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S1 XAS Characterizations 

The X-ray absorption spectroscopy (XAS) measurements were performed at the Canadian 

Light Source (CLS) located at the University of Saskatchewan, a 2.9 GeV third-generation 

synchrotron source. The Fe and Co K-edge X-ray absorption near-edge structure (XANES) 

and Extended X-ray Absorption Fine Structure (EXAFS) were collected on the 06ID-1 

Hard X-ray MicroAnalysis (HXMA) beamline. The experiment was performed in 

fluorescence mode using a Canberra 32 Ge germanium array detector.[1] In the experiment, 

a Si(111) monochromator crystal and Rh mirrors (collimating and focusing mirrors) were 

used during data collection. The beamline monochromator was detuned to 50% of its full 

flux to reduce the impact of the X-ray beam's high harmonic components; the detune energy 

point was set at the end of the XAFS data collection energy range at 13.0 Å-1. The 

monochromator energy was first calibrated at the Co K-edge using Fe and Co reference 

foils from the EXAFS Materials Inc.. The same reference foil was arranged between the 

ionization chamber detector I1 and I2 throughout the Co experiment. Therefore, the in-step 

energy calibration is available for each scan. 100% helium gas was used in all three 

ionization chamber detectors during the experiment. The scan step-sizes used were 10 

eV/step, 0.2 eV/step, and 0.05 Å-1/step, respectively, for the pre-edge from -200 to 30 eV, 

XANES from -30 to 40 eV, and XAFS regions from 40 eV to 12 Å-1 of the data range.[2] 
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Analyses of both the near edge (on an energy scale) and extended range (in the R space) 

XAS spectra were performed using Athena software. 

S2 Liquid Zinc-air Battery Assembly 

The zinc-air batteries were tested in home-built electrochemical cells; the electrolyte was 

1.0 or 6.0 M KOH with a 0.2 M zinc acetate solution. The Liquid rechargeable zinc-air 

battery was assembled with current collectors (nickel foam for cathode), a polished zinc 

plate, and a catalyst layer (CL) coated gas diffusion electrode (GDE). To prepare the air 

electrode, a definite volume of homogeneous catalyst ink consisting of Fe/Co-CTs/CNTs 

catalyst, Nafion solution (5 wt.%), and isopropanol was dropped onto a gas diffusion layer 

(GDL) (loading: 2 mg cm-2) with an exposed active area of 1.13 cm2. Then Ni foam, GDE, 

and hydrophobic and breathable membrane were pressed together to form the integrated 

air electrode. For comparison, batteries using Fe/Co-CTs/NC and 20 wt.% Pt/C catalysts 

were fabricated by the same method. Polarization data were collected using a 

galvanodynamic method at a scan rate of 1.0 mA s-1.  

S3 Fuel Cell Test  

Catalyst ink was prepared using the following procedure: 10 mg of the catalyst was mixed 

with 272 mL of a 5% Nafion solution, 206 mL of ethanol, and 147 mL of deionized (DI) 

water. The mixture underwent sonication for 15 minutes, followed by agitation for another 

15 minutes. Then, 284 µL of this ink was dispensed onto a 1.14 cm² carbon paper (Sigracet 

25BC from Ion Power) and dried at 80°C for 1 hour to form the Gas Diffusion Electrode 

(GDE) for the cathode. The ratio of Nafion to the catalyst was maintained at 1.25. The 

Membrane Electrode Assembly (MEA) was fabricated by sandwiching a 211 membrane 

between the cathode GDE and a commercially sourced Pt/C anode GDE. During testing, 

the flow rates of H2 and O2 were both maintained at 0.3 Normal Liters Per Minute (NLPM) 

with a backpressure of 0.5 bar, and the cell temperature was held at 80 °C. 

S4 Calculation 

Tafel plot calculation and electron transfer number calculation were based on the 

previously reported method.[1, 3] ECSA was calculated using ECSA= Cdl/(40*mloading), 

where mloading is the loading mass of the catalyst per geometrical area of the electrode. The 

Cdl (double-layer capacitance) was determined by measuring the capacitive current 

associated with double-layer charging from the scan-rate dependence of cyclic 

voltammetric stripping. For this, the potential window of cyclic voltammetric stripping was 

about 1.1 V to 1.19 V versus RHE (1.0 M KOH solution). The scan rates were 5 mV s-1, 

10 mV s-1, 15 mV s-1, 20 mV s−1 and 25 mV s−1. The Cdl was estimated by plotting the ja at 

0.59 V (where ja are the c anodic current densities) versus RHE against the scan rate, in 

which the slope was the Cdl. 

S5 Computational Methods  

All the first-principles DFT calculations in this work were performed without symmetry 

restrictions using the Vienna ab initio simulation package (VASP) code. For these 

calculations, we used the parametrization of Perdew-Burke-Ernzerhof of the exchange-

correlation functional within the generalized gradient approximation (GGA) formalism. No 

dispersion correction has been included in the calculation as it should be negligible in such 

compact systems involving covalent bonds. The energy cut-off was set to 400 eV while the 

Brillouin zone was sampled on 4×4×4 Gamma-Pack k-point grid. An initial graphene sheet, 

represented by a periodic plate with cell dimensions of a = 12.74 Å and b = 15.00 Å, was 

used to model the carbon support. A 20 Å thick void layer was included in the z-direction 
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to minimize possible artificial interactions between the periodic sheets. A number of carbon 

atoms were removed from the slab and replaced by FeNx and/or CoNx moieties. All atomic 

positions in the supercell were fully relaxed without any constraints using the conjugate 

gradient algorithm, and the total energy convergence criterion was set to 10-6 eV. We have 

optimized four structures, as illustrated in Fig. S1. 

S6 Supplementary Figures and Tables 

 

Fig. S1 Four DFT-optimized structures used in conjunction with the XAS 

characterizations. Brown: carbon, white: nitrogen, yellow: iron, blue: cobalt. In the Fe-

N2x2 structure, bonds of carbon atoms are completed with hydrogen 

 

Fig. S2 Schematic illustration of the synthesis of Fe/Co-SAs/NC, Fe/Co-CTs/NC, and 

Fe/Co-NPs/NC. The mass ratio among Fe(NO3)3·9H2O, Co(NO3)2·6H2O, 
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Zn(NO3)2·6H2O, and 2-mehtylimidazole (2-MIM) was kept at 0.1:0.1:3.39:3.94 (Fe/Co-

SAs/NC), 0.5:0.5:3.39:3.94 (Fe/Co-CTs/NC), 1.0:1.0:3.39:3.94 (Fe/Co- NPs/NC). The 

Fe/Co-FSAs/NC own less metal active sites than Fe/Co-SAs/NC  

 

Fig. S3 a) SEM images and b) HRTEM image of Fe/Co-SAs/NC  

 

Fig. S4 a, b) TEM images of Fe/Co-NPs/NC. c) HAADF-STEM image, the corresponding 

element maps showing the distribution of Fe, Co, C, and N 

 

 

 

 

 

 

 

 

 

 

 

5  n m
5 um 

a b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a b 

c 

C 

Co Fe N 

Overlap 

http://springer.com/journal/40820


 

Nano-Micro Lettters 

S5/S26 

 

 

Fig. S5 a-b) TEM images of Fe/Co-CTs/NC 

 

Fig. S6 a, b) The XRD of the as-prepared samples 
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Fig. S7 a) TEM images of Fe/Co-NPs/NC. b) EDS elemental analysis of the selected area 

 

Fig. S8 a) TEM images of Fe/Co-SAs/NC. b) EDS elemental analysis of Fe/Co-SAs/NC 

 

Fig. S9 a) TEM images of Fe/Co-CTs/NC, respectively. b) EDS elemental analysis of 

Fe/Co-CTs/NC 
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Fig. S10 a, b) TEM images of Fe/Co-CTs/CNTs 

 

Fig. S11 TEM image of CNTs within Fe/Co-CTs/CNTs  

 

Fig. S12 XPS survey of the as-prepared samples 

 

Fig. S13 The high-resolution Zn 2p spectra of the as-prepared samples. It shows that the 

introduction of CNTs and metal nanoparticles is conducive to removing Zn atoms 
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Fig. S14 a) The high-resolution N 1s spectra of the Fe/Co-CTs/CNTs. b) The percentage 

content of four N types relative to total N in the Fe/Co-CTs/CNTs sample 

Table S1 Percentage content of four N types relative to total N 

Types Quaternary-N (%) Pyridinic-N (%) M–N-C (%) M-N (%) 

Fe/Co-SAs/NC 30.3 63.0 6.7 0 

Fe/Co-CTs/NC 31.2 48.9 15.1 4.8 

Fe/Co-NPs/NC 60.6 28.8 0 10.6 

Fe/Co-CTs/CNTs 24.4 62.5 8.2 4.9 

 

Fig. S15 a, c) Normalized Fe and Co K-edge XANES spectra of various catalysts. b, d) 

The corresponding first derivatives of XANES spectra 
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Fig. S16 The Fourier transforms of a-b) Fe and c-d) Co K-edge EXAFS oscillations k3χ(k) 

of Fe/Co-SAs/NC, Fe/Co-NPs/NC and standard samples, including FePc (Iron(II) 

phthalocyanine) and CoPc (Cobalt(II) phthalocyanine). c) Fe and d) Co K-edge WT-

EXAFS contour plots of Fe/Co-CTs/CNTs 

 
Fig. S17 Fe XAFS data from Fe/Co-SAs/NC: EXAFS in the magnitude of Fourier 

transform for k3(k) with nearest neighbor features “A” and “B” indicated  

      EXAFS characterization was guided by the theoretical DFT modeling and focused on 

the nearest neighbor Fe local structural environment. The latter is attributed by EXAFS to 

the experimentally resolved first shell Fourier transform (FT) peak with its major feature 

peaked as “A” at around 1.41 Å and a shoulder feature “B”, carried on the high R wing 

side of the feature “A”. Guided by the DFT models FeCo-N6, Fe-N2C2, Fe-N22, and Fe-N4 

(see Fig. S1), the corresponding Fe local structural environment was derived and used for 

theoretical amplitudes and phases scattering calculation by using the software Feff 7.02 

(Rehr and Albers, 2000), respectively, guiding the followed EXAFS R space curve fitting. 
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The XAFS data reduction and the followed R space curve fitting were performed using 

ATHENA software (Ravel and Newville, 2005) and WINXAS (version 2.3, Ressler, 1997), 

respectively. The first inflection point of the Fe K edge XANES was defined as the 

experimental E0, and the post-absorption edge background was estimated by the cubic 

spline fit. The Gaussian window function was used for Fourier transform over k data range 

of 2.5-10.7 Å-1 for k3(k) with a window parameter of 30%. The R space curve fitting was 

performed for R data window 0.8-2.4Å.  

Table S2 DFT model vs. R space curve fitting result of Fe/Co-SAs/NC. 

DFT ID 
DFT model  R space curve fitting 

Path CN R  CN R DW E0 Fitting residual 

FeCo-N6 

Fe-N1 1 1.84  1.4 1.92 0.0010a 

1 29.6 
Fe-N2 2 1.97  2.3 2.00 0.0010a 

Fe-Co 1 2.26  0.3 2.26 0.0064 

Fe-N3 1 2.48  0.8 2.45 0.0070 

Fe-N2C2 

Fe-C 2 1.88  2.2 2.04 0.0010a 

-6 19.0 Fe-N 2 1.90  2.2 1.92 0.0016 

Fe-C 4 2.66  4.2 2.57 0.0076 

Fe-N2x2 
Fe-N 4 2.03  4.2 1.96 0.0038 

-6 21.6 
Fe-C 4 2.87  0.5 2.90 0.0038 

Fe-N4 
Fe-N 4 1.87  4.0 1.95 0.0034 

-6 17.3 
Fe-C 4 2.65  4.0 2.53 0.0058 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S18 Fe XAFS data from Fe/Co-SA/NC: XANES with features “a” to “g” labeled 
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Fig. S19 DFT-based theoretical XANES systems. a) XANES system form the first cycle 

of modeling. b) The XANES best fit of the first cycle. c) XANES system form the second 

cycle modeling based on the adjusted structural system guided by EXAFS result. d) The 

XANES best fit of the second cycle. XANES modeling was performed in two cycles  

 

Fig. S20 a) The 9Å cluster from the DFT Fe-N4 model. b) The Fe nearest neighbor 

coordination through bonding from N4 up to C4  
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Fig. S21 Comparison between the experimental and the XANES modeling best fit of two 

cycles of modeling 

 

Fig. S22 Cyclic voltammograms of a GC electrode coated with the Fe/Co-CTs/NC 

catalyst (loading: 800 μg cm−2), recorded in N2- and O2-saturated 0.1 M HClO4 at a scan 

rate of 50 mV s−1 

 

Fig. S23 a, b) TEM images of Fe/Co-CTs/NC with acid leaching. c) ORR polarization 

plots of Fe/Co-CTs/NC with and without acid leaching 
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Fig. S24 a) Electrochemical impedance spectra (EIS) at an open-circuit voltage (OCV) of 

H2/O2 fuel cell measured at 80 oC using the as-prepared Fe/Co-CTs/NC (red) and Fe/Co-

CTs/CNTs (blue). b) The electrochemical performance (I–V curves) of the H2/O2 fuel cell 

measured at 80 oC 

 

Fig. S25 ORR polarization plots of as-prepared samples (rotation rate: 1600 rpm) in O2-

saturated 0.1 M HClO4 at a scan rate of 5 mV s−1 
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Fig. S26 Comparative OER activities of Fe/Co-CTs/CNTs and RuO2 in 1.0 M KOH 

solution at 50 mV s−1 

 

Fig. S27 a) OER polarization plots (First OER scan) of as-prepared samples. b) OER 

polarization plots (Second OER scan) of as-prepared samples 
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Fig. S28 OER polarization plots of a) Fe/Co-CTs/NC, b) Fe/Co-NPs/NC, and c) Fe/Co-

CTs/CNTs in 1.0 M KOH. d) ORR polarization plots of Fe/Co-CTs/NC in 0.1 M KOH at 

a scan rate of 5.0 mV s−1 

 

Fig. S29 a) Comparative OER activities of Fe/Co-CTs/CNTs before and after 2500 cycles 

of CV between 1.4 and 1.8 V in 1.0 M KOH solution at 50 mV s−1. b) OER polarization 

plots of Fe/Co-CTs/NC in 1.0 M at a scan rate of 5.0 mV s−1. 
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Fig. S30 a) OER polarization plots of Fe/Co-CTs/CNTs with and without acid leaching. b) 

Polarization curves of Fe/Co-CTs/CNTs before and after 1,000 cycles (-0.1 to -0.25 V. c) 

HER and OER polarization plots of Fe/Co-CTs/CNTs. (rotation rate: 1600 rpm, 1.0 M 

KOH, and a scan rate of 5.0 mV s−1 

 

 

 

 

 

 

 

 

 

 

Fig. S31 ORR polarization plots of as-prepared samples (rotation rate: 1600 rpm) in O2-

saturated 0.1 M KOH at a scan rate of 5.0 mV s−1 

 

 

 

 

 

 

 

 

 

 

Fig. S32 Comparative OER activities of Fe/Co-CTs/CNTs before and after 5000 cycles of 

CV between 0.6 and 1.1 V in O2‐saturated 0.1 m KOH solution at 50 mV s−1 
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Fig. S33 a) ORR polarization plots of Fe/Co-CTs/CNTs (rotation rate: 1600 rpm) in O2-

saturated 0.1 M and 1.0 M KOH, respectively. b) ORR and OER polarization plots of 

Fe/Co-CTs/CNTs in 1.0 M KOH at a scan rate of 5 mV s−1 

 

 

 

 

 

 

 

 

 

 

Fig. S34 Half-wave potential (E1/2) before and after the OER process and the final activity 

retained percentage 
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Fig. S35 CV curves of a) Fe/Co-CTs /NC, b) Fe/Co-NPs/NC and c) Fe/Co-CTs/CNTs at 

different scan rates. CV curves of d) Fe/Co-SAs/NC, e) Fe/Co-NPs/NC and f) Fe/Co-

CTs/CNTs at different scan rates after the OER process. The capacitive current of g) Fe/Co-

CTs/NC, h) Fe/Co-NPs/NC and i) Fe/Co-CTs/CNTs measured at 1.15 V versus RHE as a 

function of scan rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 

d 

b 

e 

c 

f 

g h i 

1.10 1.15 1.20

-1

0

1

2
 5 mV

 10 mV

 15 mV

 20 mV

 25 mV

 

 

 C
u
rr

e
n
t 
d
e
n
s
it
y
 /
 m

A
 c

m
-2

Potential / V (vs.RHE)

 

 

1.10 1.15 1.20

-1

0

1

2
 5 mV

 10 mV

 15 mV

 20 mV

 25 mV

 

 

 C
u
rr

e
n
t 
d
e
n
s
it
y
 /
 m

A
 c

m
-2

Potential / V (vs.RHE)

 

 

1.10 1.15 1.20
-0.4

-0.2

0.0

0.2

0.4

0.6
 5 mV

 10 mV

 15 mV

 20 mV

 25 mV

 

 

 C
u
rr

e
n
t 
d
e
n
s
it
y
 /
 m

A
 c

m
-2

Potential / V (vs.RHE)

 

 

1.10 1.15 1.20
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8
After OER Process 5 mV

 10 mV

 15 mV

 20 mV

 25 mV

 

 

 C
u
rr

e
n
t 
d
e
n
s
it
y
 /
 m

A
 c

m
-2

Potential / V (vs.RHE)

 

 

1.10 1.15 1.20
-0.4

-0.2

0.0

0.2

0.4

0.6
 5 mV

 10 mV

 15 mV

 20 mV

 25 mV

 

 

 C
u
rr

e
n
t 
d
e
n
s
it
y
 /
 m

A
 c

m
-2

Potential / V (vs.RHE)

 

 

After OER Process

1.10 1.15 1.20

-1

0

1

2
After OER Process 5 mV

 10 mV

 15 mV

 20 mV

 25 mV

 

 

 C
u
rr

e
n
t 
d
e
n
s
it
y
 /
 m

A
 c

m
-2

Potential / V (vs.RHE)

 

 

5 10 15 20 25
0.2

0.4

0.6

0.8

1.0

1.2

Linear slope 6.12×10-3

 C
u

rr
e

n
t 

d
e

n
s
it
y
 /

 m
A

 c
m

-2

Scan rate (mV s-1)

Linear slope 3.956×10-2

5 10 15 20 25
0.00

0.05

0.10

0.15

0.20

0.25

Linear slope 9.47×10-3

 C
u

rr
e

n
t 

d
e

n
s
it
y
 /

 m
A

 c
m

-2

Scan rate (mV s-1)

Linear slope 8.68×10-3

5 10 15 20 25
0.2

0.4

0.6

0.8

1.0

1.2

1.4

Linear slope 4.449×10-2

 C
u

rr
e

n
t 

d
e

n
s
it
y
 /

 m
A

 c
m

-2

Scan rate (mV s-1)

Linear slope 3.097×10-2

http://springer.com/journal/40820


 

Nano-Micro Lettters 

S19/S26 

 

 

Fig. S36 a, b) Electrochemical impedance spectra (EIS) of various catalysts at a three-

electrode system 

Table S3 DFT model vs. R space curve fitting result of Fe/Co-SAs/NC before and after OER 

 
DFT model (Fe-N4)  R space curve fitting 

Path CN R  CN R DW 

Before OER 
Fe-N 4 1.87  4.0 1.95 0.0034 

Fe-C 4 2.65  4.0 2.53 0.0058 

After OER 
Fe-N 4 1.87  4.1 1.95 0.0011 

Fe-C 4 2.65  4.0 2.53 0.004 

 

Fig. S37 Comparison is made for a) the magnitude and the imaginary part of Fourier 

transform between the experimental and the Feff modeling; and b) k3(k) between the 

experimental and the Feff modeling based on the R space curve fitting result for the Fe/Co-

SAs/NC after OER 
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      The fitted parameters from the corresponding fitting are summarized in Table S3. OER 

enhanced the stability of the local structural environment FeN4 configure, illustrated by 

significantly decreasing the DW parameters by 68% and 31% for paths Fe-N and Fe-C, 

respectively. But OER has no impact on the geometry of the FeN4 configure and its nearest 

neighbor C coordination. c-d) Geometric structure of the FeN4 sites before and after OER 

process. 

 

 

 

 

 

 

 

 

 

 

 

Fig. S38 Comparison is made for the magnitude and the imaginary part of Fourier 

transform between the experimental and the Feff modeling for the Fe/Co-SAs/NC after 

OER. The fitted parameters from the corresponding fitting are summarized in Table S4 

Table S4 Structural models and R space fitting result to filter possible structures 

Model 
 Structural model  Fit result 
 Path CN Description  CN R DW E0/Residual 

M-1 

 Co-N1 2 hybrid of simplified models Co-

N4 and FeN4 (without O at this fitting 

stage), ref. EXCEL-Mingjie-20190708; 

complex CoN4 and FeN4 are at identic

al nearest neighbored site; 

Bonds Co-O & Fe-

O point to an opposite direction away f

rom the graphene sheet 

 2.0 1.88 0.0043 
-0.6  Co-N2 2  2.2 2.13 0.0040 

 Co-Fe 1  1.2 2.53 0.0050 

30.5  Co-C 4 to 8  6.5 3.13 0.0050 

M-2 

 Co-N1 2 
extension of M-

1, i.e., N2 of CoN4 are replaced by C(

2) with constrain of Co-C≥Co-N 

 1.7 1.87 0.0038 
0.3  Co-C2 2  2.2 2.16 0.0012 

 Co-Fe 1  1.2 2.53 0.0050 
39.2  Co-C 4 to 8  7.1 3.13 0.0059 

M-3 

 Co-C1 2 
extension of M-

1, N1 of CoN4 are replaced by C(2) 

with constrain of Co-CCo-N 

 2.2 1.92 0.0040 
6  Co-N2 2  2.2 2.19 0.0040 

 Co-Fe 1  1.2 2.54 0.0050 
29  Co-C 4 to 8  6.3 3.14 0.0050 

M-4 

 Co-N1 2 
extension of M-

1 with Fe replaced by Co, namely two 

CoN4 are closest neighbored 

 2 1.88 0.0045 
-2  Co-N2 2  1.9 2.13 0.0040 

 Co-Co 1  1.2 2.51 0.0050 
31.1  Co-C 4 to 8  9.8 3.15 0.0050 
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M-5 

 Co-C1 2 hybrid of M3-4 & M-4 

N1(2) of M-

1 are replaced by C(2) with constrain 

of Co-CCo-N 

Fe of M-1 replaced by Co 

 2.2 1.92 0.0040 
5.2  Co-N2 2  2 2.19 0.0040 

 Co-Co 1  1.2 2.53 0.0050 

28  Co-C 4 to 8  10.3 3.17 0.0050 

 

Fig. S39 a) A schematic of the tri-electrode configuration with Fe/Co-CTs/NC as ORR and 

OER catalysts for discharge and charge, respectively. b) Discharge and charge polarization 
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Table S5 Co R space curve fitting for Fe/Co-SAs/NC before and after OER 

 

M-8  R space curve fitting 

No. Path CN R 
 before OER  after OER 

 CN R DW  CN R DW 

M-5 

1 Co-C1 2 1.84  1.8 1.82 0.0041  2.0 1.95 0.0015 

2 Co-N2 2 1.98  1.8 1.91 0.0041  2.1 2.09 0.0015 

3 Co-C2 4 2.65-2.66  4.2 2.82 0.0033  3.8 2.73 0.0033 

4 Co-C3 CN≥4 

3.01-3.02 for the 1st four C. 

For further outer C bonding, 

R is larger the specified value 

range  

5.8 3.13 0.0033  2.2 3.63 0.0033 

Metallic 

Co 5 Co-Co 1 2.50  
1.2 2.55 0.0016  0.4 2.45 0.0023 
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curves of tri-electrodes ZAB with Fe/Co-CTs/NC. c) Galvanostatic discharge and charge 

cycling stability of Fe/Co-CTs/NC at 5.0 mA cm−2 

 

Fig. S40 a) A schematic structure of the two-electrode battery with Fe/Co-CTs/CNTs 

catalysts. b) A polarization curves (V ∼ i) and corresponding power density plots of the 

liquid ZABs with Fe/Co-CTs/CNTs and Pt/C, respectively. The battery had an open circuit 

voltage of 1.41 V. The peak power density was 310 mW cm-2 outperformed the battery 

made with Pt/C 

 

 

 

 

 

 

 

 

Fig. S41 Galvanostatic discharge and charge cycling stability of a) Fe/Co-CTs/NC and b) 

Fe/Co-CTGalvanostatic discharge and charge cycling stability of Fe/Co-CTs/CNTs at 

different current densities. Electrolyte: 6.0 M KOH with 0.2 M zinc acetate. The battery 

of Fe/Co-CTs/CNTs exhibited well-cycling stability at different current densities 

 

Fig. S42 a) Long-time galvanostatic discharge curves of Fe/Co-CTs/CNTs until complete 

consumption of Zn at a constant current density of 5.0 mA cm−2. b) The corresponding 

specific capacity curves. The specific capacity at 5.0 mA cm−2 is 812 mAh g−1, 

corresponding to a high energy density of 922 W h kg−1 
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Fig. S43 The corresponding Fourier transforms of a) Fe and c) Co K-edge EXAFS 

oscillations k3χ(k) of Fe/Co-NPs/NC (k-weight: 3). b) Fe and d) Co K-edge WT-EXAFS 

contour plots of Fe/Co-SAs/NC before and after OER process 

Table S6 Comparison of the ORR activity of present work with the literature reported 

bifunctional catalysts in acid 

Catalysts E1/2 (V) Reference 

Fe3C/NG-800 0.77 V(0.1 M HClO4 ) [S4] 

Fe3C/C-700 0.73 V(0.1 M HClO4 ) [S5] 

Fe−N/C-800 0.62 V(0.1 M HClO4 ) [S6] 

Fe2N/N-GAs-20 0.71 V (1.0 M HClO4 ) [S7] 

Fe-N-CNFs 0.61V (0.5 M H2SO4 ) [S8] 

Fe/N/CF 0.80 V (0.5 M H2SO4 ) [S9] 

PANI-Fe-C 0.80 V (0.5 M H2SO4 ) [S10] 

Fe/Co-CTs/NC 0.79 V(0.1 M HClO4 ) 

This work 

Fe/Co-CTs/CNTs 0.77 V (0.1 M HClO4 ) 
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Table S7 Comparison of the ORR/OER activity of present work with the literature 

reported bifunctional catalysts in alkaline 

Catalysts Ej=10 (V) E1/2 (V) ΔE (V) 

Eonset 

(ORR

) 

Reference 

Co-MOF 
1.45, 1.0 M 

KOH 

0.7, 1.0 M 

KOH 
0.75 -- 

[S11] 

Fe-N4 SAs/NPC 
1.66, 1.0 M 

KOH 

0.88, 0.1 M 

KOH 
0.78 0.97 

[S12] 

Fe0.5Ni0.5@N-GR 
1.44, 1.0 M 

KOH 

0.83, 0.1 M 

KOH 
0.61 0.94 

[S13] 

Fe@C–NG/CNTs 
1.68, 1.0 M 

KOH 

0.84, 0.1 M 

KOH 
0.84 0.93 

[S14] 

Ni, N-graphene 
1.50,  1.0 

M KOH 

0.85, 0.1 M 

KOH 
0.66 0.99 

[S15] 

Mn/Fe-HIB-MOF 
1.51, 1.0 M 

KOH 

0.88, 0.1 M 

KOH 
0.63 0.98 

[S16] 

NC-Co3O4-90 
1.58, 1.0 M 

KOH 

0.87, 0.1 M 

KOH 
0.71 0.91 

[S17] 

Co SA@NCF/CNF 
1.63, 1.0 M 

KOH 

0.88, 0.1 M 

KOH 
0.75 -- 

[S18] 

Fe/Co-CTs/NC 
1.35, 1.0 M 

KOH 

0.88, 0.1 M 

KOH 

0.47 

(not 

stable) 

1.03 

This work 

Fe/Co-CTs/CNTs 

1.50, 1.0 M 

KOH 

0.87, 0.1 M 

KOH 
0.63 1.05 

1.50, 1.0 M 

KOH 

0.90, 1.0 M 

KOH 
0.60 1.06 
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