Supporting Information for

NH₃-Induced In-Situ Etching Strategy Derived 3D-

Interconnected Porous MXene/Carbon Dots Films for High

Performance Flexible Supercapacitors

Yongbin Wang¹, Ningjun Chen¹, Bin Zhou³, Xuefeng Zhou³, Ben Pu¹, Jia Bai¹, Qi Tang¹, Yan Liu^{1, *}, and Weiqing Yang^{1, 2, *}

¹Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China

²Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, P. R. China

³Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200, P. R. China

*Corresponding authors. E-mail: <u>y_liu@swjtu.edu.cn</u> (Yan Liu), <u>wqyang@swjtu.edu.cn</u> (Weiqing Yang)

Supplementary Figures

Fig. S1 Schematic illustration of the fabrication process of CDs and the structure of CDs

Fig. S2 The TEM image of CDs

Fig. S3 Zeta potential of pure MXene and CDs

Fig. S4 Digital images of a pure MXene and b p-MC. c, d Fhe flexibility of p-MC

Fig. S5 Raman spectra of CDs, pure MXene, and p-MC

Fig. S6 XRD patterns of Ti₃AlCN, pure MXene, and p-MC

Fig. S7 HRTEM images of a pure MXene and b p-MC films

Discussion 1. X-ray diffraction (XRD) and HRTEM characterization were carried to investigate the influence of CDs intercalation for the microstructure of MXene. As shown in Fig. S6, the 002 peaks for pure MXene and p-MC films are all located at approximately 6.3°, implying that the interplanar spacing of MXene are very similar in pure MXene and p-MC films. The HRTEM images of the pure MXene and p-MC films also exhibit the similar interplanar spacing of approximately 1.3 nm, which is in accordance with the XRD results. Thus, we can conclude that the intercalation of CDs into the MXene films can enlarge the interlayer spacing between MXene sheets but not changes the interplanar spacing of MXene.

Fig. S8 The N 1s XPS spectra of a Pure MXene and b p-MC films

Fig. S9 The Ti 2p XPS spectra for **a** pure MXene and **b** p-MC film. The O 1s, XPS spectra for **c** pure MXene and **d** p-MC film

Discussion 2. The Ti 2p and O 1s XPS spectra were carried to investigate the changes of functional groups on the surface of p-MC (Fig. S9). As the Ti 2p XPS spectra shown in Fig. S9a and S9b, the p-MC film shows weaker peak intensity of Ti-F bond, indicating the decrease of F-containing functional groups on the surface of MXene [S1-S2]. In the O 1s XPS spectra (Fig. S9c, d), the p-MC film also exhibits a weaker C-Ti- O_x peak and a stronger TiO₂ peak than pure MXene, suggesting the annealing treatment can remove part of the O-containing functional groups and cause more oxidation of surface Ti atoms for p-MC film [S3-S6]. Thus, we conclude that the annealing treatment can remove part of O-containing and F-containing functional groups and lead to partial oxidation for Ti atoms on the surface of MXene.

Fig. S10 Top-view SEM images of **a** pure fresh MXene and **b** annealed pure MXene films

Fig. S11 Top-view SEM images of a fresh MC and b p-MC films

Fig. S12 The 3D infrared spectra for CDs

Fig. S13 SEM image of pure MXene annealed at NH3 atmosphere

Fig. S14 Electrochemical performance for MC-n films and annealed MC-n films. **a** Capacitance of the fresh and annealed film electrodes as a function of CDs content at 2 A g^{-1} . **b** Rate performance of fresh MC-n films from 2 A g^{-1} to 50 A g^{-1} . **c** Rate performance of annealed MC-n films from 2 A g^{-1}

Fig. S15 CV curves of pure MXene film from 5 to 500 mV s^{-1}

Fig. S16 GCD curves of a p-MC and b pure MXene films from 2 to 20 A g^{-1}

Sample	Equivalent circuit model	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$
Pure MXene		1.202	1.049
p-MC		1.134	0.032

Table S1 Equivalent circuit model and corresponding fitting values of pure MXene film

 and p-MC film

Fig. S17 CV curves of p-MC based flexible solid-state supercapacitor

Fig. S18 GCD curves for p-MC based supercapacitor at various current density

Supplementary References

- [S1] J.Z. Jiang, F.Y. Li, S.S. Bai, Y.J. Wang, K. Xiang et al., Carbonitride MXene Ti₃CN(OH)x@MoS₂ hybrids as efficient electrocatalyst for enhanced hydrogen evolution. Nano Res. 16, 4656-4663 (2022). <u>https://doi.org/10.1007/s12274-022-5112-x</u>
- [S2] J.W. Zhu, M. Wang, M.Q. Lyu, Y.L. Jiao, A.J. Du et al., Two-Dimensional titanium carbonitride MXene for high-performance sodium ion batteries. ACS Appl. Nano Mater. 1, 6854-6863 (2018). https://doi.org/10.1021/acsanm.8b01330
- [S3] K.Y. Zhang, M.Y. Di, L. Fu, Y. Deng, Y.W. Du et al., Enhancing the magnetism of 2D carbide MXene Ti₃C₂T_x by H₂ annealing. Carbon 157, 90-96 (2020). <u>https://doi.org/10.1016/j.carbon.2019.10.016</u>
- [S4] S.L. Zhang, H.J. Ying, P.F. Huang, J.L. Wang, Z. Zhang et al., Rational design of pillared SnS/Ti₃C₂T_x MXene for superior lithium-ion storage. ACS Nano 14, 17665-17674 (2020). <u>https://doi.org/10.1021/acsnano.0c08770</u>
- [S5] K. Hantanasirisakul, M. Alhabeb, A. Lipatov, K. Maleski, B. Anasori et al., Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem. Mater. **31**, 2941-2951 (2019). <u>https://doi.org/10.1021/acs.chemmater.9b00401</u>
- [S6] J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi et al., X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406-417 (2016). <u>https://doi.org/10.1016/j.apsusc.2015.11.089</u>