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Supplementary Figures and Tables 

Table S1 Cycle performances of Nb2O5 anodes in other reports 

Cycle test at low current denstiy Cycle test at high current denstiy 

Name 
Cycle 

number 

Current 

density  

(A g-1) 

Initial 

capacity 

(mAh g-

1) 

Retenti

on 

Cycle 

numbe

r 

Current 

density 

(A g-1) 

Initial 

capacity 

(mAh g-

1) 

Retention Reference 

H-Nb2O5 100 0.2 235 74.6% / / / / [S1] 

3DOM Nb2O5 / / / / 100 2 138 90.0% [S2] 

T-Nb2O5@C 1000 0.1 / 82.2% / / / / [S3] 

T-Nb2O5@CC 1000 1  86.0% 1000 2 / 85.0% [S4] 

Nb2O5 belt 50 0.1 200 88.5% 200 1 125 76.6% [S5] 

Wired H-

Nb2O5 
200 0.1 160 75.0% / / / / [S6] 

Nb2O5-600 / / / / 2000 1 / 85.0% [S7] 

T-Nb2O5/rGO 100 0.1 227 72.6% / / / / [S8] 

Nb2O5 / / / / 100 1 / 85.0% [S9] 

Nb2O5@NbO2 900 0.2  81.0% / / / / [S10] 

Nb2O5@C/rG

O 
300 0.1 221 85.6% / / / / [S11] 

Nb2O5 NPs / / / / 1000 1 / 88.0% [S12] 

YS-Nb2O5 200 0.1 205 
85.30

% 
/ / / / [S13] 

N-NbOC 1100 0.5 / 81.0% / / / / [S14] 

Nb2O5/C 100 0.1 559.8 43.9% 300 /   [S15] 

T-

Nb2O5/CNTs 
500 2 / 83.0% 500 10 / 80.0% [S16] 

NC-Nb2O5 / / / / 1000 2 196 83.0% [S17] 

T-Nb2O5 NRs 270 0.1 257 62.3% 4000 
0.

5 
226 40.7% [S18] 

M-Nb2O5 1000 0.2 160 82.3% / / / / [S19] 

https://www.springer.com/journal/40820
mailto:esxxiong@scut.edu.cn


Nano-Micro Letters 

S2/S16 

Nb2O5@C 500 0.1 / 72.0% / / / / [S20] 

TT-Nb2O5 / / / / 1000 1 103 80.7% [S21] 

Nb2O5-C-rGO / / / / 1500 1 192 76.6% [S22] 

NbW-

3/MXene 
/ / / / 500 1 / 59.8% [S23] 

H-Nb2O5 100 0.05 260 73.2% / / / / [S24] 

CN-NbO 550 0.1 340 79.4%  1 230 71.3% [S25] 

Nb2O5 NC 190 0.1 224 87.0% 2000 2 151 66.9% [S26] 

T-Nb2O5 100 0.2 184 63.5% 200 1 92 65.2% [S27] 

T-Nb2O5 50 0.05 200 47.5% / / / / [S28] 

[S29] T-Nb2O5@C 1000 1 110 74.5% / / / / 

T-Nb2O5/rGO / / / / 3000 5 200 80 % [S30] 

Nb2O5-x 200 0.2 203.4 94% 1000 2 159 74.8% [S31] 

Nb2O5-5mM 100 0.2 285 88.4% / / / / [S32] 

CNF/NbO 100 0.2 619.2 58.3 / / / / [S33] 

Nb2O5 200 1 105 94% 200 2 70 92% [S34] 

N- Nb2O5 100 0.1 / 83% 1000 1 / 70.5% [S35] 

N-Nb2O5 / / / / 1000 2 / 90.1% [S36] 

Nb2O5-750 200 0.2 310 87% 800 1 / 52% [S37] 

Nb2O5@NC / / / / 2900 2 / 43% [S38] 

 

Fig. S1 Rietveld refinement pattern of T-Nb2O5 
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Fig. S2 XPS spectra of a VNbO4. b T-Nb2O5 

 

Fig. S3 Core-level V 2p XPS spectra of VNbO4 
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Fig. S4 N2 adsorption–desorption isotherms of and the pore size distribution. a and b 

T-Nb2O5, c and d VNbO4 

 

Fig. S5 a and b TEM images of T-Nb2O5. c HRTEM image of T-Nb2O5 
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Fig. S6 Lithium storage mechanism and structure evolution of VNbO4. a 

Electrochemistry profile corresponding to in-situ XRD test. b The 2D contour of in-situ 

XRD pattern at different lithiation/delithiation states of initial cycle in potential range 

of 1.0-3.0 V 

 

Fig. S7 a-c Ex-situ TEM images of VNbO4 at different lithiation/delithiation states. d-

f Ex-situ HRTEM images of VNbO4 at different lithiation/delithiation states 
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Fig. S8 The charge-storage behavior of VNbO4 anode. a CV curves at different sweep 

rates. b Normalized reduction and oxidation peak currents. c Pseudo capacitance fitting 

pattern of all samples at sweep rate of 0.8 mV s-1. d Pseudo capacitance contribution 

The kinetics of VNbO4 in electrochemical lithium storage can be studied by cyclic 

voltammetry. Figure S8a shows the CV curves at different sweep rates. The area 

enclosed by CV curve increasing with the sweep rate, while the voltage values 

corresponding to peak currents does not change significantly. The following formula 

was employed to explain the relationship between current values and sweep rates. The 

i, v values are respectively corresponding to current value (A), sweep rate (mV s-1) 

while a, b are variable factors.  

                                                            (S1)                                            

The b value could be obtained to judge the electrochemical behavior of VNbO4-18 after 

fitting the CV curves at all sweep rate (Figure S8b). Obviously, the obtained b values 

(0.888 and 0.889) of redox process represent the pseudo capacitive charge storage 

mechanism controlled by surface of material. In addition, the contribution of pseudo 

capacitance could be fitted by the following equation. The i and v values are 

respectively corresponding to current on selected voltage and the sweep rate, while k1 

and k2 are variable factors.  

                                                   (S2)                                         

𝑖 = 𝑎𝑣𝑏                 

𝑖 = 𝑘1𝑣 + 𝑘2𝑣
1/2   
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The fitting results of CV curve with sweep rate of 0.8 mV s-1 and the contribution of 

pseudo capacitance at different sweep rates are shown in Figure S8c and d, indicating 

that VNbO4 has a surface-controlled pseudo capacitance behavior kinetics. 

 

Fig. S9 Charge-discharge profiles of VNbO4 at different current density 

 

Fig. S10 Cycle performance of VNbO4 electrode at 1.0 A g-1 with mass loading of 4.5 

mg cm-2 (The inset image shows the cross-section of the electrode) 
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Fig. S11 a Charge-discharge profiles, b rate performance of VNbO4 at different current 

density of VNbO4 at -10 ℃. c Cycle performance of VNbO4 at current density of 1.0 A 

g-1 at -10 ℃. d Charge-discharge profiles, e rate performance of VNbO4 at different 

current density of VNbO4 at 60 ℃. f Cycle performance of VNbO4 at current density 

of 1.0 A g-1 at 60 ℃ 

In order to study the electrochemical performance of VNbO4 in a wide temperature 

range, constant current charge/discharge tests were carried out at -10 °C and 60 °C, 

respectively (Figure S11). Figure S11a shows the discharge/charge profiles under 

different current densities at -10 °C. The result shows that the material experienced 

more obvious polarization than room temperature, which is due to the slow Li+ 

migration kinetics caused by viscous electrolyte at low temperature. The rate 

performance test shows that VNbO4 delivered the initial charge capacity 159.2 mAh g-

1 at 100 mA g-1 with coulomb efficiency of 77.2 %. When the current density increases 

to 1000 mA g-1, VNbO4 still delivered a high capacity of 59.2 mAh g-1 (Figure S11b). 

Although the rate capacity had a significant attenuation compared with that at room 

temperature, which due to the low Li+ diffusion rate at low temperature as well as the 

high transfer charge impedance, but it is still satisfactory overall, especially considering 

the test was carried out at such extreme low temperature conditions. The cycle 

performance at a current density of 1000 mA g-1 is shown in Figure S11c. After 2000 

cycles, the capacity retention rate of VNbO4 was 102.1%. This increase in capacity can 

be attributed to the slow activation process at low temperature. When the 

electrochemical test was carried out at 60 ° C, the polarization degree of the material 

did not change significantly compared with that at room temperature (Figure S11d). 

The rate performance test results show that the initial discharge/charge capacity (283.5 

mAh g-1 and 221.2 mAh g-1) of the material was higher than that at room temperature, 

which can be explained by the enhanced Li+ diffusion ability at high temperature, so 

that the extra Li+ could insert in bulk of electrode (Figure S11e). However, the coulomb 

efficiency of the previous cycles was low, due to the formation of thick SEI film caused 
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by the violent reaction between electrolyte and material surface at high temperature. At 

the current density of 1000 mA g-1, the capacity retention rate after 2000 cycles was 

77.8 % (Figure S11f). The cycle stability was slightly worsen compared with that at 

room temperature, which can be explained by the crystal rupture caused by the 

accumulated stress of excessive lithium insertion. In conclusion, the wide temperature 

range test results show that VNbO4 still shows good electrochemical characteristics at 

both -10 °C and 60 °C , indicating that this new material has high application potential 

at extreme temperatures. 

 

Fig. S12 a-c SEM images of VNbO4 at different cycles. d-f SEM images of T-Nb2O5 at 

different cycles 

 

Fig. S13 Nyquist plots and the fitting results of all samples. a Fresh VNbO4. b Cycled 

VNbO4. c Fresh T-Nb2O5. d Cycled T-Nb2O5 
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Fig. S14 The Nb 3d orbit XPS spectra of T-Nb2O5 electrode at a charge state and b 

discharge sate in the 50th and 100th charge-discharge process at 1 A g-1 

 

Fig. S15 a Energy changes in the NbO2 model before and after electron injection. b 

Energy changes in the V2O3 model before and after electron injection 
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Table S2 Li-Nb/Li-V atomic spacing in different models and overall energy 

difference (normalized based on model 1) 
 

Model 1 Model 2 Model 3 Model 4 

Li-Nb1 distance (Å) 2.98 2.93 2.97 2.95 

Li-Nb2 distance (Å) 2.74 4.84 4.89 4.86 

Li-Nb3 distance (Å) 2.74 2.76 4.89 4.86 

Li-V1 distance (Å) 2.47 2.48 2.47 2.47 

Li-V2 distance (Å) 2.47 2.48 2.47 2.47 

Li-V3 distance (Å) 3.86 3.55 3.55 3.56 

Li-V4 distance (Å) 3.86 3.85 3.55 3.56 

Li-Nb average distance (Å) 2.82 3.51 4.25 4.22 

Li-V average distance (Å) 3.165 3.09 3.01 3.015 

ΔE(eV) 0 -0.19 -0.4 -3.9 

 

Fig. S16 Post-mortem analysis of V 2p spectra of VNbO4 after 1000 cycles 

 

Fig. S17 a The initial charge-discharge curves of LiFePO4@C at 1 C, b Cycle 

performance of LiFePO4@C at 1 C 
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Fig. S18 a The initial three CV curves of AC, b Cycle performance of AC at 0.05 A g-

1. 

 

Fig. S19 Cycle performance of LiFePO4@C//T-Nb2O5 full cell at 1 C 
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