Supporting Information for

Synergistic "Anchor-Capture" Enabled by Amino and Carboxyl for

Constructing Robust Interface of Zn Anode

Zhen Luo^{1,2,} †, Yufan Xia^{1,2,} †, Shuang Chen^{1,2}, Xingxing Wu², Ran Zeng³, Xuan Zhang², Hongge Pan^{1,4}, Mi Yan^{1,5}, Tingting Shi^{6,} *, Kai Tao^{3,7}, Ben Bin Xu^{8,} *, Yinzhu Jiang^{1,2,} *

¹School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China

²ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, People's Republic of China

³State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China

⁴Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, People's Republic of China

⁵State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, People's Republic of China

⁶Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangdong, Guangzhou 510632, People's Republic of China

⁷Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials; Hangzhou 311200, People's Republic of China

⁸Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom

[†]Z. Luo and Y. Xia contributed equally to this work.

*Corresponding authors. E-mails: <u>yzjiang@zju.edu.cn (</u>Yinzhu Jiang); <u>ben.xu@northumbria.ac.uk (</u>Ben Bin Xu); <u>ttshi@email.jnu.edu.cn (</u>Tingting Shi)

Supplementary Figures and Tables

Fig. S1 The voltage profiles of Zn-Zn symmetric cells with 0.05/0.1/0.5 M Gly tested at the current density of 1 mA cm⁻² with the areal capacity of 1 mAh cm⁻²

Fig. S2 The pH of bare ZnSO₄ electrolytes with/without Gly/Ac-Gly/Gly-NH₂

Nano-Micro Letters

Fig. S3 SEM images of Zn plates surface morphologies soaked in different solutions for 7 days

Fig. S4 The evolution of pH value before and after Zn plate immersed in different solutions for 7 days

Fig. S5 CV curves of Zn-Zn symmetric cells at various scan rates from 2 to 10 mV s⁻¹ in **a** bare ZnSO₄; **b** ZnSO₄+Gly; **c** ZnSO₄+Ac-Gly; and **d** ZnSO₄+Gly-NH₂ electrolytes

Fig. S6 SEM image of Zn plate soaked in Gly/H₂O solution for 7 days and the corresponding EDS mapping

Fig. S7 The high-resolution XPS spectra of Zn plate soaked in Gly/H_2O solution for 7 days: **a** C 1s; **b** N 1s

Fig. S8 EIS spectra of the Zn-Zn symmetric cells **a** without and **c** with Gly additive before and after polarization. The corresponding chronoamperograms of the Zn-Zn symmetric cells **b** without and **d** with Gly additive under the applied overpotential of 5 mV. **e** Calculated Zn²⁺ transfer numbers ($t(Zn^{2+})$) of ZnSO₄ electrolyte with/without Gly

Fig. S9 Electrostatic potential mapping of Gly molecule

Fig. S10 Simulated RDF for Zn²⁺-O (H₂O) in bare ZnSO₄ electrolyte

Fig. S11 Simulated RDF for Zn²⁺-O (H₂O) in ZnSO₄+Gly electrolyte

Fig. S12 Raman spectra for different electrolytes

Fig. S13 MSD as a function of time under ZnSO₄ and Gly-containing electrolytes

Fig. S14 a CE comparison of Zn-Ti cells in $ZnSO_4+Gly/Ac$ -Gly/Gly-NH₂ electrolytes at 10 mA cm⁻² and 1 mAh cm⁻² and **b**, **c**, **d** corresponding voltage profiles at different cycles, respectively

Fig. S15 EIS results of Zn-Zn symmetric cells using bare ZnSO₄ and ZnSO₄+Gly electrolytes **a** before and **b** after 20 cycles

Nano-Micro Letters

Fig. S16 The SEM images of Zn electrodeposition on Zn plates in different electrolytes for 2 h at 5 mA cm⁻²

Fig. S17 a XRD patterns of Zn anode after 50 cycles in different electrolytes. **b** Partial XRD patterns at 2 theta among 15°-35°

Fig. S18 The voltage profiles of Zn-Zn symmetric cells with/without Gly/Ac-Gly/Gly-NH₂ tested at the current density of 10 mA cm⁻² with the areal capacity of 10 mAh cm⁻²

Fig. S19 a XRD patterns of commercial Zn plate and rolled Zn foil. b The cross-section SEM image of rolled Zn foil

Fig. S20 The voltage profiles of Zn-Zn symmetric cells with/without Gly tested at the current density of 5 mA cm⁻² with the areal capacity of 5 mAh cm⁻² (rolled Zn foil as anode with the DOD_{Zn} of 43%)

Fig. S21 a SEM image and b XRD pattern of β-MnO₂ cathode (PDF#24-0735)

Fig. S22 Cycling performances of Zn-MnO₂ full cells at the current density of **a** 3.0 A g^{-1} and **b** 5.0 A g^{-1} with/without Gly. 0.1 M MnSO₄ was added into each electrolyte

	Corrosion current density	Corrosion potential
Electrolytes	j _{cor}	V _{cor}
	$(mA cm^{-2})$	(V)
bare ZnSO ₄	4.23	-0.975
$ZnSO_4 + Gly$	1.11	-0.974
$ZnSO_4 + Ac$ -Gly	1.45	-0.975
$ZnSO_4 + Gly-NH_2$	1.30	-0.974

Table S1 The corrosion current density (j_{cor}) and corrosion potential (V_{cor}) of Zn anodes cycled in different electrolytes derived from Fig. 1c

Table S2 The growth rate of current density between 50-200 s in different electrolytes derived from Fig. 2b

Electrolytes	Current density increased from 50-200 s (mA cm ⁻²)	Growth rate (mA cm ⁻² s ⁻¹)
bare ZnSO ₄	5.28	0.035
$ZnSO_4 + Gly$	2.75	0.018
$ZnSO_4 + Ac$ -Gly	3.24	0.022
$ZnSO_4 + Gly-NH_2$	3.42	0.023