Supporting Information for

Integration of Multiple Heterointerfaces in a Hierarchical

0D@2D@1D Structure for Lightweight, Flexible, and Hydrophobic

Multifunctional Electromagnetic Protective Fabrics

Shuo Zhang^{1, #}, Xuehua Liu^{1, #}, Chenyu Jia¹, Zhengshuo Sun¹, Haowen Jiang¹, Zirui Jia^{2, *}, Guanglei Wu^{1, *}

¹ Institute of Materials for Energy and Environment, State Key Laboratory of Biofibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China

² College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China

Zirui Jia and Guanglei Wu contributed equally to this work.

*Corresponding authors. E-mail: jiazirui@qdu.edu.cn (Z. Jia), wuguanglei@qdu.edu.cn/wuguanglei@mail.xjtu.edu.cn (G. Wu)

Supplementary Figures

Fig. S1 Statistical histogram of diameter of (a) PAN NFs, (b) CNFs, (c) Co-ZIF/PAN, (d) CCC, (e) CoNi-ZIF/PAN, and (f) CNCC fibrous composites

Fig. S2 SEM images of (a) Co-ZIF/PAN (Co²⁺:2-MI=1:8), (b) Co-ZIF/PAN (Co²⁺:2-MI=1:0), (c) Co-ZIF/PAN (Co²⁺:2-MI=1:16), and (d) CoNi-ZIF/PAN

Fig. S3 SEM images of (a) Co-ZIF/PAN and (b) CoNi-ZIF/PAN directly selenized without pre-carbonization

Fig. S4 EDS mapping of sample CCC

Fig. S5 XRD patterns of single component Co-ZIF, Ni-ZIF and CoNi-ZIF/PAN treated with different sonication times

Fig. S6 The crystal structure models of (a) hexagonal CoSe, (b) tetragonal Co₉Se₈, (c) hexagonal NiSe, and (d) schematic diagram of the effect of nickel introduction on material transformation

Fig. S7 XRD patterns of Co-C@CNFs and CoNi-C@CNFs

Fig. S8 DTG curves of PAN and CoNi-ZIF/PAN

Fig. S9 (a) Schematic diagram of surface resistance test of copper strip and various fibrous membranes (the figure shows the test data of copper strip with unpolished surface), (b) the statistical histogram of surface resistance test values of all samples

Fig. S10 High-resolution XPS patterns of samples Co-C@CNFs, CoNi-C@CNFs and CCC: (a) C 1s, (b) N 1s, (c) Co 2p and (d) Ni 2p

Fig. S11 The C₀ curves of Co-C@CNFs and CoNi-C@CNFs

Fig. S12 The dependence plot of $\lambda/4$ matching thickness vs RL peak vs $|Z_{in}/Z_0|$ of the sample CNCC

Fig. S13 Contour map of the values of Z of (a) CNFs, (b) Co-C@ CNFs, (c) CoNi-C@ CNFs, (d) CCC, (e) CNCC, and (f) the percentage of area occupied by the specific impedance matching interval (0.8 < Z < 1.2)

Fig. S14 The attenuation constant curves of all samples

Fig. S15 (a) Effective absorption bandwidth values of the sample CNCC at different thicknesses and (b) dependence of the reflection loss value on frequency at 1.7 mm

Fig. S16 Ultra-efficient electromagnetic wave absorbers: scatter plots of (a) specific RL values versus thickness, (b) specific EAB values versus thickness, and (c) radar comparison chart of typical 1D composite absorbers reported in the literature and in this work, scatter plots of (d) specific RL values versus thickness, (e) specific EAB values versus thickness, and (f) radar comparison chart of typical MOF-derived composite absorbers reported in the literature and in this work

Fig. S17 The temperature difference curves between the upper and lower surfaces of various fibrous membranes on the surface of the thermal conductivity test bench within 0-0.09 s: (a) commercial CFs membrane, (b) CCC fibrous membrane, and (c) CNCC fibrous membrane

Fig. S18 N₂ adsorption–desorption isotherm curve of CNCC fibrous composite (inset: the corresponding pore size distribution curve)

Sample	Resistance (10 ⁻⁴ Ω)					Length (cm)	Width (mm)	Thickness (mm)	Cross-sectional area (mm²)
Copper strip	17.9	17.6	18.1	17.3	18.2	2	5	0.05	0.25
CNFs	377.1	379.2	378.4	377.6	378.7	2	5	0.10	0.50
CCC	286.2	287.3	286.7	288.1	287.8	2	5	0.11	0.55
CNCC	239.4	237.8	238.7	237.1	238.3	2	5	0.11	0.55

Sample	С	0	Ν	Со	Ni	Se
Co-C@CNFs	80.27	7.92	8.06	3.75	0	0
CoNi-C@CNFs	77.56	8.47	6.85	3.51	3.61	0
CCC	81.66	5.28	1.85	5.29	0	5.92
CNCC	72.68	6.08	1.28	4.85	4.99	10.12

Table S2 Surface element content of various samples (at%)

Table S3 Comparison of the EMA performance with other typical 1D materials

Sample	Content (wt.%)	RL _{min} (dB)	EAB (GHz)	Refs.
P-CNF/Fe	20	-44.86 (4.1 mm)	3.28 (4.1 mm)	S1 [S1]
HCSS/ZrO ₂ /SiC	35	-48.6 (3.5 mm)	3.2 (3.5 mm)	S2 [S2]
ZnO/Co nanotubes	50	-68.4 (3.0 mm)	5.9 (2.6 mm)	S3 [S3]
CNT@Ti3SiC2@SiCf	10	-53 (3.8 mm)	5.6 (2.5 mm)	S4 [S4]
Cu ₉ S ₅ /C NFs	20	-65.4 (2.7 mm)	4.1 (2.9 mm)	S5 [S5]
MnS/C NFs	30	-68.9 (3.6 mm)	7.2 (3.3 mm)	S6 [S6]
CCC	5	-48.07 (2.2 mm)	7.6 (2.4 mm)	This work
CNCC	5	-68.40 (2.6 mm)	8.88 (2.0 mm)	This work

Sample	Content (wt.%)	$RL_{min}(dB)$	EAB (GHz)	Refs.
SiC/Ni/NiO/C	20	-50.52 (4.0 mm)	2.96 (2.5 mm)	S7 [S7]
Co/Ni/C	40	-49.8 (2.6 mm)	7.6 (2.6 mm)	S8 [S8]
Ag@C	20	-50.14 (3.0 mm)	5.44 (2.5 mm)	S9 [S9]
Co/C	40	-35.3 (4.0 mm)	5.8 (2.5 mm)	S10 [S10]
NDC/MoS ₂	30	-34.94 (3.0 mm)	6.08 (3.0 mm)	S11 [S11]
ZnCo@C@1T-2H- MoS2	50	-35.83 (5.0 mm)	4.56 (2.0 mm)	S12 [S12]
CCC	5	-48.07 (2.2 mm)	7.6 (2.4 mm)	This work
CNCC	5	-68.40 (2.6 mm)	8.88 (2.0 mm)	This work

Table S4 Comparison	of the	EMA	performance	with	other	typical	powdery	MOF-
derived materials								

Table S5 Mechanical properties test data of various fibrous membranes

Sample	Width (mm)	Thickness (mm)	Stress (MPa)	Strain (%)
CNFs	20	0.10	4.35	27.8
CCC	20	0.11	5.68	59.3
CNCC	20	0.11	6.16	55.7

Supplementary References

- [S1] X.D. Zuo, P. Xu, C.Y. Zhang, M.Z. Li, X.Y. Jiang et al., Porous magnetic carbon nanofibers (P-CNF/Fe) for low-frequency electromagnetic wave absorption synthesized by electrospinning. Ceram. Int. 45(4), 4474-4481 (2019). <u>https://doi.org/10.1016/j.ceramint.2018.11.127</u>
- [S2] B.J. Zhang, Y. Liu, X.L. Li, D. Su, H.M. Ji, Closed-cell ZrO₂/SiC-based composite nanofibers with efficient electromagnetic wave absorption and thermal insulation properties. J. Alloys Compd. 927, 167036 (2022). <u>https://doi.org/10.1016/j.jallcom.2022.167036</u>
- [S3] J. Qiao, D.M. Xu, L.F. Lv, X. Zhang, F.L. Wang et al., Self-assembled ZnO/Co hybrid nanotubes prepared by electrospinning for lightweight and highperformance electromagnetic wave absorption. ACS Appl. Nano Mater. 1(9), 5297-5306 (2018). <u>https://doi.org/10.1021/acsanm.8b01303</u>
- [S4] Y.J. Zou, X.Z. Huang, B.H. Fan, Z.P. Tang, J.H. Zhou et al., Constructing hierarchical Ti₃SiC₂ layer and carbon nanotubes on SiC fibers for enhanced electromagnetic wave absorption. Ceram. Int. 49(5), 8048-8057 (2023). <u>https://doi.org/10.1016/j.ceramint.2022.10.323</u>
- [S5] S.M. Wu, J. Qiao, Y.X. Tang, X. Zhang, X.W. Meng et al., Heterogeneous Cu₉S₅/C nanocomposite fibers with adjustable electromagnetic parameters for efficient electromagnetic absorption. J Colloid Interface Sci. 630, 47-56 (2023). <u>https://doi.org/10.1016/j.jcis.2022.10.075</u>

- [S6] J. Qiao, X. Zhang, C. Liu, Z.H. Zeng, Y.F. Yang et al., Facile synthesis of MnS nanoparticle embedded porous carbon nanocomposite fibers for broadband electromagnetic wave absorption. Carbon 191, 525-534 (2022). <u>https://doi.org/10.1016/j.carbon.2022.02.024</u>
- [S7] R. Yang, J.Q. Yuan, C.H. Yu, K. Yan, Y. Fu et al., Efficient electromagnetic wave absorption by Sic/Ni/Nio/C nanocomposites. J. Alloys Compd. 816, 152519 (2020). <u>https://doi.org/10.1016/j.jallcom.2019.152519</u>
- [S8] G. Liu, J.Q. Tu, C. Wu, Y.J. Fu, C.H. Chu et al., High-yield two-dimensional metal-organic framework derivatives for wideband electromagnetic wave absorption. ACS Appl. Mater. Interfaces 13(17), 20459-20466 (2021). <u>https://doi.org/10.1021/acsami.1c00281</u>
- [S9] Y.H. Song, X.H. Liu, Z.G. Gao, Z.D. Wang, Y.H. Hu et al., Core-shell Ag@C spheres derived from Ag-MOFs with tunable ligand exchanging phase inversion for electromagnetic wave absorption. J Colloid Interface Sci. 620, 263-272 (2022). https://doi.org/10.1016/j.jcis.2022.04.012
- [S10] Y.Y. Lu, Y.T. Wang, H.L. Li, Y. Lin, Z.Y. Jiang et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 7(24), 13604-13611 (2015). <u>https://doi.org/10.1021/acsami.5b03177</u>
- [S11] J.H. Luo, M.N. Feng, Z.Y. Dai, C.Y. Jiang, W. Yao et al., MoS₂ wrapped mofderived n-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 15(7), 5781-5789 (2022). <u>https://doi.org/10.1007/s12274-022-4411-6</u>
- [S12] R.R. Yu, Y.H. Xia, X.Y. Pei, D. Liu, S.K. Liu et al., Micro-flower like core-shell structured ZnCo@C@1T-2H-MoS₂ composites for broadband electromagnetic wave absorption and photothermal performance. J Colloid Interface Sci. 622, 261-271 (2022). <u>https://doi.org/10.1016/j.jcis.2022.01.179</u>