Supporting Information for

Artificial Macrophage with Hierarchical Nanostructure for Biomimetic Reconstruction of Antitumor Immunity

Henan Zhao¹, Renyu Liu², Liqiang Wang³, Feiying Tang⁴, Wansong Chen^{1, *} and You-Nian Liu^{1, *}

¹ Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China

² Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China

³ Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China

⁴ College of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, P. R. China

*Corresponding authors. E-mail: <u>chenws@csu.edu.cn</u> (Wansong Chen); <u>liuyounian@csu.edu.cn</u> (You-Nian Liu)

Supplementary Figures and Tables

Fig. S1 FT-IR spectra of PAA, standard BaSO₄ and PAA-modified BaSO₄ nanoparticles

Fig. S2 SEM images and corresponding element mapping of (**a**) BaSO₄, (**b**) BaSO₄@ZIF-8

Fig. S3 XPS survey spectra of ZIF-8, BaSO₄ and BaSO₄@ZIF-8 nanoparticles

Fig. S4 SEM image of ZIF-8 nanoparticles

Fig. S6 (a) Hydrodynamic size distribution of BaSO₄@ZIF-8 nanoparticles at 0 h and 12 h in physiological saline. (b) The dispersion stability of BaSO₄@ZIF-8 nanoparticles in physiological saline within 7 days

Fig. S7 (**a**) Average diameters of BaSO₄@ZIF-8/TRF NMΦs at 0 h, 12 h in physiological saline and (**b**) its dispersion stability within 7 days

Fig. S8 Release of Ba^{2+} and Zn^{2+} from $BaSO_4@ZIF-8/TRF$ NM Φ s in the culture media of normal cells (pH 7.4) and tumor cells (pH 6.5)

Fig. S9 Intracellular Zn^{2+} content of 4T1, 3T3 and L02 cells after incubation with BaSO₄, ZIF- 8/TRF, and BaSO₄@ZIF-8 for different time periods

Fig. S10 Cell viability of (a) 3T3, (b) L02 and (c) 4T1 cells incubated with BaSO₄, ZIF-8/TRF, BaSO₄@ZIF-8, BaSO₄@ZIF-8/TRF and BaSO₄@ZIF-8/TRF + CQ

Fig. S11 Live-dead staining images of tumor cells after incubation with BaSO₄ (70 μ g mL⁻¹), ZIF-8/TRF (30 μ g mL⁻¹), BaSO₄@ZIF-8 (150 μ g mL⁻¹), BaSO₄@ZIF-8/TRF (150 μ g mL⁻¹), BaSO₄@ZIF-8/TRF (150 μ g mL⁻¹) + CQ (3 μ g mL⁻¹) for 24 h

Fig. S12 The expression of anoikis-related proteins in 4T1 tumor cells after different treatments. Groups: (1) control; (2) BaSO₄; (3) ZIF-8/TRF; (4) BaSO₄@ZIF-8; (5) BaSO₄@ZIF-8/TRF; (6) BaSO₄@ZIF-8/TRF + CQ. **p < 0.01 (n = 3)

Fig. S13 (a) JC-1 staining of 4T1 tumor cells after different treatments. **(b)** Red-togreen fluorescence ratio of tumor cells in different groups. Groups: (1) control; (2) BaSO4; (3) ZIF- 8/TRF; (4) BaSO4@ZIF-8; (5) BaSO4@ZIF-8/TRF; (6) BaSO4@ZIF-8/TRF + CQ. **p < 0.01

Fig. S14 Intracellular oxidative stress of 4T1 tumor cells after different treatments was examined through DCFH-DA staining

Fig. S15 The LDH release of tumor cells after different treatments for 24 h. Groups: (1) control; (2) BaSO₄; (3) ZIF-8/TRF; (4) BaSO₄@ZIF-8; (5) BaSO₄@ZIF-8/TRF; (6) BaSO₄@ZIF-8/TRF + CQ. **p < 0.01 (compared to the control group; n = 3)

Fig. S16 Cell cycle distributions of tumor cells after different treatments

Fig. S17 Fluorescence distributions of HMGB1 (red line) and DAPI (blue line) within 4T1 tumor cells along the dash lines in Fig. 4B

Fig. S18 Nitrogen adsorption/desorption isotherms and pore size distribution of (**a**) BaSO₄@ZIF-8 nanoparticles and (**b**) decomposed BaSO₄@ZIF-8 nanoparticles

Fig. S19 Binding energy of different proteins on BaSO₄ nanoparticles

Fig. S20 Confocal fluorescence images showing the locations of tumor antigens and nanoparticles in macrophages

Fig. S21 Statistical results of macrophage polarization *in vitro* under different treatments: (1) control; (2) LPS; (3) BaSO₄; (4) ZIF-8/TRF; (5) BaSO₄@ZIF-8; (6) BaSO₄@ZIF-8/TRF (**p< 0.01, n = 5)

Fig. S22 (a) Near-infrared fluorescence images and **(b)** biodistribution results of BaSO₄@ZIF- 8 and BaSO₄@ZIF-8/TRF in 4T1 tumor-bearing post intratumoral injection (i: spleen; ii: liver; iii: heart; iv: tumor; v: kidney; vi: lung)

Fig. S23 Intratumoral Zn^{2+} was detected with Zinquin as a probe (blue fluorescence) after different treatments (scale bar = 100 µm). Groups: (1) PBS; (2) BaSO4; (3) ZIF-8/TRF; (4) BaSO4@ZIF-8; (5) BaSO4@ZIF-8/TRF

Fig. S24 (a) Flow cytometry data and **(b)** statistical results of M1 and M2 polarization *in vivo* after different treatments (**p < 0.01, n = 5)

Fig. S25 (a) Serum TNF- α , (b) IL-6, and (c) IL-10 levels in tumor-bearing mice after different treatments. Groups: (1) control, (2) BaSO₄, (3) ZIF-8/TRF, (4) BaSO₄@ZIF-8, (5) BaSO₄@ZIF-8/TRF (**p < 0.01, n = 5)

Fig. S26 DC maturation was analyzed by flow cytometry after different treatments (gating on $CD11c^+$)

Fig. S27 Flow cytometry data of T helper cells (CD3⁺/CD4⁺, T_h cells) and cytotoxic T cells (CD3⁺/CD8⁺, CTLs) *in vivo* after different treatments

Fig. S28 The immunohistochemistry staining images of distant 4T1 tumor tissues after different treatments (scale bars = $100 \ \mu m$)

Fig. S29 Serum IFN- γ of mice after various treatments: (1) control, (2) BaSO₄, (3) ZIF-8/TRF, (4) BaSO₄@ZIF-8, (5) BaSO₄@ZIF-8/TRF (**p < 0.01, n = 5)

Fig. S30 (a) Representative immunofluorescence staining images of distant tumors and **(b)** quantitative results after different treatments. Scale bar = 100 μ m. Groups: (1) control, (2) BaSO₄, (3) ZIF-8/TRF, (4) BaSO₄@ZIF-8, (5) BaSO₄@ZIF-8/TRF (**p < 0.01, n = 5)

Fig. S31 The expression of anoikis-related proteins in tumors after different treatments (**p < 0.01). Group: (1) control, (2) BaSO₄, (3) α PD-1,(4) ZIF-8/TRF, (5) BaSO₄@ZIF-8, (6) BaSO₄@ZIF-8/TRF, (7) ZIF-8/TRF + α PD-1 and (8) BaSO₄@ZIF-8/TRF + α PD-1

Fig. S32 Individual tumor growth curves of primary tumors after different treatments: (1) control, (2) BaSO₄, (3) α PD-1,(4) ZIF-8/TRF, (5) BaSO₄@ZIF-8, (6) BaSO₄@ZIF-8/TRF, (7) ZIF-8/TRF + α PD-1, and (8) BaSO₄@ZIF-8/TRF + α PD-1

Fig. S33 Individual tumor growth curves of distant tumors after different treatments: (1) control, (2) BaSO₄, (3) α PD-1,(4) ZIF-8/TRF, (5) BaSO₄@ZIF-8, (6) BaSO₄@ZIF-8/TRF, (7) ZIF- 8/TRF + α PD-1, and (8) BaSO₄@ZIF-8/TRF + α PD-1

Fig. S34 (a) H&E staining and **(b)** TUNEL staining images of primary tumor slices in tumor- bearing mice after different treatments: (1) control, (2) BaSO₄, (3) α PD-1,(4) ZIF-8/TRF, (5) BaSO₄@ZIF-8, (6) BaSO₄@ZIF-8/TRF, (7) ZIF-8/TRF + α PD-1, and (8) BaSO₄@ZIF-8/TRF+ α PD-1. DNA fragmentations were stained by TUNEL (green fluorescence), and the nuclei were stained by Hoechst33342 (blue fluorescence). Scale bars = 50 µm

Fig. S35 (a) H&E staining, and **(b)** TUNEL staining images of distant tumor slices in tumor- bearing mice after different treatments: (1) control, (2) BaSO₄, (3) α PD-1,(4) ZIF-8/TRF, (5) BaSO₄@ZIF-8, (6) BaSO₄@ZIF-8/TRF, (7) ZIF-8/TRF + α PD-1, and (8) BaSO₄@ZIF-8/TRF+ α PD-1. DNA fragmentations were stained by TUNEL (green fluorescence), and the nuclei were stained by Hoechst33342 (blue fluorescence). Scale bars = 50 µm

Fig. S36 Body weights of mice in various groups (n = 6 in each group): (1) control, (2) BaSO₄, (3) α PD-1, (4) ZIF-8/TRF, (5) BaSO₄@ZIF-8, (6) BaSO₄@ZIF-8/TRF, (7) ZIF-8/TRF + α PD-1, and (8) BaSO₄@ZIF-8/TRF + α PD-1

Fig. S37 H&E staining images of main organs in various groups: (1) control, (2) BaSO₄, (3) α PD-1,(4) ZIF-8/TRF, (5) BaSO₄@ZIF-8, (6) BaSO₄@ZIF-8/TRF, (7) ZIF-8/TRF + α PD-1, and (8) BaSO₄@ZIF-8/TRF + α PD-1. Scale bars = 100 μ m

Fig. S38 (a) Near-infrared fluorescence images and **(b)** biodistribution results of BaSO₄@ZIF- 8 and BaSO₄@ZIF-8/TRF in 4T1 tumor-bearing mice post intravenous injection (i: spleen; ii: heart; iii: kidney; iv: tumor; v: lung; vi: liver). **(c)** Biodistributions of BaSO₄@ZIF-8 nanoparticles within the main organs of in 4T1 tumor-bearing mice at 72 h post intravenous injection

Nanomaterials	Zeta potential (mV)
BaSO ₄	-36.6 ± 0.7
ZIF-8	$34.6\pm\!2.9$
ZIF-8/TRF	-9.0 ± 1.1
BaSO ₄ @ZIF-8	$-29.8\pm\!0.6$
BaSO4@ZIF-8/TRF	-22.4 ± 0.9

 Table S1 Zeta potential of various nanomaterials