanlin Li1,2, Danmin Liu1 *, Guowei Wang1, Peijie Ma1, Xunlu Wang2, 
Jiacheng Wang2,4,5 *, Ruguang Ma3 *

HIGHLIGHTS

• Two types of vertical 3D nanostructures were successfully fabricated using simple hydrothermal and heat treatment processes for 
hydrogen evolution reaction and glycerol oxidation reaction (GOR).

• Hydrogen production at a lower potential was achieved by replacing oxygen evolution reaction with GOR, reducing the device potential 
by approximately 300 mV. Additionally, organic membranes were used as separators, avoiding the use of expensive anion exchange 
membranes.

ABSTRACT Hydrogen production from electrolytic water is an important sus-
tainable technology to realize renewable energy conversion and carbon neutrality. 
However, it is limited by the high overpotential of oxygen evolution reaction 
(OER) at the anode. To reduce the operating voltage of electrolyzer, herein 
thermodynamically favorable glycerol oxidation reaction (GOR) is proposed to 
replace the OER. Moreover, vertical NiO flakes and NiMoNH nanopillars are 
developed to boost the reaction kinetics of anodic GOR and cathodic hydrogen 
evolution, respectively. Meanwhile, excluding the explosion risk of mixed  H2/
O2, a cheap organic membrane is used to replace the expensive anion exchange 
membrane in the electrolyzer. Impressively, the electrolyzer delivers a remark-
able reduction of operation voltage by 280 mV, and exhibits good long-term 
stability. This work provides a new paradigm of hydrogen production with low 
cost and good feasibility.
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1 Introduction

Water electrolysis technology is promising to convert clean 
electricity generated by intermittent wind and solar energy 
into storable green hydrogen energy, which is one of the 
important paths to achieve carbon neutrality [1–4]. The elec-
trolytic water process usually consists of two half-reactions, 
the anodic oxygen evolution reaction (OER) and the cathodic 
hydrogen evolution reaction (HER). However, the anodic 
four-electron OER with slow kinetics and high overpotential 
is the key limitation of the water splitting [5–7]. A great 
deal of studies in the past have focused on the design and 
development of advanced OER electrocatalysts to reduce the 
power consumption and cost of hydrogen production from 
electrolytic water. However, the anodic product oxygen  (O2) 
is usually a worthless and energy-consuming by-product 
accompanying hydrogen production from electrolytic water. 
In addition, the generated gas products may form hazard-
ous  H2/O2 mixture, which require additionally costly proton 
exchange membrane (PEM, $4.2  kg−1) or anion-exchange 
membrane (AEM, $3.7  kg−1) [8] to separate the cathode and 
anode chambers. Furthermore, the generated reactive oxygen 
species (ROS) will shorten the lifetime of the membrane [9, 
10]. In a word, the high energy consumption and the safety 
issues had limited the development of electrolytic water.

Recently, a number of thermodynamically and eco-
nomically favorable oxidation reactions have been widely 
explored to replace the sluggish OER, which were coupled 
with the HER for  H2 production [6, 7, 11]. Among these 
alternative reactions, one type is the oxidation of sacrifi-
cial agents, such as hydrazine oxidation reaction (HzOR, 
 N2H4 +  4OH− →  N2 +  4H2O +  4e−, − 0.33 V vs. RHE) [12, 
13], urea oxidation reaction (UOR, CO(NH2)2 +  6OH−  →  
N2 +  CO2 +  5H2O +  6e−, 0.37 V vs. RHE) [14, 15], whose 
products are  N2 and other safe gases. Another one is the 
organic upgrading reaction, which can significantly reduce 
the anode potential and obtain high value-added chemi-
cals at the same time, such as methanol oxidation reac-
tion (MOR,  CH3OH +  5OH−  →  HCOO−  +  4H2O +  4e−) 
[16–19] ,  g lycero l  oxida t ion  reac t ion  (GOR, 
 C3H8O3 +  8OH− → 3HCOOH +  5H2O +  8e−, 0.69  V vs. 
SHE) [20, 21], 5-hydroxymethyl furfural (HMF) oxidation 
[22, 23], aldehydes oxidation [8, 24], glucose oxidation 
[25, 26]. It is noted that coupling HER with the oxidation 

reaction of organic molecules can achieve the acquisition of 
 H2 and high value-added organic molecules at low poten-
tials. Glycerol is a low-value byproduct of biodiesel pro-
duction [27], while its oxidation product formate  (HCOO−) 
or formic acid (HCOOH) is widely used in industrial pro-
duction [20]. Unfortunately, it is still highly in demand on 
low-cost and highly active catalysts for glycerol oxidation.

In this work, we develop a hybrid water electrolysis flow 
cell for hydrogen production coupled to glycerol oxida-
tion based on a nickel-based catalyst and using inexpen-
sive organic membranes (Scheme 1). Specifically, for the 
anodic glycerol oxidation reaction (GOR), we used nickel 
oxide (NiO) nanosheet arrays as an electrocatalyst, which 
exhibited better activity than nickel hydroxide (Ni(OH)2). 
The addition of glycerol molecules significantly reduces 
the anodic potential compared to the conventional OER. At 
the cathode, we used NiMoNH nanopillar arrays as a HER 
electrocatalyst, which were obtained by annealing NiMoO in 
ammonia  (NH3) and argon–hydrogen (Ar/H2) mixture gas. 
The addition of glycerol molecules remarkably decreases 
the voltage of electrolyze, which is beneficial for the reduc-
tion of energy consumption. Moreover, the alkaline anion 
exchange membrane can be replaced with an inexpensive 
organic filter membrane, without degradation of electro-
chemical performance. This study opens up a new point 
of view for the future exploration of practical hybrid water 
electrolyzer.

2  Experimental Section

2.1  Preparation of Catalysts

2.1.1  Synthesis of Ni(OH)2

A piece of nickel foam (NF) (3 cm × 6 cm) was first cleaned 
by sonicating in 0.1 M HCl, deionized water, and ethanol 
for 15 min each. Then, 1.45 g nickel (II) nitrate hexahy-
drate (Ni(NO3)2·6H2O) and 1.4 g hexamethylenetetramine 
(HMT) were dissolved in 70 mL deionized water and stirred 
for 30 min. This solution was then poured into a Teflon-
lined stainless steel autoclave, and then the cleaning NF was 
immersed in it before being heated to 120 °C for 6 h. After 
cooling down to room temperature, the resulting Ni(OH)2 
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nanosheets on the NF were rinsed with deionized water and 
left to dry naturally.

2.1.2  Synthesis of NiO

The as-grown Ni(OH)2 precursor was heated in a quartz tube 
furnace at 300 °C for 3 h under air to convert into NiO.

2.1.3  Synthesis of NiMoO

1.4 g Ni(NO3)2·6H2O and 1.48 g ammonium molybdate tet-
rahydrate ((NH4)6Mo7O24·4H2O) were dissolved in 80 mL 
deionized water and stirred for 30 min. Then, this solution 
was transferred to a Teflon-lined stainless steel autoclave, 
and then immersed the NF into the solution and heated to 
150 °C for 6 h. After cooling down to room temperature, the 
obtained NiMoO supported on NF were washed with deion-
ized water and then dried naturally.

2.1.4  Synthesis of NiMoNH

The as-grown NiMoO precursor on the NF was annealed in a 
quartz tube furnace at 400 °C for 2 h in an  NH3 atmosphere 

to turn it into NiMoN. The NiMoN was then heated in a 
quartz tube furnace at 500 °C for 2 h in an Ar/H2 atmosphere 
to form NiMoNH.

2.2  Characterization

2.2.1  Materials Characterization

A field emission scanning electron microscope (FEI Magel-
lan 400L XHR) was used for obtaining the scanning elec-
tron microscopy (SEM) images. A Titan G2 60–300 Cs-
corrected transmission electron microscopy (TEM) was 
used for TEM, high-resolution TEM (HRTEM), high angle 
annular dark-field scanning TEM (HADDF-STEM), and 
energy-dispersive X-ray spectroscopy (EDS) mapping. 
X-ray diffraction (XRD) measurements were performed on 
a Bruker D8 ADVANCE X-ray diffraction diffractometer. 
A Thermo ESCALAB250xi electron spectrometer with an 
Al Kα source (1486.6 eV) as radiation source was used for 
X-ray photoelectron spectroscopy (XPS) measurements. A 
Bruker A300 spectrometer was used for acquiring the Elec-
tron Paramagnetic Resonance (EPR) spectra.

Scheme 1  Design of the hybrid water electrolyser
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2.2.2  Electrochemical Characterization

We used a CHI 760E electrochemical workstation to per-
form electrochemical measurements in an H-type three-
electrode cell (H cell). A graphite rod electrode and a Hg/
HgO were used as the counter electrode and reference elec-
trode, respectively. The working electrode (1 cm × 1 cm) was 
using the as-prepared self-supporting electrodes. Fumasep 
FAB-PK-130 was used as the anion exchange membrane 
(AEM). All the potentials versus Hg/HgO were converted 
to the values versus the reversible hydrogen electrode (RHE) 
using the equation: E vs. RHE = E versus Hg/HgO + 0.924 V.

We prepared a membrane electrode assembly (MEA) for 
testing the electrochemical performance in a flow cell (Gaos-
sunion Co., Ltd., Tianjin, China). The MEA was made by 

sandwiching NiO and NiMoNH electrode between either 
a commercial membrane (Fumasep FAB-PK-130) or an 
organic membrane. The MEA was then placed within a 
custom-designed electrolyzer where 1 M KOH and 0.1 M 
glycerol were circulated through cathode and anode as the 
electrolyte.

3  Results and Discussion

3.1  Characterization of NiO and Ni(OH)2

Figure S1 shows the synthesis of NiO catalyst. A commer-
cially available nickel foam (NF) was used as the conductive 
substrate. Firstly, the nickel hydroxide (Ni(OH)2) precursor 
grew on the NF through a hydrothermal reaction of nitrate 

Fig. 1  Structure characterization of Ni(OH)2 and NiO. a XRD patterns of the Ni(OH)2 and NiO catalysts. High-resolution XPS spectra of b Ni 
2p and c O 1s for Ni(OH)2 and NiO catalysts. d EPR spectra of the Ni(OH)2 and NiO catalysts
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hexahydrate and hexamethylenetetramine in a mixed solu-
tion [28]. Then, the Ni(OH)2 was heated at 300 °C for 3 h 
under air atmosphere to form nickel oxide (NiO). The XRD 
pattern (Fig. 1a) shows that the diffraction peaks are indexed 
to NiO.

The chemistry state of the Ni(OH)2 and NiO were investi-
gated by X-ray photoelectron spectroscopy (XPS). The high-
resolution Ni 2p XPS spectra is shown in Fig. 1b. The Ni 
2p show two major peaks located at 873 and 855 eV, which 
can be attributed to the Ni 2p1/2 and Ni 2p3/2, respectively. 
The Ni 2p3/2 peak of NiO is deconvoluted into two promi-
nent peaks located at 854.1 and 856.0 eV attributed to  Ni2+ 
and  Ni3+ of NiO, respectively [29]. Figure 1c shows the O 
1s spectra of Ni(OH)2 and NiO. The peak with the highest 
intensity at 529.5 eV is assigned to  Ni2+–O in NiO. The 
peak at 531.1 eV is related to oxygen-containing species, 
which is assigned to  Ni3+–O [29]. The weak peaks at 532.2 
and 534 eV belong to oxygen vacancy  (VO) and adsorbed 
 H2O, respectively [30, 31]. The area of  VO for Ni(OH)2 is 
much higher than that of NiO. The electron paramagnetic 
resonance (EPR) spectrum (Fig. 1d) further confirms the 
existence of  VO in Ni(OH)2 and NiO. Ni(OH)2 shows a 

strong EPR signal at around g = 2.003, indicating rich  VO in 
Ni(OH)2 [32], which agrees with the result of XPS. In addi-
tion, the Brunauer–Emmett–Teller (BET) specific surface 
area of NiO and Ni(OH)2 was tested. As shown in Fig. S2, 
NiO has a higher specific surface area (5.67  m2  g−1) than 
nickel Ni(OH)2 (3.49  m2  g−1).

SEM and TEM was used to study the morphology of 
Ni(OH)2 and NiO. Figures 2a and S1b–c show that the origi-
nal Ni(OH)2 possesses a well-defined 2D nanosheet mor-
phology. After the annealing, the 2D nanosheet morphology 
is still retained for the NiO samples (Figs. 2d and S1d–e). 
Figure 2b displays the TEM image of Ni(OH)2. The inset of 
Fig. 2b shows the selected area electron diffraction (SAED) 
pattern of Ni(OH)2 nanosheet. The pattern shows diffused 
rings, which means the as-prepared Ni(OH)2 nanosheet has 
poor crystallinity. Thera are no typical lattice fringes from 
the high-resolution TEM (HRTEM) image of Ni(OH)2 sam-
ple (Fig. 1c), which suggests that the as-prepared Ni(OH)2 
nanosheets are amorphous. Figure S3 shows the high-angle 
annular dark-field scanning TEM (HAADF-STEM) image 
and the corresponding EDS elemental mappings of Ni(OH)2. 
Ni and O elements were uniformly distributed throughout 

Fig. 2  Morphology characterization of the Ni(OH)2 and NiO catalysts. a SEM, b TEM and c HRTEM images of Ni(OH)2. d SEM, e TEM and f 
HRTEM images of NiO
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the nanosheet. The TEM image (Fig. 2e) and SAED pattern 
(inset of Fig. 2e) of the NiO shows good crystallinity. The 
HRTEM image of NiO (Fig. 2f) shows the lattice fringes of 
(021) planes. Figure S4 shows the HAADF-STEM image 
and the corresponding EDS elemental mappings of NiO.

3.2  Electrocatalytic Performances of Ni(OH)2 and NiO 
for GOR

The electrochemical performance of NiO and Ni(OH)2 was 
tested in 1.0 M KOH electrolyte with and without 0.1 M 
glycerol, respectively. Firstly, a typical cyclic voltammetry 

Fig. 3  Electrocatalytic performances of Ni(OH)2 and NiO for GOR. Cyclic voltammograms of a NiO and b Ni(OH)2 electrocatalysts in 1 M 
KOH at different sweep rates. c Comparison of cyclic voltammograms of NiO and Ni(OH)2 in 1.0 M KOH at 10 mV  s−1. d CV cures of NiO and 
Ni(OH)2 for GOR. g LSV cures of NiO for GOR and OER. Bode plots for the e NiO and f Ni(OH)2 in 1 M KOH. Bode plots for the h NiO and 
i Ni(OH)2 in 1 M KOH with 0.1 M glycerol
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(CV) cycling was carried out in 1 M KOH medium. Fig-
ure 3a, b shows the CV cures of NiO and Ni(OH)2 electrodes 
at various scan rates, respectively. When the scan rate goes 
up, the oxidation peak moves to more positive potential, 
and the reduction peak moves to a more negative potential. 
Generally, the proton diffusion rate determines the speed of 
the oxidation of Ni(OH)2 to NiOOH [33]. The peak current 
densities were plotted against the square roots of the scan 
rates in Fig. S5 and a linear relationship was found, Ni(OH)2 
shows higher proton diffusion coefficient than NiO. In addi-
tion, it is found that the current density of NiO between 1.0 
and 1.35 V increases with the increase of scan rate (Fig. 3a), 
but this phenomenon is not observed in Ni(OH)2 (Fig. 3b). 
Which means that the NiO surface has better adsorption for 
OH species [21]. Figure 3c shows the CV curves of NiO and 
Ni(OH)2 at 5 mV  s−1, where the Ni oxidation peak potential 
for NiO is lower than that for Ni(OH)2, indicating that NiO 
is easier to be oxidized.

The electrocatalytic performance of NiO and Ni(OH)2 
towards the GOR was tested in an electrolyte of 1 M KOH 
containing 0.1 M glycerol. From the CV cures in Fig. 3d, 
NiO has the lower onset potential than Ni(OH)2, showing 
better electrochemical performance. A CV method was used 
to measure the electrochemical double-layer capacitance 
(Cdl) of the catalysts and evaluate their electrochemically 
surface area (ECSA) from Cdl (Fig. S6) in order to better 
understand the improvement of the GOR activity. The results 
show that NiO has a considerably larger Cdl (12.3 mF  cm−2) 
than Ni(OH)2 (0.79 mF  cm−2). From the linear sweep vol-
tammetry (LSV) curve with IR correction (Fig. 3g), it can 
be seen that the addition of glycerol to the KOH electro-
lyte significantly reduces the reaction potential at the anode 
(293 mV). This suggests that the operating potential during 
hydrogen production from electrolytic water is expected to 
be reduced by replacing the OER with GOR. Inspire by this, 
OER can be replaced by GOR to reduce the potential of 
hydrogen production by water electrolysis, and at the same 
time, high value-added formate can be produced at the anode 
[20]. Compared with other reported transition metal cata-
lysts, NiO exhibits better GOR performance (Table S1). We 
also compared the electrocatalytic oxidation performance 
of NiO and Ni(OH)2 in 1 M KOH containing 0.1 M other 
alcohols (including ethylene glycol, ethanol, methanol), as 
shown in Fig. S7. It can be seen that for the ethylene glycol 
oxidation reaction (EGOR, Fig. S7a), the oxidation poten-
tial of NiO is lower than that of Ni(OH)2; in the ethanol 

oxidation reaction (EtOR, Fig. S7b), there is no significant 
difference; in the methanol oxidation reaction (MOR, Fig. 
S7e), Ni(OH)2 is better than NiO. Overall, NiO seems to 
have a differential ability to oxidize different alcohols (Fig. 
S7c).

The difference of electrochemical activity between NiO 
and Ni(OH)2 were further studied by the in-situ EIS dur-
ing the OER and GOR (Figs. 3e, f, h, i and S8). From the 
Bode phase plots, Ni(OH)2 has a peak in the low-frequency 
 (100–101 Hz) region between 1.2 and 1.35 V during the OER 
(Fig. 3f), which may be related to the formation of oxide 
species on the electrode surface [22]. But this phenome-
non is not observed in NiO (Fig. 3e). When the potential is 
increased to 1.55 V, new peaks (about  10–1–100 Hz) appear 
in both NiO and Ni(OH)2, which may be associated with 
the start of the OER. After adding 0.1 M glycerol into the 
KOH, a peak conversion was examined at the potential of 
1.25 V for NiO (Fig. 3h) and 1.4 V and Ni(OH)2 (Fig. 3i), 
respectively, for GOR. Furthermore, in the Nyquist plots 
(Fig. S8), the charge-transfer resistance of NiO is much 
smaller than that of Ni(OH)2. The EIS analysis shows that 
the lower charge-transfer resistance of NiO accelerates the 
kinetics of GOR.

Further, a chronopotentiometric measurement was used to 
test the stability of NiO for GOR (Fig. S9). As the oxidation 
reaction continues, glycerol is gradually consumed and the 
potential decreases. The XPS of NiO and Ni(OH)2 after the 
GOR was also tested, as shown in the Figs. S10 and S11. 
The oxidation peak area of Ni in NiO increases after GOR 
(Fig. S10a). In addition, a new C=O peak is observed in 
the C 1 s spectrum (Fig. S10c), indicating the existence of 
residual formate. From the SEM image in Fig. S12, it can 
be seen that after GOR, NiO still maintains its 3D nanosheet 
stacked structure without significant changes. And there is 
also no significant change in the XRD pattern (Fig. S13).

3.3  Characterization of the NiMoNH HER Catalysts

To couple the anodic GOR, a nickel-molybdenum-based 
catalyst for cathodic HER is also developed, whic is a 
very promising non-precious metal electrocatalyst. Firstly, 
NiMoO nanoarrays was grown on NF matrix by a hydro-
thermal method, and then highly active hydrogen evolution 
catalyst (denoted as NiMoNH) was obtained by annealing 
in  NH3 and Ar/H2 atmosphere (Fig. S14). SEM images 



 Nano-Micro Lett.          (2023) 15:189   189  Page 8 of 13

https://doi.org/10.1007/s40820-023-01150-1© The authors

(Figs. 4a–c and S14) show the morphology change from 
NiMoO to NiMoNH. In Fig. 4a and S14b–c, it is noted that 
NiMoO display nanopillar array and relatively smooth sur-
face. After annealing in  NH3 atmosphere, some nanoparti-
cles appeared on the surface and became rough (Figs. 4b 
and S14e–f). Finally, after further calcination in an Ar/H2 
atmosphere, the surface of NiMoNH nanopillars are covered 
with nanoparticles and become extremely rough (Figs. 4c 
and S14h–i). The unique 3D nanoarray structure will facili-
tate the release of hydrogen [34, 35]. In addition, the sample 
annealed directly in argon–hydrogen atmosphere was also 
synthesized as a control sample (note as NiMoH). The parti-
cle size on its surface is slightly larger than that of NiMoNH 
(Fig. S15).

TEM images further reveal the microstructure of 
NiMoNH (Figs. 4d and S16). From the HRTEM image 
(Fig.  4e), the NiMoNH nanoparticles show the lattice 
fringes of 0.203 nm, which is related to the (111) plane 
of Ni. Aggregation of Ni particles is also verified in the 
HADDF-STEM image with the corresponding EDS map-
pings (Fig. 4f). XRD pattern in Fig. 4g reveals that NiMoNH 
consists of  MoO2 and Ni phases. While the  NiMoO4 phase 
can still be found in NiMoH, which indicates incomplete 
conversion of  NiMoO4.

The chemical states of NiMoNH and NiMoH were further 
analyzed by XPS. As shown in Fig. 4h, the high-resolution 
Ni 2p3/2 XPS spectra of NiMoNH exhibit a clear intensity 
increase at ~ 853 eV, which proves the existence of metal 

Fig. 4  Characterization of the NiMoNH HER catalysts. SEM images of a NiMoO, b NiMoN and c NiMoNH. d TEM image, e HRTEM 
image, f HADDF-STEM and EDS mapping images of NiMoNH. g XRD pattern, h Ni 2p XPS spectra and i Mo 3p XPS spectra of NiMoH and 
NiMoNH
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Ni (0). The high-resolution Mo 3d signal of NiMONH and 
NiMoH (Fig. 4i) were fitted into three typical components at 
229.2, 230.4, and 232.2 eV, corresponding to  Mo4+,  Mo5+, 
and  Mo6+, respectively [36]. In the N 1 s XPS spectrum of 

NiMoNH (Fig. S17), there is a peak at 397.4 eV that corre-
sponds to the N species in metal nitrides, and another peak at 
399.6 eV that is due to the incomplete reaction of  NH3 [37].

Fig. 5  HER performance of NiMoNH. a LSV curves and b the corresponding Tafel plots of NiMoNH and NiMoH in 1.0  M KOH. c LSV 
curves and d the corresponding Tafel plots of NiMoNH in 1.0 M KOH with and without 0.1 M glycerol. e Chronoamperometry curves (i–t) 
recorded on NiMoNH for HER at − 0.126 V vs. RHE
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3.4  HER Performance of NiMoNH

The HER performance of NiMoNH and NiMoH on Ni foam 
was tested in 1 M KOH. In Fig. 5a, the LSV curves show 
that NiMoNH exhibited the better catalytic activity than 
NiMoH. The overpotential requirements at current densities 
of 100 mA  cm−2 were ~ 183 and 224 mV for the NiMoNH 
and NiMoH, respectively. NiMoNH and NiMoH exhibit the 
Tafel slope (Fig. 5b) of 146 and 161 mV  dec−1, respectively. 
The HER performance of NiMoNH catalyst in 1 M KOH 
containing 0.1 M glycerol was further examined. Excit-
ingly, the addition of glycerol has no obvious effect on the 
HER performance of NiMoNH (Fig. 5c), which is extremely 
important for the subsequent development of GOR-assisted 
hydrogen production. As shown in Fig. 5d, NiMoNH shows 
the similar Tafel slopes in different electrolyte medium, 
which means that it has similar catalytic kinetics. Compared 

with other NiMo-based catalysts (Table S2), NiMoNH has 
similar HER performance. In addition, the stability of 
NiMoNH was also tested as shown in Fig. 5e. NiMoNH can 
perform stably at − 0.126 V vs. RHE for 12 h and is potential 
to be used as a cathode for electrolyzer. SEM images (Fig. 
S18) and XRD pattern (Fig. S19) of NiMoNH after stability 
testing showed no significant changes in the morphology and 
structure of the material, with good stability.

3.5  Performance of Hybrid Electrolyzer

Considering that the as-synthesized NiO and NiMoNH 
have excellent GOR and HER properties, respectively. A 
H-type electrolyzer with membrane was used to test their 
hybrid electrolysis performance. Figure 6a shows that the 
LSV curves of the electrolyzer with and without glycerol. 
The anion exchange membrane (AEM) flow cell represented 

Fig. 6  Performance of hybrid electrolyzer (using NiO/NF as anodic electrocatalyst and NiMoNH/NF as cathodic electrocatalyst). a Polarization 
curve of the hybrid electrolyzer. b Nyquist plots from the EIS measurements for MEA cell and H cell. c Polarization curve of the hybrid electro-
lyzer with alkaline anion membrane and organic membrane. d Chronoamperometry curve of the hybrid electrolyzer using organic membrane at 
1.6 V. SEM images of organic membrane e before and f after long-term testing
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by the solid line exhibits a higher current density than the 
H-type cell (dash line). The GOR-assisted hydrogen pro-
duction (HER||GOR) only requires a cell voltage of 1.54 V 
at a current density of 100 mA  cm−2, which is remarkably 
reduced by 280 mV comparted to the overall water splitting 
(HER||OER). The advantage of the flow cell was further 
confirmed by electrochemical impedance spectroscopy (EIS) 
analysis (Fig. 6b). It can be seen from the Nyquist plots that 
the contact resistance of the flow cell is much smaller than 
that of H cell.

Considering that the anode OER is replaced by GOR, 
this process has no oxygen generation and cannot induce 
explosive  H2/O2 mixtures. Therefore, a cheaper organic fil-
ter membrane (Nylon) was used to replace the expensive 
AEM (inset of Fig. 6c). The NiMoNH cathode, organic 
membrane and NiO anode were assembled in the flow cell. 
The pores of the organic membrane allow the free transport 
of  K+ and  OH−, while the physical isolation of cathode and 
anode is realized. As shown in Fig. 6c, the replacement of 
the membrane has not induced degradation of the electro-
chemical performance. Compared to other small molecule 
oxidation assisted hydrogen production devices (Table S3), 
the electrolyzer potential assembled in this work is lower. 
Moreover, the assembled flow cell also exhibits good sta-
bility (Fig. 6d), where the drop in current is associated with 
the depletion of glycerol molecule. The morphology of the 
organic member before and after stability test of the flow cell 
were investigated by SEM. As shown in Fig. 6d, the organic 
membrane has abundant pores for ion transport and mass 
transfer. No obvious change is observed after the stability 
test (Fig. 6f), which indicates that the organic membrane 
is feasible to be used in HER||GOR system at low cost for 
long-term operation.

4  Conclusions

In summary, vertical 3D NiO nanoflakes and NiMoNH 
nanopillars have been successfully synthesized to use as 
electrocatalysts for the anodic GOR and cathodic HER, 
respectively. The replacement of OER with GOR together 
with the highly active NiO nanoflakes remarkably reduces 
the operation voltage of electrolyzer for hydrogen evolution. 
Furthermore, cheaper organic membrane instead of an anion 
exchange membrane is employed as separator to lower the 

whole cost of electrolyzer. The as-assembled electrolyzer 
exhibits good HER performance and long-term stability. 
This work opens a new avenue for the practical applications 
in the future hydrogen economy.
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