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HIGHLIGHTS

• The process of machine learning is introduced in detail.

• Recent developments in machine learning for low-dimensional electrocatalysts are briefly reviewed.

• Future directions and perspectives for machine learning in hydrogen evolution reaction are critically discussed.

ABSTRACT Efficient electrocatalysts are crucial for hydrogen gen-
eration from electrolyzing water. Nevertheless, the conventional "trial 
and error" method for producing advanced electrocatalysts is not only 
cost-ineffective but also time-consuming and labor-intensive. Fortu-
nately, the advancement of machine learning brings new opportunities 
for electrocatalysts discovery and design. By analyzing experimental 
and theoretical data, machine learning can effectively predict their 
hydrogen evolution reaction (HER) performance. This review sum-
marizes recent developments in machine learning for low-dimensional 
electrocatalysts, including zero-dimension nanoparticles and nanoclus-
ters, one-dimensional nanotubes and nanowires, two-dimensional nanosheets, as well as other electrocatalysts. In particular, the effects of 
descriptors and algorithms on screening low-dimensional electrocatalysts and investigating their HER performance are highlighted. Finally, 
the future directions and perspectives for machine learning in electrocatalysis are discussed, emphasizing the potential for machine learning 
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to accelerate electrocatalyst discovery, optimize their performance, and provide new insights into electrocatalytic mechanisms. Overall, 
this work offers an in-depth understanding of the current state of machine learning in electrocatalysis and its potential for future research.

KEYWORDS Machine learning; Hydrogen evolution reaction; Low-dimensional electrocatalyst; Descriptor; Algorithm

1 Introduction

With the urgency of achieving carbon neutrality, green 
energy sources are becoming more important in promot-
ing economic and social growth [1–5]. Hydrogen, as an 
ideal renewable energy, has gained great attention [6–8]. 
Hydrogen generation from the electrolyzed water is the 
most efficient and sustainable approach to producing high-
purity hydrogen [9–14]. However, hydrogen evolution reac-
tion (HER) requires an electrocatalyst with high activity to 
reduce overpotential substantially. Therefore, more effort is 
needed in electrocatalyst discovery. Although electrocata-
lysts play a critical role in the HER, many are still devel-
oped through a trial-and-error approach in experimental 
settings [15–17]. However, given the vast materials space, 
it is challenging to explore and design exceptional electro-
catalysts [18]. Furthermore, the identification of ultrafast 
catalytic HER atomically is difficult and expensive. Con-
sequently, effective methods for screening electrocatalysts 
and understanding the HER mechanism are highly needed 
to be developed.

Low-dimensional materials present a distinctive edge 
in the context of the HER. Here are some key advantages: 
(1) High surface-to-volume ratios: these unique geometries 
endow a multitude of active sites for the HER. The conse-
quent amplification in surface area bolsters catalytic activity, 
thereby augmenting the efficiency of hydrogen evolution; 
(2) Enhanced charge transport: low-dimensional materials 
often exhibit excellent electron mobility, allowing for effi-
cient charge transport. This leads to a decrease in overpoten-
tials, reducing the energy required to drive the reaction and 
thereby enhancing its efficiency; (3) Tailorable electronic 
structure: the electronic properties of low-dimensional mate-
rials can be finely tuned through chemical modification or 
by introducing defects. This customization allows for opti-
mized binding energies for hydrogen adsorption and desorp-
tion, critical for the HER process; (4) Structural flexibility: 
the mechanical properties of low-dimensional materials 
can also be tailored to support optimal structural dynam-
ics. This flexibility can enhance the reaction kinetics, thus 
making the HER process faster; (5) Integration and synergy: 

the adaptability of low-dimensional materials allows them 
to be seamlessly amalgamated with other catalysts or sup-
port materials to forge hybrid structures. This engenders 
synergistic effects, where the ensemble of diverse materials 
magnifies the overall HER performance. By leveraging these 
advantages, low-dimensional materials have the potential 
to significantly improve the efficiency and sustainability of 
hydrogen production through the HER.

Machine learning has emerged as an important tool for data 
mining and analysis, and is progressively transforming the way 
we collect, analyze, and discover materials [19–22], which 
can aid in the design and discovery of novel low-dimensional 
electrocatalysts with optimized properties for this important 
reaction. The increasing popularity of machine learning has 
revolutionized the predictions of new electrocatalysts, optimal 
composition, adsorption energy, active sites, electrocatalytic 
activity, and HER mechanism, enabling researchers to iden-
tify these catalysts in a faster and more cost-effective manner 
compared to traditional experience-based methods [8, 23–26]. 
For instance, Liu et al. utilized machine learning to investigate 
the HER process on single-atom catalysts (SACs) doped on 
2D  GaPS4, and illustrated the potential of SACs in catalyz-
ing HER on 2D  GaPS4 [27]. It provides an effective and eco-
nomical method to predict HER performance for various low-
dimensional catalysts. Wexler et al. adopted machine learning 
to identify key factors affecting the HER performance of  Ni2P 
doped with nonmetal [28]. It was found that the Ni–Ni bond 
length was the most significant descriptor, indicating that non-
metal doping could enhance reactivity by inducing a chemical 
pressure effect on the  Ni3-hollow site. These results provide 
important insights for the design of new HER electrocatalysts. 
Moreover, Pandit et al. employed enhanced eXtreme Gradient 
Boost Regression models to select NiCoCu alloy-based cata-
lysts for the HER, and demonstrated that this approach suc-
cessfully screened the most active HER catalysts from a vast 
array of candidates [29]. To investigate structure/property rela-
tionships, Parker et al. analyzed 1300 platinum ensembles by 
machine learning. Their findings revealed that small particles 
were conducive to disordered materials, while ultra-large (110) 
surface areas were supportive of ordered materials to achieve 
efficient hydrogen evolution [30]. Besides, machine learning 
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can be utilized to design experiments for fabricating materials 
instead of designing materials themselves [31–33]. Despite 
considerable research on low-dimensional electrocatalysts for 
the HER with machine learning, a comprehensive summary 
of this approach is still lacking. Hence, it is crucial to review 
recent advancements in the machine learning applications to 
low-dimensional HER electrocatalysts.

In this work, we first present a detailed introduction of the 
general scheme of machine learning, encompassing data col-
lection, feature engineering, machine learning algorithms, 
as well as model optimization. Subsequently, we summarize 
the latest advancements in low-dimensional electrocatalysts 
guided by machine learning, specifically focusing on their 
application to the HER. A particular emphasis is placed on 
comprehending the descriptor performance and enhanc-
ing the scope of the application and design effectiveness. 
Finally, future development prospects and directions for 
machine learning methods in HER research are proposed.

2  General Process of Machine Learning

When compared to traditional hard-coded screening meth-
ods, in which algorithms were prearranged by human spe-
cialists prior to their use, computers are capable of learn-
ing from training data in the middle of a machine-learning 
process, allowing them to screen electrocatalytic materials 
automatically [34–36]. A machine learning model can be 
constructed as a result of linear or nonlinear relationships 
that exist between features and material properties, and it is 
through this fundamental step that the applicability and fea-
sibility of the model can be evaluated [37–39]. Subsequently, 
using the correct algorithms, models are constructed and 
predictions are made about reaction mechanisms or proper-
ties based on the data presented [40]. Finally, after the train-
ing and test sets have been established, the machine learning 
models are validated, assessed, and optimized [41]. In Fig. 1, 
we illustrate the process of using machine learning-accel-
erated computations and designing electrocatalysts for the 
HER. Subsequently, the utilization of machine learning will 
be described with detailed elaboration.

2.1  Data Collection

In machine learning, the most critical step is the collection 
of data [42]. To obtain the desired data, a digital format is 

used, based on the data gathered from the experiment, the 
calculation, and the simulation, as well as from the database 
[43]. Furthermore, to integrate data from a variety of sources 
during the collection process, data fusion is performed [44]. 
As a result, the merged data is more comprehensive and 
informative as compared with the original data. Neverthe-
less, the collected data often contains noise, incorrect, irrel-
evant, and even missing data, which can significantly com-
promise the quality of the machine learning model [45]. The 
quality of the data is evaluated based on various indexes, 
including validity, accuracy, completeness, consistency, and 
uniformity [46–49]. Fortunately, databases for materials sci-
ence have been consistently built over the past century and 
can provide large raw data, bringing great convenience for 
machine learning [50–52]. Materials databases, for example, 
the Inorganic Crystal Structure Database, the Pauling File, 
the Crystallography Open Database, and similar databases 
are widely used as data sources [20, 53–55]. Additionally, 
there is no doubt that the use of databases of computed mate-
rials, such as those developed by the Material Project and 
Open Quantum Materials, is becoming increasingly com-
mon [9, 56–59]. Databases for specific applications, includ-
ing Materials Web online database, Cambridge Structural 
Database, and Catalyst Acquisition by Data Science, are also 
adopted [13, 60–64]. Furthermore, low-dimensional materi-
als databases are specialized repositories of information and 
data related to various low-dimensional materials, such as 
2D materials (e.g., graphene, transition metal dichalcoge-
nides) and 1D nanowires (e.g., carbon nanotubes, nanow-
ires). Renowned databases include but are not limited to 
Materials Project, 2D Materials Database [65], Nanomate-
rial Registry [66], and Computational 2D Materials Data-
base [67]. These databases serve as valuable resources for 
researchers and scientists working in the field of materi-
als science and nanotechnology. More importantly, rapid 
access to materials databases is crucial for data collection 
in machine learning.

After the data collection process, the collected data 
may be incomplete, inconsistent, or even spurious, and 
may not be compatible with the working environment 
[68]. As a precaution to make sure that predicting models 
will perform well, irrelevant and duplicate data should be 
removed. Machine learning models require accurate data 
that is free of errors, redundant, erroneous, or duplicate 
information within a dataset, and data cleaning can elimi-
nate or correct such errors [21, 69–71]. In data cleaning, 
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several steps are involved, such as sampling, processing 
abnormal values, discretizing data, and normalizing data 
[59]. With data sampling, highly accurate prediction mod-
els can be derived with fewer data, and abnormal values 
must be eliminated to ensure model accuracy. It is known 
that data discretization reduces the possible values for a 
continuous feature, while data normalization defines the 
data magnitudes at the same level to optimize several 
machine learning algorithms. It is possible that the dataset 
may be messy even after reducing noise, data redundancy, 
as well as abnormal values through these steps [72–74].

To ensure the representativeness and unbiased nature of 
the data used for model training, a multi-faceted approach 
is adopted. This includes defining clear objectives, select-
ing diverse and reliable data sources, using random sam-
pling techniques, building a large and diverse dataset, 

preprocessing and cleaning the data, handling missing 
data appropriately, and detecting and mitigating biases. It 
must be acknowledged that achieving the complete elimi-
nation of biases remains a formidable challenge, however, 
a systematic and robust approach, coupled with regular 
assessments and monitoring, can substantially enhance the 
prospects of fairness and accuracy in the trained models.

2.2  Feature Engineering

After collecting enough available data, appropriate features 
are obtained from the raw data and tasks, which is a key step 
in predicting targeted properties without redundancy [33, 
75]. Features are also known as descriptors, which enable 
machine learning algorithms to perform at their best [76, 
77]. Generally, an input descriptor can take the form of a 

Fig. 1  Process of machine learning for designing HER electrocatalysts
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number, a vector, a matrix, or a character string, and rep-
resents a series of input data assigned to the characteristic 
properties of the materials [78, 79]. If appropriate features 
are selected during feature extraction, the model can be 
made more understandable and accurate while reducing its 
dimensionality and complexity. It involves a cautious and 
comprehensive collection of reasonable descriptors [80–82]. 
In addition, feature selection not only simplifies, accelerates, 
and improves the interpretability of the learner models, but 
also allows for a deeper exploration of material characteris-
tics through the use of feature engineering tools (Columbus, 
DeepDive, and Explorekit) [83–85]. Notably, the number of 
features should be considered before choosing features for 
a model [86–88]. Raw scientific data is converted into use-
ful features that encode material information, including the 
density of state, Voronoi tessellations, chemical species, and 
one-hot encoded composition-based feature vectors [89–93]. 
For electrocatalytic materials, features related to the crystal 
and geometrical structure, element compositions, and elec-
tronic properties are used to predict and disclose destined 
properties containing activity, stability, and selectivity [19, 
44, 94–99]. The electrocatalytic properties of materials can 
be predicted by converting features into descriptors, which 
should be broad and efficient in describing such proper-
ties [100]. However, the initial guess structure is a start-
ing point, it may not invariably yield accurate structural 
descriptors. To enhance precision, a multifaceted approach 
often necessitates a synergy of additional strategies, itera-
tive refinement, and optimization. For instance, in the land-
mark study by Chen et al. [101], a novel machine learning 
framework was devised to optimize local structures through 
a local machine- learning potential (MLP). This pioneering 
method enabled the extraction of precise structure descrip-
tors, leading to the identification of 43 high-performance 
alloys as potential HER electrocatalysts from a pool of 2973 
candidates. Several top candidates were further corroborated 
experimentally, with the AgPd alloy being systematically 
scrutinized using ab initio calculations under realistic elec-
trocatalytic conditions to attest to the framework’s accuracy. 
This approach epitomizes the fusion of computational effi-
ciency and precision using optimized local MLP structural 
descriptors, offering a path forward in the design of high-
performance electrocatalysts.

An electrocatalytic reaction, for example, is characterized 
by the bond energy formed between adsorbed hydrogen and 
the electrocatalyst, and this is expressible by the hydrogen 

adsorption energy (EHad), and the d-band structure. These 
two factors show the catalytic activity of the reaction [102]. 
Additionally, electronic and structural properties, such as 
Fermi level, work function, electron affinity, coordination 
numbers, and atomic radial distribution functions, are also 
important features [4, 20, 57, 96, 103–110]. With the rapid 
development of deep learning, automated feature engineer-
ing is now extensively utilized [111]. Using deep learning, 
computers are capable of learning features automatically 
from data and combining them during model construction, 
reducing the inadequacy of manual feature engineering 
[112]. A wide range of applications are possible with this 
technology including drug delivery, batteries, bioinformat-
ics, and nanotechnology [113–116].

2.3  Machine Learning Algorithms

Machine learning is an efficient and powerful strategy 
towards predicting electrocatalytic performance due to its 
ability to correlate input features (properties of the elec-
trocatalyst) with output parameters (electrocatalytic perfor-
mance) [117, 118]. The selection of an appropriate machine 
learning algorithm is crucial for achieving high prediction 
and generalization ability. Several mathematical theories 
have been applied to the creation of machine learning algo-
rithms, including Markov chains, least squares methods, and 
Gaussian processes. In materials science, machine learning 
algorithms can be grouped into three types: classification, 
regression, and clustering (Fig. 2), with each algorithm 
offering unique advantages and limitations. While the details 
of each algorithm have been reviewed and summarized 
elsewhere [31, 41, 94], we present here some representative 
algorithms that have been employed for establishing deep 
structure–activity relationships.

Material science has become increasingly interested in 
kernel-based algorithms because they are capable of han-
dling complicated regression issues beyond the capabili-
ties of simple linear models. As a result of the kernel trick, 
ridge regression, and classification are often combined to 
yield kernel ridge regression (KRR), which can predict the 
electrochemical activity of electrode materials according to 
their structural characteristics [119]. As a binary classifica-
tion and regression algorithm, the support vector machine 
(SVM) classifies training data into two distinct classes with 
a low error by using a hyperplane. For instance, SVM can 
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classify high-entropy alloy solid solution phases across 
feature ensemble sizes [20]. In both SVM and KRR, the 
hyperparameter settings have a significant impact on per-
formance. SVM takes less time in prediction, while KRR 
spends less time to fit medium datasets. Despite this, the 
training time of SVM and KRR cannot be exclusively attrib-
uted to the dataset size. Rather, it emerges as a function of 
various intertwined factors, encompassing the complexity 
of the algorithms, the specific attributes of the dataset, and 
potentially other underlying considerations that contribute 
to the overall computational demand. An artificial neural 
network (ANN), which simulates biological neural networks, 
is often included in machine learning models. Because of 
its self-learning and self-adaptive abilities, it can adjust its 
internal structure as it learns and adapts to external informa-
tion. As a reliable algorithm, it has been utilized to forecast 
the rest usable lifetime of Li-ion batteries online and screen 

catalysts for their effectiveness as a reliable algorithm for 
large datasets [58, 120, 121]. Moreover, Rice and cowork-
ers utilized a high-dimensional neural network, along with 
sampling methodologies and DFT calculations, to explore 
the efficiency of the hydrogen coupling reaction at the  H2O/
Pt (111) interface [122]. The aim was to obtain a detailed 
atomistic understanding of how the presence of an aqueous 
medium impacts the structure and reactivity of the HER. 
By using cutting-edge tools and techniques, the research 
team was able to gain valuable insights into the underlying 
mechanisms of the reaction, which can inform the develop-
ment of more effective HER electrocatalysts. This approach 
provides a detailed and comprehensive picture of the hydro-
gen coupling reaction at the interface, which can serve as 
a basis for further research and advancement in the field 
of the HER. ANN is capable of addressing complex non-
linear problems with large datasets, but requires a deeper 

Fig. 2  Typical machine learning algorithms in electrocatalyst design
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understanding of machine learning, which is more difficult 
to operate than SVM and KRR owing to the weight setting 
[123, 124]. Furthermore, the K-nearest neighbor algorithm 
is applied extensively to identify and predict materials with 
excellent performance [125–127]. In the case of large data-
sets, however, it may require a considerable amount of time 
and memory. Also, other algorithms, like logistic regression 
and decision trees, are utilized, which require strict math-
ematical reasoning, strong interpretation, and fast running 
speeds, making them suitable for small datasets [128, 129].

2.4  Model Optimization

Data sets are crucial to evaluating the stability and perfor-
mance of machine learning models in material research. 
Accurately dividing these data sets into training and test 
sets is a critical step in assessing the model’s effective-
ness. Typically, 80% of the original data is found in the 
training set, while a test set includes the remainder. The 
process of evaluating errors in both the training and test 
sets provides valuable insight into the extent of underfit-
ting or overfitting of a model. Overfitting occurs when 
training errors are much smaller than validation errors, 
whereas underfitting occurs when both errors are high 
but the gap between them is small. To prevent overfit-
ting or underfitting within the models, several strategies 
can be employed. These encompass techniques such as 
cross-validation to assess how the results of a statistical 
analysis will generalize to an independent dataset, regu-
larization to add some form of penalty to the loss function, 
feature selection to choose relevant predictive variables, 
increasing training data to promote a richer understanding 
of underlying patterns, early stopping to terminate train-
ing when validation performance deteriorates, ensemble 
methods to combine predictions from multiple models, and 
data augmentation to increase the diversity of the training 
set. It is important to note that the selection of an appro-
priate strategy depends on the specific problem, as well 
as the characteristics and nuances of the underlying data. 
Through careful and considered application of these tech-
niques, it is feasible to mitigate the risks of overfitting and 
underfitting, thereby enhancing both the performance and 
the generalizability of the model. For preventing overfit-
ting and effectively using limited data, cross-validation 
methods are commonly utilized. Typically, these methods 

involve running the model multiple times with different 
data sets, and splitting each set in a way that maximizes 
the use of the data available in each set. There are several 
methods of cross-validation, including k-fold cross-vali-
dation, repeated random subsampling analysis, Bootstrap 
cross-validation, and leave-out cross-validation [130–133]. 
Machine learning models can be assessed and compared 
by utilizing various metrics, such as mean-absolute-error 
(MAE), mean squared error (MSE), and root mean square 
error (RMSE) [134].

3  Machine Learning Application for the HER

Materials science and engineering researchers are com-
mitted to developing materials that have desired properties 
rationally and efficiently [31, 135–137]. However, traditional 
trial-and-error methods have significant drawbacks, includ-
ing high costs and time investments, which can impede 
progress and limit the exploration of advanced materials 
[138–140]. As machine learning advances, researchers can 
develop models that can make accurate predictions with 
greater efficiency than pure DFT calculations [141]. This 
revolutionary trend has greatly enhanced the development 
of the HER, as evidenced by the publication of over 1741 
related articles related to machine learning methods to the 
HER during the past 8 years (Fig. 3a). In this section, an in-
depth discussion of how machine learning techniques can 
be applied to the advancement of low-dimensional electro-
catalysts will be presented (Fig. 3b), including noble metals, 
metal alloys, MXenes, carbon-based materials, metal phos-
phides, metal dichalcogenides, and others, and examine their 
performance. In the research for the HER, machine learning 
techniques play an essential role, and their application will 
significantly accelerate the progress toward developing a 
rational design of advanced electrocatalysts, thereby speed-
ing up the research process.

3.1  0D Electrocatalysts

It is one of the crucial issues to discover excellent multi-
metallic alloy (MMA) electrocatalysts that contain an opti-
mal component and composition for the HER [80]. Recently, 
through the use of active machine learning in conjunction 
with experimentation, an optimal MMA catalyst was found. 
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The model resulting from the experiment was successfully 
built solely by using the composition of the mixed precursor 
as input data, which resulted in an enhanced electrocata-
lytic performance (Fig. 4a) [142]. Interestingly, the strategy 
could be applied extensively by adjusting an electrocatalyst 

composed of an optimal component. As displayed in Fig. 4b, 
only binary data were used to train the model, which 
resulted in high uncertainties. A significant reduction in the 
uncertainty of the Pt-Ru-Ni sample has been achieved by 
updating the model in an extensive range of compositional 

Fig. 3  a Histograms of the number and citation frequency of relevant articles were retrieved with the keywords "machine learning" and "hydro-
gen evolution reaction" from the Web of Science database. b Machine learning for designing various electrocatalysts including 0D electrocata-
lysts, 1D electrocatalysts, 2D electrocatalysts, and others
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possibilities with a minimum overpotential. Also, from 
Fig. 4c, d, we can see that there is the less expected improve-
ment in model performance with additional iterations than 
at the beginning of the loop. Furthermore, as presented in 

Fig. 4e, several points were located. Consequently, the HER 
overpotential of an optimal  Pt0.65Ru0.30Ni0.05 electrocatalyst 
was 54.2 mV, even exceeding a pure Pt catalyst. This work 
simplifies the challenges associated with identifying efficient 

Fig. 4  Exploring MMA electrocatalysts via active learning and experiments. a Process of developing MMA electrocatalysts with small over-
potential. b Overpotential and uncertainty of the Pt-Ru-Ni catalysts. At certain points during the iteration process, the changes in predictions, 
which were not influenced by adding any additional data, were symbolized by the red dotted circles. c Graph showing the overpotential of the 
top-five high-uncertainty points (THP). The corresponding results were marked by black and red circles, respectively. Any differences between 
the two results were highlighted by orange arrows to help provide a clear comparison. d Plot of the THP changes in overpotential. e Scatter-
plotted ternary data points. Reproduced from Ref. [142] with permission from John Wiley and Sons
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catalyst components and compositions and can be extended 
to other catalytic reactions.

In addition, nanoclusters possess alterable catalytic activ-
ity at the nanoscale, rendering them promising candidates 
for catalysis applications [143–146]. Nevertheless, computa-
tional screening methods face difficulties owing to numerous 
relevant atomic sites in nanoclusters [102]. To address this 
issue, new techniques for efficient exploration are required. 
In this regard, as a means of replacing noble metals with 
eco-friendly and cost-effective HER electrocatalysts, Cu-
based alloy nanoclusters with 7924 candidate structures were 
screened (Fig. 5a, b) [147]. High-throughput DFT computa-
tions and machine learning were employed to identify the 
most stable core–shell configurations for  Cu55-nMn (M = Co, 
Ni, Ru, and Rh, and n ≤ 22) nanoclusters. A descriptor that 
eliminated the burdensome computations was developed 
to assess the activity of the HER on nanoclusters. Subse-
quently, an ANN was trained with a large DFT database 
to quickly and precisely predict the EHad on the surface of 
the nanoclusters (Fig. 5c–e). This work provided an effec-
tive strategy to quickly discover HER electrocatalysts with 
great potential based on metal alloy nanoclusters. Addition-
ally, machine learning was found to lower the consumption 
of modeling various adsorption site structures aided by 
descriptors [148]. Advanced structural descriptors, includ-
ing Many-Body Tensor Representation, Smooth Overlap of 
Atomic Positions, and Atom-Centered Symmetry Functions, 
were investigated by Jager et al. for predicting the Gibbs 
free energy of hydrogen adsorption (ΔGH*) on the nano-
clusters [102]. The accuracy of the descriptors in KRR was 
evaluated by potential energy scans of hydrogen on the nano-
cluster surfaces. Analyzing the data sets of 91 molybdenum 
disulphide nanoclusters and 24 copper–gold nanoclusters, 
machine learning could reduce MAE by learning diverse 
nanoclusters simultaneously as opposed to sequentially. 
Furthermore, they observed a marked reduction in the fit-
ting of potential energy surfaces when data from different 
nanoclusters were merged. Also, their group demonstrated 
a machine learning-based workflow for nanocluster configu-
rations and adsorption energy screening [149]. The results 
presented that the adsorption was exemplified on the HER, 
and the maximum of the d-band Hilbert-transform ϵu was 
associated with the EHad at the nanocluster level.

3.2  1D Electrocatalysts

Through ab initio simulations of reaction and activation 
energies, the HER kinetics of various electrocatalysts have 
been extensively studied [150]. The effect of the water static 
layers, hydrogen-bond networks, adsorbed species, and elec-
tric double layers increase the uncertainties in the energetics 
related to the DFT methods [151–153]. Although the Tafel 
slope and the EHad are frequently applied to study the HER 
kinetics, methods for revealing the HER kinetics remain 
challenging. Therefore, simulating and interpreting kinet-
ics with adequate rate expressions is an essential step for 
understanding HER mechanisms [122]. Gu et al. utilized an 
end-to-end avenue to aid in simulating the kinetics of jag-
ged Pt nanowires by machine learning multiscale method 
(Fig. 6a), which was consistent with the experimental results 
in alkaline media [154]. They demonstrated that the optimal 
ΔGH* value in alkaline solution for the overall rate was lower 
than that of acidic condition, and the jagged Pt nanowires 
exhibited an auto-bifunctional mechanism, namely, protons 
were adsorbed on the stronger binding sites and hydrogen 
was activated on weaker binding sites. Meantime, unsuper-
vised machine learning model results indicated that ΔGH* 
was interrelated with the coordination number, as well as the 
sites with CN ≤ 7 showed great activity (Fig. 6b, c). Addi-
tionally, as displayed in Fig. 6d, the plot of the ΔrGads values 
and coordination numbers of top sites from the Pt nanowire 
proportion indicated that exposed sites with low coordina-
tion were nearer to the optimal ΔrGads value. This work is 
conducive to comprehending complex kinetic processes on 
the nanoscale and HER mechanism.

Adsorbed hydrogen, as an intermediate, plays a crucial 
role in the HER [155], and EHads are commonly served as 
descriptors in machine learning. For example, Kronberg 
et al. investigated and interpreted the hydrogen adsorption 
performance on defective nitrogen-doped carbon nanotubes 
(NCNTs) using DFT simulations and Shapley additive 
explanations (SHAP) analysis based on machine learning 
(Fig. 7a) [156]. The authors achieved significant results, 
as evidenced by the MAE and RMSE results presented in 
Fig. 7b, which showed highly accurate predictions on the 
training set, attaining a chemical accuracy with an R2-score 
of 0.99. According to Fig. 7c–e, the attributions of each 
feature were summarized based on the mean magnitude of 
the SHAP values. More importantly, by using the SHAP 
strategy, they examined several chemical, structural, and 
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electronic properties of around 6500 different NCNTs in 
relation to hydrogen adsorption. Some factors are consid-
ered to be responsible for the increased hydrogen adsorption 

strength of the high spin polarization as well as the dopant-
adsorption sites, narrow gap between the highest occupied 
and lowest unoccupied molecular orbitals, and diverse 
angles and coordination effects. The method also allowed 

Fig. 5  Machine-learning-assisted investigation of  EHads on bimetallic nanoclusters. a  Cu13Co42 clusters include core–shell, segregated, ordered, 
and random structures. b A workflow outline exhibits the process from the formation of a cluster to the prediction of the EHad distributions. c 
Learning curve of KRR, the inserted image shows the calculated versus predicted EHad of 1767 DFT calculations. d Predicted  EHad distribution. 
e Evaluation of machine learning accuracy in the presence of adsorption site drift and surface reconstruction. Reproduced from Ref. [147] with 
permission from American Chemical Society
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for the investigation of catalyst durability problems, as indi-
cated by the breakage of pyrrolic nitrogen bonds, highlight-
ing the balance between defect- and dopant-caused acti-
vation and extreme instability (Fig. 7f–i). Moreover, four 
feature pairs interactions were investigated (Fig. 7j–m). The 

results showed that different features would affect each other, 
potentially impacting the model output. Prominently, it has 
been shown that analogous features could affect the hydro-
gen adsorption and HER performance on defective NCNTs, 

Fig. 6  Investigating jagged Pt nanowires via end-to-end simulation. a Flowchart for the jagged Pt nanowire using end-to-end simulation. b Iden-
tifying active sites with ΔrGads values towards the top, bridge, and hollow sites. c Plots of ΔrGads values versus coordination numbers. d Visu-
alization of Pt nanowires with an optimal ΔrGads. The magnification indicates that the low coordination numbers of Pt atoms possess suitable 
ΔrGads values. Reproduced from Ref. [154] with permission from American Chemical Society
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Fig. 7  Hydrogen adsorption on defective NCNTs was interpreted through machine learning. a Workflow utilized machine learning and SHAP 
analysis for defective NCNTs. b Unbiased generalization performance of the RF models. c The importance of ten features in the predictions of 
adsorption energy. d SHAP values for the important features. e Measuring SHAP strong interaction effects of the ten features. Partial descrip-
tions for adsorption at f (8,8) graphitic, g (14,0)  N1V1-pyridinic, h (14,0)  N1bSW-pyrrolic, and i (8,8)  N4V2-pyridinic dopant configurations are 
illustrated. Pairwise SHAP interaction effects between j the dopant-adsorption site separation and the NCNT energy gap, k the dopant-adsorp-
tion site separation and the residual charge on the adsorption site, l the energy gap and the spin polarization on the adsorption site, as well as m 
the energy gap and the NCNT chirality. Reproduced from Ref. [156] with permission from American Chemical Society
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which may exert a positive influence on the future design of 
HER electrocatalysts.

3.3  2D Electrocatalysts

The use of machine learning to screen large material data-
bases for appropriate electrocatalyst properties offers sig-
nificant advantages in terms of reduced experimental cycles 
and costs, as well as addressing the challenge of material 
selection [157]. 2D materials with more active sites show 
great potential in large-scale hydrogen production, which 
is expected to replace Pt catalysts [158–162]. Nevertheless, 
the rapid discovery of high-performance 2D HER catalyst 
is greatly depressed owing to the long experiment cycles 
and high costs associated with high-throughput calcula-
tions for adsorption energies [163]. Particularly, MXene-
based materials are gaining considerable attention because 
of their potential use in the HER [5, 155, 164]. For instance, 
the 2D metal carbide semiconductor  Ti2CO2 MXenes with 
a cost-effective basal plane has been used as an electrocata-
lyst for the HER, and the corresponding HER performance 
could be modulated by immobilizing single transition metal 
(STM) atoms onto Ti vacancies (Fig. 8a–c) [165]. Accord-
ingly, machine learning methods were used to identify 27 
different MXenes  Ti2CO2-STMs and 81 HER catalytic active 
sites using a facile descriptor, which was then applied to 
explain the trends in  Ti2CO2-STM HER catalysis and search 
for other highly active HER catalysts (Fig. 8d). As exhib-
ited in Fig. 8e, the training error decreased unremittingly 
before overfitting occurred. Subsequently, two descriptors 
of dM1–O and Ef were selected for constructing a machine-
learning model with KRR towards the HER (Fig. 8f, g). 
From the symbolic regression, which used dM1–O, Ef, cova-
lent radii rO, rTi, rC, and rH as input, and the expression for 
ΔGH* could be obtained (Fig. 8h, i). To verify the valid-
ity of the descriptor, the ΔGH* values of  Ti2CO2-STM and 
 Zr2CO2-STM were calculated and showed small R2 scores. 
(Fig. 8j, k). A fitting coefficient was defined to further prove 
the descriptor’s ability to explore promising HER catalysts, 
which successfully predicted all 81 points of  Ta2CO2-STM, 
as exhibited in Fig. 8l. The corresponding results implied 
that STM doping not only optimized the ΔGH* but also 

transformed semiconductors into conductors, and hybridi-
zation of the p-d orbitals between STM and C/O resulted 
in the rearranging of electrons close to the Fermi level, 
improving HER performance. In addition, the adsorption 
energy of hydrogen on the active sites is a primary factor 
determining HER activity [19]. For instance, as compared to 
traditional methods, Zheng et al. showed that machine learn-
ing models were more effective in predicting the ΔGH* of 
S-terminated and bare MXenes [166]. Four machine learn-
ing models, including Elman ANN, support vector regres-
sion, KRR, as well as random forest algorithms (RFA), were 
selected to predict ΔGH*. According to the results, ΔGH* 
values predicted via the RFA had a high-level accuracy, and 
testing RMSE was 0.27 eV. Furthermore, the ΔGH* values 
of  Os2B- and S-terminated  Scn+1Nn (n = 1, 2, 3) approached 
zero within a wide hydrogen coverage, resulting in excellent 
HER. In addition, HER performance was improved through 
the regulation of antibonding states by S functional groups. 
Moreover, the successful development of machine learning 
models coupled with DFT calculations has enabled the pre-
diction and design of HER electrocatalysts from numerous 
bare and single-atom doped B-based MXenes [167]. Utiliz-
ing a support vector algorithm with structural and elemental 
features, the ΔGH* values were computed for 271 B-based 
MXenes. This approach allowed for the prediction of diverse 
active catalysts, including Co/Ni2B2, Pt/Ni2B2,  Co2B2, Os/
Co2B2, and Mn/Co2B2 with small ΔGH* values. Among 
these materials,  Co2B2 and Mn/Co2B2 were identified as the 
most stable electrocatalysts, as they exhibited small ΔGH* 
over a broad hydrogen coverage. This study indicated that 
machine learning models were exciting tools for developing 
advanced HER electrocatalysts. Besides, the integration of 
high-throughput DFT and machine learning models have 
garnered significant attention for determining activity trends 
in 2D MXenes and guiding HER catalyst design [168]. This 
approach has led to the screening of 188 ideal HER catalysts 
with high mechanical and thermal stability from 2520 candi-
dates that can be experimentally synthesized. Notably, 110 
of these 2D MXenes exhibited exceptional thermos-stabil-
ity and HER activity, surpassing even the ideal Pt catalyst. 
Additionally, extensive accuracy was achieved in predict-
ing the HER activity for 2D MXenes using the AdaBoost 
ensemble learning method, suggesting that this approach 
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Fig. 8  A descriptor for designing 2D MXene HER electrocatalysts. a  Ti2C structure containing top, fcc, and hcp, representing the O adsorbed 
sites. b Defective  Ti2CO2 with Ti vacancy. c Doped model  Ti2CO2-STM and TM = 3d, 4d, and 5d metals with single atom.  S0,  S1, and  S2 cor-
respond to O positions for H adsorption. d Overall flow of the high throughput computation and machine learning. e Descriptor performance in 
the KRR. f  R2 of two important descriptors for KRR, and g other models. h Genetic programming processing. i, j The prediction performance of 
 Ti2CO2-STM and  Zr2CO2-STM with the new descriptor. k Fitting coefficient definition for  Ta2CO2-STM. l Validation and new catalyst screening 
in  Ta2CO2-STM. Reproduced from Ref. [165] with permission from Royal Society of Chemistry
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is a promising strategy for developing superior 2D MXene 
catalysts.

In recent studies, it has been demonstrated that certain 
2D graphene and graphdyine-based SACs present excep-
tional activity for the HER [80, 169–173]. To explore 
the efficient HER catalysts, Fung et al. applied machine 
learning to systematically screen SACs anchored on 2D 
graphene [174]. It has been demonstrated that the dimen-
sionality and size of the substrate can affect hydrogen 
adsorption on metals, resulting in modifications in the 
electronic structure of the metal. Furthermore, when 
compared to graphene-based SACs including V, Rh, and 
Ir, nanographene containing these elements displayed 
improved HER performance. This strategy not only 
facilitates the rapid exploration of better HER catalysts 
by modulating and doping the nanographene support but 
can also be easily extended to other catalytic reactions. 
Analogously, 104 graphene-supported SACs and their 
applications for the HER were described using machine 
learning models, along with a quantitative evaluation of 
their importance [175]. The outstanding catalytic activi-
ties of these machine learning-recommended SACs were 
documented by DFT calculations, and the best-performing 
catalysts delivered an ultralow overpotential of 3 mV for 
the HER, exceeding the noble metal Pt. As part of this 
machine learning approach, factors such as geometry opti-
mization, total energy calculation, and analysis of reaction 
pathways were not included. Significantly, this method 
can be employed to screen and construct other catalysts 
for  N2 and  CO2 reduction reactions as well. Moreover, 
Sun et al. employed machine learning models to perform 
theoretical calculations and design potential graphdyine 
(GDY)-atomic catalysts (AC) electrocatalysts, while also 
investigating the HER mechanism, reaction pathway, and 
adsorption energies by considering multiple parameters 
[176]. This study represents the first comprehensive cal-
culation of the EHads on different active sites of GDY-M 
(transition/lanthanide metals) during the HER. The elec-
tronic structures of the GDY-AC electrocatalysts were 
also evaluated and screened out. Additionally, the authors 
utilized the bagged-tree approach as the machine learning 
algorithm, based on the fuzzy model for data separation, 
to predict the EHads for various AC systems. This work 
provides innovative theoretical comprehension and direc-
tion for GDY-based AC for the HER.

In addition, recent reports have highlighted other metal-
lic alloy catalysts with 2D active surfaces. Bimetallic alloy 
catalysts containing dominant (100) facet exhibited decent 
catalytic performance and durability [177–180]. However, 
there has been less attention paid to the alloying effects 
at (100) surfaces compared to surfaces that are closely 
packed. By means of high-throughput DFT calculations 
and machine learning methods, Li et al. demonstrated that 
certain (100) surfaces alloyed with strong-binding metals 
(Pd and Pt) and weak-binding metals (Ag, Au, and Cu) are 
capable of operating as HER catalysts in acidic solutions 
(Fig. 9a) [178]. To systematically predict the HER activ-
ity of other bimetallic alloys, a machine-learning model 
was developed by the DFT-calculated database. Before 
machine learning modeling, feature selection was con-
ducted (Fig. 9b, c), determining the most important input 
variables to predict H binding energy. Subsequently, a 
BPNN model was constructed by the selected features. The 
results, shown in Fig. 9d–i, indicated excellent accuracy 
for both the training and test sets. For different combina-
tions, the scores of the training and test all surpassed 0.97 
with small RMSEs (less than 0.01). This study found that 
 PdxAg1−x and  PdxAu1−x, due to their highly active fourfold 
ensembles, showed encouraging HER activities on their 
surfaces (100), relative to their monometallic counterparts. 
It is anticipated that this work will offer valuable direction 
in designing and fabricating bimetallic alloys for the HER.

3.4  Others

In the electrocatalysis field, the active sites on the surfaces of 
0D, 1D, and 2D materials have been found to exhibit effective 
catalytic performance for the HER [181–183]. However, the 
bulk nature of these materials leads to relatively low num-
bers of active sites, which limits their potential as compelling 
catalysts, thus constraining the exploration of HER perfor-
mance in bulk materials using machine learning methods. 
Nevertheless, some bulk materials, including metal–organic 
framework (MOF) and porous graphene, possess a multi-
scale porous structure that can also act as catalytic active sites 
[140]. For instance, Li et al. developed a ruthenium-adapted 
MOF electrocatalyst that distributed atoms at an atomic 
level. This electrocatalyst can efficiently adjust the MOF 
metal center’s electronic structure, and it convincingly cata-
lyzes the HER reaction [184–186]. However, the theoretical 
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calculations involve multi-dimensional interactions of larger 
systems, resulting in very few studies by means of machine 
learning. This presents an opportunity to explore and better 
understand the electrocatalytic performance of these materi-
als coupled with machine learning in the future.

4  Conclusions and Perspectives

Without large-scale trial-and-error experiments or theoreti-
cal calculations, machine learning can efficiently explore 

Fig. 9  Application of machine learning in alloy electrocatalysts. a Illustration of (100) bimetallic alloys with the random sampling method. The 
red squares indicate the unique H adsorption environment created by a fourfold ensemble. b, c Feature analysis. Typical results of DFT calcu-
lated versus predicted EHad, d, e The ratio is nine to one between training and testing, f, g eight to two, and h, i seven to three. Reproduced from 
Ref. [178] with permission from Royal Society of Chemistry
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electrocatalysts and predict their properties. This technique 
has been widely used to rapidly and effectively screen low-
dimensional electrocatalysis systems, providing a funda-
mental understanding of electrochemical reactions from the 
atomic scale. By elucidating the development of input char-
acteristics, structures, and descriptors, as well as learning 
algorithms for performance prediction and electrocatalyst 
screening, this work highlights the advances in machine 
learning methods for investigating, comprehending, and 
optimizing the HER. Despite the great progress that has 
been achieved in the HER through the implementation of 
machine learning techniques, there are some trends in devel-
oping high-performance HER electrocatalysts via machine 
learning, as illustrated in Fig. 10.

1. In the field of electrocatalysis for the HER, the develop-
ment of efficient and effective datasets is crucial. Accu-

rate prediction of the activity, selectivity, and stability 
of different electrocatalysts is essential in designing 
superior materials for HER electrocatalysis. Machine 
learning can aid in this process by analyzing large data-
sets and identifying patterns and correlations between 
various properties of the electrocatalysts. An effective 
dataset for HER electrocatalysts should include a diverse 
set of electrocatalysts with varying properties, such as 
composition, morphology, crystal structure, and surface 
area, among others. The dataset should also include pre-
cise experimental measurements of key properties, such 
as overpotential, exchange current density, and Tafel 
slopes. A lack of precise and accurate data can lead to 
incorrect predictions and unreliable models. Accurate 
datasets with precise measurements of key properties 
can aid in the development of reliable machine learning 
models and enable the discovery of novel electrocata-
lysts with improved HER performance.

Fig. 10  Perspectives of machine learning for the HER
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2. With the emergence of intelligent robots and 3D printing 
technology, the development of electrocatalysts has rap-
idly advanced. In fact, it has become possible for robots 
to predict electrocatalysts in their self-driving laborato-
ries. To further enhance research and development effi-
ciency, an innovative robotic platform will be developed 
by integrating machine learning with AI chemists and 
high-throughput experiments. This platform will aim to 
automatically optimize experimental design and improve 
research efficiency. It will also incorporate data-driven 
robotic synthesis, robot-assisted controllable prepara-
tion, and HER performance-oriented inverse design to 
effectively enhance the development of electrocatalysts.

3. Aside from the current effective descriptors, low-cost 
computation, and environmentally-friendly preparation 
techniques used for the HER, it is essential to establish 
more powerful multi-objective optimization models. 
These models are crucial in screening and predict-
ing suitable electrocatalysts for HER, and will greatly 
improve the efficiency and accuracy of the screening pro-
cess. By incorporating these models, the development of 
HER electrocatalysts can reach new heights, resulting in 
a more sustainable and efficient energy production.

4. The electrocatalytic activity of HER is mainly influenced 
by the electronic and geometrical structures of active 
sites at an atomic level. However, other macroscopic 
factors such as solvents and electrical fields can also 
impact the HER performance. To improve the predict-
ability of novel electrocatalysts, it is essential to develop 
cross-scale models that incorporate experimental and 
environmental parameters. By doing so, the predictive 
power of electrocatalysts can be enhanced, leading to 
the development of more efficient HER electrocata-
lysts. Such advancements will facilitate the design and 
production of electrocatalysts that are better suited for 
HER, resulting in more sustainable and efficient energy 
production. However, incorporating experimental and 
environmental parameters into cross-scale models can 
dramatically increase the complexity of the modeling 
framework. Such an increase in complexity necessitates 
the employment of more advanced algorithms and sub-
stantial computational resources. Consequently, this can 
lead to a considerable escalation in both computational 
cost and the time required for simulations.

In summary, machine learning is a versatile and compre-
hensive quantitative methodology that holds significant poten-
tial for advancing research in the field of HER. Its adaptable 
and flexible nature makes it a promising tool for further pro-
gress in this domain. This review aims to inspire theoretical 

and experimental investigations into the use of machine 
learning, ultimately driving the field forward. Nevertheless, 
we emphasize the crucial role of rigorous scientific inquiry 
in unlocking the full potential of this approach. Therefore, 
this review aims to facilitate the widespread deployment of 
machine learning in high-performance HER electrocatalysts.
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