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Fast and Stable Zinc Anode‑Based Electrochromic 
Displays Enabled by Bimetallically Doped Vanadate 
and Aqueous  Zn2+/Na+ Hybrid Electrolytes
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HIGHLIGHTS

• La3+/Na+ bimetallically doped vanadate, designed for the first time, is promising in many electrochemical applications (e.g., batteries, 
electrochromics).

• This is the first report of electrochromic displays employing bimetallically doped vanadate.
• It is demonstrated for the first time that zinc dendrites and vanadate dissolution are significantly inhibited by employing an aqueous 

hybrid  Zn2+/Na+ electrolyte.

ABSTRACT Vanadates are 
a class of the most promis-
ing electrochromic materials 
for displays as their multi-
color characteristics. However, 
the slow switching times and 
vanadate dissolution issues of 
recently reported vanadates sig-
nificantly hinder their diverse 
practical applications. Herein, 
novel strategies are developed to 
design electrochemically stable 
vanadates having rapid switching times. We show that the interlayer spacing is greatly broadened by introducing sodium and lanthanum 
ions into  V3O8 interlayers, which facilitates the transportation of cations and enhances the electrochemical kinetics. In addition, a hybrid 
 Zn2+/Na+ electrolyte is designed to inhibit vanadate dissolution while significantly accelerating electrochemical kinetics. As a result, our 
electrochromic displays yield the most rapid switching times in comparison with any reported Zn-vanadate electrochromic displays. It is 
envisioned that stable vanadate-based electrochromic displays having video speed switching are appearing on the near horizon. 
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1 Introduction

With the continuous advancement of modern displays, elec-
trochromic (EC) technology is attracting emerging atten-
tion for its low energy consumption, easy integration, and 
enhanced visualization. This technology exhibits compelling 
potential for applications in nonemissive displays [1], smart 
windows [2], camouflages [3–6], and wearable electronic 
devices [7–11]. While organic electrochromic materials 
are regarded as a representative paradigm for electrochro-
mic displays due to their rapid switching times and vivid 
colors [12, 13], their inferior thermal and chemical stabili-
ties greatly hinder their real-world applications and potential 
commercialization. Consequently, the exploration of stable 
inorganic electrochromic materials having rapid switching 
times is regarded as a paradigm shift within the electrochro-
mic community.

Vanadate oxide  (V2O5), a classic inorganic electrochromic 
material, has recently intrigued significant attention due to 
its bipolar properties, particularly in display applications 
[14]. However, the strong electrostatic interaction between 
cations and  V2O5 lattice during redox reactions results in 
slow switching times and poor cycling stability due to infe-
rior structural stability [15, 16]. In order to tackle these 
issues and boost the structural stability of  V2O5, sodium ion-
stabilized vanadate oxide (SVO) nanorods were designed for 
 Zn2+-triggered electrochromic displays [17]. Nevertheless, 
the SVO electrode showed limited structural stability and 
switching speed, as the enlargement of interlayer spacing is 
highly constrained by the restricted concentration of  Na+. 
Therefore, the introduction of additional intercalated cations 
in layered SVO (i.e., bimetallically doped vanadate) is sup-
posed to be an efficient strategy to solve the aforementioned 
shortcomings. Considering that  La3+ shares a similar radius 
with  Na+, the intercalation of  La3+ into SVO layers offers a 
viable approach to further expand the interlayer spacing of 
 V3O8. Similar to  Na+, multivalent  La3+ could serve as inter-
layer pillars in the SVO lattice to stabilize the structure and 
enhance ion-conducting properties. Furthermore, the multi-
valent  La3+, with their multiple charges, could significantly 
weaken the electrostatic interaction between guest cations 
and layer structures, thereby boosting the structural stability 
of the vanadates [18].

Recently, aqueous zinc anode-based electrochromic 
devices, established by our group, have attracted much 

attention from many researchers due to their great potential 
in the field of smart electronics [19–23]. Nowadays, zinc 
anode-based electrochromic devices for display applica-
tions were also developed rapidly as their vivid color hues 
and compelling 2D CIE color space tunability [17, 24, 25]. 
However, vanadate dissolution is another key challenge for 
constructing stable aqueous zinc anode-based electrochro-
mic displays. Most recently reported zinc anode-based elec-
trochromic displays employed aqueous  ZnSO4 electrolytes 
[17, 26, 27], which brings irreversible zinc anode reactions 
and dissolution of the vanadate, due to the side effects of 
 SO4

2−. Hence, the study of decent aqueous electrolyte sys-
tems, including the exploration of applicable cations and 
anions, warrants further investigation.

Herein,  La3+/Na+ bimetallically doped vanadate (LaSVO) 
is designed and employed for electrochromic displays for 
the first time. The further intercalation of  La3+ into SVO 
lattice significantly broadened the interlayer spacing without 
changing the phase structure of SVO, which enables a supe-
rior ionic diffusion coefficient. Remarkably, the employment 
of an aqueous hybrid electrolyte comprising  ZnCl2 and NaCl 
endows the high reversibility of zinc anode and effectively 
inhibits the dissolution of vanadate. Such findings empower 
the Zn//ZnCl2-NaCl//LaSVO electrochromic display plat-
form exhibits the most compelling switching times (4.5/8.8 s 
for coloration and bleaching, respectively) and exceptional 
stability. As a proof of concept, a prototype zinc anode-
based electrochromic display is constructed. Such a display 
possesses a 1.44 V open-circuit potential (OCP), which is 
capable of spontaneously switching colors from orange to 
green via lighting a 0.2 V LED.

2  Experimental Section

2.1  Materials

All chemicals were of analytical grade and were used with-
out further purification. Sodium chloride (NaCl, 99.5%), 
zinc foil (Zn, 99.9%), vanadate oxide  (V2O5, 99%), and 
polyvinylpyrrolidone (PVP, Mw ~ 1,300,000) were pur-
chased from Macklin Biochemical Technology Co. Ltd. 
Zinc chloride  (ZnCl2, 98.0%) was purchased from Hengx-
ing Chemical Reagent Co. Ltd. Lanthanum nitrate hexa-
hydrate (La(NO3)3·6H2O, 99%) and hydrochloric acid 
(HCl, 36.0–38.0%) were purchased from Sinopharm 
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Chemical Reagent Co. Ltd. Hydroxyethyl cellulose (HEC, 
Mw ~ 30,000) was purchased from Usolf Chemical Co. Ltd. 
ITO glass were purchased from Zhuhai Kaivo Glass Co. Ltd. 
Scotch magic tape (12.7 mm × 10 m) was purchased from 
3 M Material Technology (Suzhou) Co.

2.2  Synthesis of La‑doped Sodium Vanadate Oxide 
(LaSVO) Nanorods

First, 150 mL of sodium chloride aqueous solution (2 M) 
was prepared at room temperature, and then, 10 g of com-
mercial  V2O5 powder was added into the solution and being 
stirred for more than 96 h until form a jacinth suspension. 
Next, 10 g of lanthanum nitrate hexahydrate was added into 
the suspension, and being stirred for 24 h. Then, the suspen-
sion was purified by adding deionized water and subjected 
to centrifugation with deionized water for six times. Finally, 
the product was diluted with deionized water to prepare a 
colloid with a concentration of 10 mg  mL−1.

2.3  Fabrication of LaSVO Electrodes

The LaSVO/HEC paste with a specific viscosity must 
be prepared before bar-coating. LaSVO/HEC paste was 
obtained by adding 0.7 g HEC to 30 mL LaSVO col-
loid (10 mg  mL−1) at room temperature and being stirred 
for over 6 h. After that, the LaSVO/HEC paste was bar-
coated onto the clean ITO glass with Scotch magic tape 
as a spacer for determining the thickness of the LaSVO 
film. Then, the bar-coated LaSVO/HEC electrodes were 
sequentially annealed at 100 °C for 2 h and 180 °C for 
20 h. The thickness of the as-annealed LaSVO film was 
about 965 nm (Fig. S1).

2.4  Assembly of LaSVO‑Zn‑LaSVO Electrochromic 
Displays

The PVP-based gel electrolyte was prepared by gradu-
ally adding 10 g of PVP powder into 40 mL of the hybrid 
aqueous solution comprising 0.1 M  ZnCl2 and 1.8 M 
NaCl (pH controlled at approximately 5.3). The Zn-
LaSVO electrochromic display was constructed by sand-
wiching a zinc frame between two LaSVO electrodes. The 

aforementioned PVP-based gel electrolyte was used as 
the electrolyte.

2.5  Characterization

The crystal structures and morphology of the samples 
were examined by X-ray diffraction (XRD, Rigaku D/
Max 2500/PC diffractometer with a graphite monochro-
mator and Cu Kα radiation (λ = 0.15418 nm)), X-ray 
photoelectron spectroscopy (XPS) (PHI 5000 VersaP-
robe III), field emission scanning electron microscope 
(FESEM, FEI Quanta 250 FEG) and high-resolution trans-
mission electron microscope (HRTEM, JEM-F200(HRP)).

2.6  Optical and Electrochemical Measurements

All optical measurements were performed using a UV–Vis-
ible–NIR Spectrophotometer (UH5700). All electrochemi-
cal measurements were carried out using an electrochemical 
workstation (CHI-760E, CH Instruments, Shanghai, China) 
in a two-electrode configuration, using the electrochromic 
electrode as the working electrode, a Zn foil as the counter 
electrode and reference electrode. In situ optical transmit-
tance as a function of the applied potential was obtained in 
a quartz cuvette recorded by the UV–Visible–NIR Spec-
trophotometer. ITO glass immersed in electrolyte was used 
as the baseline for measuring the transmittance of the elec-
trodes. In this work, two types of solutions were used as 
electrolyte:  ZnCl2 solution (1 M) and a hybrid aqueous solu-
tion comprised of 0.1 M  ZnCl2 and 1.8 M NaCl. The pH 
value of the electrolyte was adjusted to be ~ 5.3 by dropping 
12 M HCl.

3  Results and Discussion

3.1  Characterization of LaSVO Nanofibers

The LaSVO nanorods were prepared by a modified liq-
uid–solid stirring method at room temperature (See details 
in Sect. 2) [17]. The phase composition of LaSVO and 
SVO was analyzed via powder XRD. As depicted in the 
XRD patterns (Fig. 1a, b), the diffraction peaks of LaSVO 
and SVO are all accurately matched with the monoclinic 
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 NaV3O8·1.5H2O phase (JCPDS No. 16-0601). This means 
the intercalation of  La3+ into the SVO lattice has no effect 
on the phase structure of the SVO, due to the almost iden-
tical radius between  La3+ and  Na+. Such a monoclinic 
SVO phase, having a layered structure within the (001) 
crystal plane, is favorable for cations transportation and 
electrochemical kinetics. Remarkably, the LaSVO shows a 
broadened lattice spacing of (001) crystal plane (i.e., inter-
layer spacing), according to Bragg’s law (2dsinθ = nλ). As 
calculated from XRD patterns, the intercalation of  La3+ 
into SVO lattice expanded the interlay spacing from 0.79 
to 0.868 nm (Fig. 1c). This enlarged lattice spacing will 
result in rapid response times and improved structural sta-
bility [28].

To demonstrate the morphology of LaSVO and SVO, 
scanning electron microscopy (SEM) was employed. The 
LaSVO and SVO samples all exhibit a 1D fiber structure, 
as demonstrated in Fig. 2a, b and S2, which endows them 
being cross-linked into a fiber network when fabricating 
electrochromic electrodes [29]. The fiber networks are 
favorable for cations transportation between the electro-
lyte and electrochromic materials. Transmission electron 

microscopy (TEM) was also conducted to observe the 
crystallization and the aspect ratio of individual LaSVO 
nanofiber. The length of LaSVO nanofiber, as depicted 
in Fig. 2c, was determined to be approximately 800 nm 
with a diameter of roughly 25 nm, thereby exhibiting a 
high aspect ratio approximate of 30. High-resolution 
TEM image shows crystalline lattice spacings of 2.27 and 
1.80 Å corresponding to the (− 303) and (204) crystal 
planes, respectively (Fig. 2d). Energy-dispersive X-ray 
spectroscopy (EDX) mapping affirms the presence and 
uniform distribution of La, Na, O, and V elements within 
LaSVO nanofibers (Fig. 2e–i). These results confirm that 
 La3+ and  Na+ have been intercalated into the  V3O8 inter-
layers without changing the morphology.

3.2  Inhibition of Zn Anode Dendrites and LaSVO 
Dissolution by Using an Aqueous Hybrid  Zn2+/Na+ 
Electrolyte

With the excellent bimetallically doped vanadate (i.e., 
LaSVO) having broadened interlayer spacing being 

Fig. 1  The comparison of SVO and LaSVO crystal structures. a, b XRD patterns of the as-prepared SVO and LaSVO. c Schematically illustra-
tion of the SVO and LaSVO crystal structures,  Na+ or  La3+ exists in the form of hydrated ions
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successfully prepared, we next investigated the appro-
priate electrolyte system for stable Zn-LaSVO electro-
chromic displays. While previous reports using aqueous 
 ZnSO4 solution as electrolytes suffer zinc dendrites and 
vanadate dissolution [17, 27], a superior electrolyte sys-
tem is of significant importance for constructing stable 
Zn-vanadate electrochromic displays. Considering that 
the vanadate dissolution is originated from unbalanced 
element concentration between electrochromic materi-
als and electrolyte, the addition of  Na+ into the elec-
trolyte is supposed to change the dissolution equilib-
rium of  Na+ from sodium vanadate electrodes and thus 
inhibiting the continuous sodium vanadate dissolution 
[30]. In addition,  Na+ has a lower reduction potential 
than  Zn2+, which could form a positively electrostatic 
shield around the Zn protuberances, thus avoiding the 

formation of Zn dendrites [31]. Furthermore, the pres-
ence of  SO4

2− in electrolytes tends to form hydroxyl 
sulfate by-products on both sides of the cathode and 
anode [32], thus hindering long-term real-world appli-
cations. In this regard, we explored the dissolution and 
Zn dendrites inhibition performance by using an aque-
ous hybrid electrolyte comprised of 0.1 M  ZnCl2 and 
1.8 M NaCl. The selection of  Cl− anion in the current 
electrolyte system is because  Cl− facilitates the desolva-
tion effect in aqueous  ZnCl2 solutions [33]. As shown in 
Fig. 3a, the LaSVO electrode is slowly oxidized due to 
the presence of dissolved oxygen in the aqueous hybrid 
 Zn2+/Na+ electrolyte [34], which oxidizes the LaSVO 
electrode and thus switches its color from pale yellow 
to orange. In contrast, the LaSVO electrode, immersed 
in the pure aqueous  ZnCl2 electrolyte, was gradually 

Fig. 2  Morphological characterization of LaSVO. a, b Low magnification and high magnification SEM images of LaSVO nanofibers. c Bright-
field (BF) TEM image of LaSVO nanofibers. d High-resolution TEM image of a LaSVO nanofiber depicting the lattice planes (scale bar: 2 nm). 
e–i Dark-field (DF) TEM image of LaSVO nanofibers and the corresponding elemental mapping images of La, Na, O, and V
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dissolved into the electrolyte. The optical transmittance 
spectra of the LaSVO electrode in Fig.  3c, d affirm 
the above dissolution phenomenon. These results con-
firm that the addition of  Na+ into the electrolyte alters 
the dissolution equilibrium of  Na+ from LaSVO, thus 
effectively halting the ongoing dissolution process of 
LaSVO.

Additionally, the use of an aqueous hybrid electrolyte 
greatly diminishes the formation of Zn dendrites on the 
Zn anode. As shown in Fig. 3e, the surface of the zinc foil 
before cyclic voltammetry (CV) cycling was extremely 
smooth and flat. After 1000 CV cycles, the zinc foil in 
the hybrid electrolyte keeps smooth and flat without 
dendrites (Fig. 3f). In contrast, obvious dendrites are 
observed on zinc foil when cycled in pure aqueous  ZnCl2 

electrolyte (Fig. 3g). These results affirm that the aqueous 
hybrid electrolyte comprised of 0.1 M  ZnCl2 and 1.8 M 
NaCl is promising for constructing stable Zn-vanadate 
aqueous electrochromic displays.

3.3  Electrochemical and Electrochromic Performance 
of LaSVO Electrodes

With the careful selection of the LaSVO electrode having 
wide interlayer spacing, and the hybrid electrolyte system 
inhibiting vanadate dissolution as well as Zn dendrites 
formation, we then investigated the electrochromic per-
formance of the LaSVO electrodes in the aforementioned 
hybrid electrolyte. Electrochemical and electrochromic 
measurements were performed using a two-electrode 

Fig. 3  Hybrid electrolyte improving the stability of LaSVO electrode and Zn anode. Digital photos of LaSVO electrodes immersed in a hybrid 
 ZnCl2–NaCl electrolyte and b pure  ZnCl2 electrolyte, respectively. Transmission evolution of LaSVO film after being immersed in c the hybrid 
 ZnCl2–NaCl electrolyte and d in the  ZnCl2 electrolyte for seven days. SEM images of zinc anode in e initial state, after 1000 CV cycles f in the 
hybrid  ZnCl2–NaCl electrolyte and g pure  ZnCl2 electrolyte
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configuration where zinc foil was used as the anode and 
vanadate electrode as the cathode. The aqueous hybrid 
 Zn2+/Na+ electrolyte (i.e., 0.1 M  ZnCl2–1.8 M NaCl) was 
used in this platform and the pure  ZnCl2 electrolyte (1 M) 
was used as the control sample.

The working mechanism of the Zn-LaSVO two-electrode 
configuration is shown in Fig. 4a. Such a two-electrode con-
figuration enables efficient energy retrieval while boosting 
the electrochromic performance of LaSVO through utilizing 
proper electrolyte systems [35, 36]. As depicted in Fig. 4b, 
the electrochemical activity of LaSVO in the aqueous hybrid 
 Zn2+/Na+ electrolyte is significantly superior to that of SVO. 
A similar trend is also observed in the pure aqueous  ZnCl2 
electrolyte (Fig. S3). These results affirm that bimetallically 
doped vanadate (i.e., LaSVO) with wider interlayer spacing 
accelerates the transportation of cations.

To further evaluate the diffusion rate of zinc ions in 
LaSVO and SVO, we examined the current density evolution 

of LaSVO and SVO electrodes during CV testing at differ-
ent scan rates (Fig. S4a, b). The ion diffusion coefficient 
was calculated and revealed according to the following Ran-
dles–Sevcik equation (Eq. 1):

where ip is the peak current (A), n is the number of electrons par-
ticipating in the reaction and is assumed to be 2, D is the appar-
ent ion diffusion coefficient  (cm2  s−1), C is the concentration of 
the active ion  (Zn2+) in the electrolyte (mol  cm−3), S is the effec-
tive area of the LaSVO electrode  (cm2), and v is the potential 
scan rate (V  s−1). To accurately figure out the  Zn2+ ion diffusion 
coefficient in LaSVO and SVO electrodes, linear plots between 
peak currents from CV curves and the square root of the scan 
rates are illustrated in Fig. S4c. Accordingly, the diffusion coef-
ficients of  Zn2+ for intercalation and extraction of the LaSVO 
electrode are all calculated to be 1.98 ×  10−9  cm2  s−1; whereas 
for the SVO electrode are 8.09 ×  10−10  cm2  s−1 for intercalation 
and 1.26 ×  10−9  cm2  s−1 for extraction (Fig. S4c). The higher 

(1)ip = 2.687 × 10
5 × n3∕2 × D1∕2 × C × S × v1∕2

Fig. 4  a Schematic diagram of Zn-LaSVO configuration. b Cyclic voltammograms of LaSVO and SVO in hybrid  Zn2+/Na+ electrolyte, respec-
tively, with a potential scan rate of 50 mV  s−1. c Optical transmittance spectra of the LaSVO electrodes at different applied voltages in the hybrid 
 Zn2+/Na+ electrolyte, inset: corresponding digital photos of the LaSVO electrodes. d The dynamic test of the LaSVO and SVO electrodes at 
531 nm in the 0.1–2.2 V window
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diffusion coefficients of the LaSVO electrode are consistent with 
the wider interlayer spacing of LaSVO, indicating its excellent 
electrochromic performance.

Figure 4c shows the transmission spectra of the LaSVO elec-
trode at different applied voltages in the aqueous hybrid  Zn2+/
Na+ electrolyte. The LaSVO electrode is orange, yellow, and 
green when being applied an external voltage of 2.2, 1.2 and 
0.1 V, respectively. Moreover, the electrode is semitransparent 
at any applied voltages (the underlying pattern is visible, inset 
in Fig. 4c), indicating its promising applications in transparent 
optoelectronics. Furthermore, the switching times of the LaSVO 
tested in the aqueous hybrid  Zn2+/Na+ electrolyte (4.5 s for col-
oration, 8.8 s for bleaching) are of significant advancement in 
comparison with that tested in aqueous pure  ZnCl2 electrolyte 
(4.7 s for coloration, 17 s for bleaching). Remarkably, such 
switching times of LaSVO in the hybrid electrolyte are the 
fastest ones compared with state-of-the-art Zn-vanadate 
electrochromic displays [17, 24, 27]. Additionally, the col-
oration efficiency (CE) of the LaSVO electrode in the hybrid 
electrolyte, calculated as 70.74  cm2  C−1 (Fig. S5a), is higher 
than that tested in the pure  ZnCl2 electrolyte (61.85  cm2  C−1, 
Fig. S5b). The value of 70.74  cm2  C−1 is also higher than 
other representative reports [17, 24, 37, 38], which further 
confirms the Zn//ZnCl2–NaCl//LaSVO electrochromic dis-
play platform a promising paradigm for energy-efficient 
transparent electrochromic displays. X-ray photoelectron 
spectroscopy (XPS) results reveal the color switching of 
LaSVO is originated from the oxidation and reduction of V 
(Fig. S6, Table S1), in a similar fashion to other vanadates 
[17, 24, 27].

Along with rapid switching times and high coloration effi-
ciency realized by employing the aqueous hybrid  Zn2+/Na+ 
electrolyte, the LaSVO electrode in the hybrid electrolyte 
demonstrates enhanced cycling stability in comparison with 
previous reports [17, 37–40]. The LaSVO electrode maintains 
66.26% of initial capacity after 1000 CV cycles in the hybrid 
electrolyte, while only 21.49% of capacity is reserved in the pure 
 ZnCl2 electrolyte after 1000 cycles (Fig. S7). Such a compel-
ling cycling performance of LaSVO in the hybrid electrolyte is 
superior to the previously reported Zn-vanadate electrochromic 
displays [17, 24, 27]. Furthermore, we verified the excellent 
cycling stability of LaSVO electrodes in the hybrid electrolyte 
by investigating optical contrast retention. The results show that 
the LaSVO electrode maintains ~ 54% optical contrast after 1000 
CV cycles in the hybrid electrolyte (Fig. S8a), while the LaSVO 
in the  ZnCl2 electrolyte was almost fully dissolved (Fig. S8b). 

Likewise, the LaSVO electrode exhibits better cycle-to-cycle 
stability in the hybrid electrolyte than in the pure  ZnCl2 elec-
trolyte. As shown in Fig. S8c, the LaSVO electrode maintains 
68.1% optical contrast after 1000 switching cycles (much better 
than the results investigated in the  ZnCl2 electrolyte, Fig. S8d).

3.4  LaSVO‑Zn‑LaSVO Transparent Electrochromic 
Displays

To demonstrate the applicability of the Zn//ZnCl2-NaCl//LaSVO 
electrochromic display platform, a 5 cm × 5 cm transparent mul-
ticolor electrochromic display is assembled using a PVP-
based gel electrolyte (see Sect. 2), as depicted in Fig. 5a. 
Since the LaSVO electrodes having intermediate colors 
between orange and green, the build of LaSVO-Zn-LaSVO 
platform enables a richer color palette via superimposing 
the intermediate colors of two LaSVO segments [17, 24]. 
As shown in Fig. 5b, the LaSVO-Zn-LaSVO display exhib-
its various colors due to the color overlay of the intermedi-
ate colors of LaSVO. In addition, the redox potential dif-
ference between the Zn anode and orange colored-LaSVO 
cathode results in an open circuit potential (OCP) of 1.44 V 
(Fig. 5c) [41], which enables the spontaneous color switch-
ing from orange to green via lighting a 0.2 V regulated 
LED for 15 min (Fig. 5d). The dynamic transmittance 
characteristics of the LaSVO-Zn-LaSVO electrochromic 
display were evaluated in the 0.1–2.2 V window and are 
shown in Fig. 5d, where the switching times are calculated 
to be 24.9 s for bleaching and 6.5 s for coloration. While 
the switching times of the prototype display are inferior 
to that of a single LaSVO electrode (due to the large areal 
effect and the decay of the ionic conductivity resulting 
from the gel electrolyte), the switching times of the current 
display are superior to the previous reports [17, 24]. Fur-
thermore, the LaSVO-Zn-LaSVO electrochromic display 
has excellent semitransparency, allowing the underlying 
cartoon to be visible to the naked eye (Fig. 5f).

4  Conclusions

In summary, this study demonstrates the successful prep-
aration of bimetallically doped vanadate (i.e., LaSVO) 
through a simple liquid–solid stirring method for the first 
time. This innovative approach significantly broadens the 
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interlayer spacing between  V3O8 layers without chang-
ing the phase structure of SVO, resulting in an improved 
ionic diffusion coefficient. By introducing  Na+ into the 
 Zn2+-electrolyte, the dissolution equilibrium of  Na+ from 
LaSVO is effectively modified, leading to substantial 
inhibition of LaSVO dissolution in the aqueous electro-
lyte. In addition, the inclusion of  Na+ in the electrolyte 
proves to be highly effective in preventing the formation 
of Zn dendrites, which enables high reversibility of the 
Zn anode. These results, including both cathode materials 
and electrolyte composition design, successfully solve the 

challenges concerned in vanadate cathode and Zn anode. 
As a result, the advances presented in this article are 
expected to accelerate the development of electrochromic 
displays.
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