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HIGHLIGHTS

• The conductive silver-plated nylon yarns fully fit the demand for wearable supercapacitor skeleton, owing to the advantages of high 
conductivity and flexibility.

• The computerized programming embroidering technique was firstly applied for realizing standardized batch processing of the flexible 
supercapacitor skeleton in various patterns.

• Cobalt phosphides were properly electrodeposited on the conductive embroidery as the pseudocapacitive materials, providing remark-
able electrochemical performance.

ABSTRACT Wearable supercapacitors (SCs) 
are gaining prominence as portable energy storage 
devices. To develop high-performance wearable SCs, 
the significant relationship among material, structure, 
and performance inspired us with a delicate design 
of the highly wearable embroidered supercapacitors 
made from the conductive fibers composited. By ren-
dering the conductive interdigitally patterned embroi-
dery as both the current collector and skeleton for 
the SCs, the novel pseudocapacitive material cobalt 
phosphides were then successfully electrodepos-
ited, forming the first flexible and wearable in-plane 
embroidery SCs. The electrochemical measurements 
manifested that the highest specific capacitance was 
nearly 156.6 mF cm−2 (65.72 F g−1) at the current 
density of 0.6 mA cm−2 (0.25 A g−1), with a high 
energy density of 0.013 mWh cm−2 (5.55 Wh kg−1) at 
a power density of 0.24 mW cm−2 (100 W kg−1). As a demonstration, a monogrammed pattern was ingeniously designed and embroidered 
on the laboratory gown as the wearable in-plane SCs, which showed both decent electrochemical performance and excellent flexibility.

KEYWORDS Wearable supercapacitor; Conductive fiber; Computerized embroidering; Interdigital pattern; Cobalt phosphide

   ISSN 2311-6706
e-ISSN 2150-5551

      CN 31-2103/TB

ARTICLE

Cite as
Nano-Micro Lett. 
(2019) 11:89

Received: 10 August 2019 
Accepted: 3 October 2019 
Published online: 17 October 2019 
© The Author(s) 2019

https://doi.org/10.1007/s40820-019-0321-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-019-0321-x&domain=pdf


 Nano-Micro Lett. (2019) 11:8989 Page 2 of 14

https://doi.org/10.1007/s40820-019-0321-x© The authors

1 Introduction

Wearable energy storage devices are receiving great atten-
tion and popularity for the growing demands from the 
modern portable electronics and smart textiles [1–4]. In 
particular, supercapacitors (SCs), also known as electro-
chemical capacitors, are drawing attention for their irre-
placeable advantages in high power density and long cycle 
life, leading to a worldwide trend seeking for the novel and 
superior electroactive materials [5–8]. Among the hot-spot 
pseudocapacitive materials, the transition metal nickel- 
and cobalt-based compounds are widely studied owing to 
their high theoretical capacitance, such as Ni–Co oxides 
[9–11], Ni–Co hydroxides [12, 13], and Ni–Co sulfides 
[14–16]. However, for nickel and cobalt phosphides, more 
studies were carried out in the fields of hydrogen evolution 
and Na-ion batteries and interests casted on SCs are still 
far from enough from the perspective of electrochemical 
energy storage [17–20]. Reviewing the recent work of Ni/
Co-related phosphides in SCs [21–23],  Co2P nanoflow-
ers- and graphene-based asymmetric SCs showed impres-
sive electrochemical properties, with the energy density 
of 8.8 Wh kg−1 (at a high power density of 6 kWh kg−1) 
[24]. Also, a CoP nanowires-based carbon cloth displayed 
remarkable negative capacitive behavior in the neutral 
LiCl/PVA electrolyte, but it dissolved gradually due to 
the side reactions with  Cl− system [25]. In this regard, it 
is highly expected to further explore the potential of Ni/
Co-based phosphides as the electrode material of SCs.

As a matter of fact, for flexible and wearable devices, 
the typical textile processing techniques [26–30], such as 
knitting, weaving, and embroidering, are rarely reported 
for integrating with the applications. Instead, more works 
paid their attention to the pure synthesis of the electroac-
tive materials [31–33]. And the commonly reported flexible 
substrates mainly include carbon-derived materials (e.g., 
activated carbon (AC), carbon nanotubes (CNTs), and gra-
phene) [34–36], polymer-based films (e.g., PET) [37–39], 
and metallic foils (e.g., Cu foil and Ti foil) [40, 41], which 
showed only limited flexibility when compared to the real 
garments. By contrast, the embroidery stitches, originating 
from the conventional hand sewing, can not only produce 
various patterns on the fabric, but also realize the standard-
ized batch processing via the computer-aided programming 
techniques [42].

In this work, inspired by the design of the small in-
plane SCs [43–45], a conductive silver-plated nylon yarns 
(SPNYs)-patterned embroidery was, for the first time, ration-
ally designed and interdigitally constructed on the common 
fabric via the computerized programming. A thin layer of 
nickel nanothorn arrays (NTAs) was then electrodeposited 
on the conductive embroidery for restoring the silver sur-
faces and creating more porous active sites for loading CoP. 
Finally, the CoP microspheres were finely located on the 
Ni NTAs-covered embroidery skeleton, and the all-solid-
state in-plane CoP@Ni NTAs@SE SCs were then assembled 
and measured, showing not only competitive capacitance but 
also extraordinary flexibility. Moreover, the computerized 
programming successfully embroidered a monogrammed 
conductive pattern on the laboratory gown, demonstrating a 
promising prospect in large-scale production of the wearable 
energy storage devices.

2  Experimental

2.1  Materials

Chemicals of LiOH·H2O 99%,  NaH2PO2 98%,  CoCl2·6H2O 
99%,  NiCl2·6H2O 99%,  NiSO4·6H2O 99%,  CH3COONa 
58%,  H3BO3 99%,  Na3C6H5O7·2H2O 99%, polyvinyl alco-
hol (PVA), pyrrole 98%,  H2SO4 96%, HCl 37%, and absolute 
ethanol are all of analytical grade. Conductive silver-plated 
nylon yarns (20D, 15 Ω cm−1) were purchased from Qingdao 
Zhiyuanxiangyu Functional Fabric Co., Ltd.

2.2  Fabrication of CoP‑Decorated Patternable 
Conductive Embroidery SCs

2.2.1  Creation of the Conductive SPNYs Embroidery

TAJIMA wearable embroidery machine with the model of 
TCMX-600 was used for automatically making the conduc-
tive embroidery stitches with a stitching speed up to 750 rpm. 
The embroidery machine has a working space of D × W 
by 460 × 550 mm2, and the stitch length ranges from 0.1 to 
12.1 mm. With the aid of computerized programming, vari-
ous patterns were properly embroidered on the base fabrics. 
Instead of using the common cotton or polyester yarns, the 
highly conductive SPNYs were selected for creating the 
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embroidery serving as both the substrates and current collec-
tors for the in-plane SCs. The detailed pattern dimensions are 
shown in Fig. S1.

2.2.2  Pre‑deposition of Ni Nanothorn on SPNYs 
Embroidery

Before the fabrication of the electroactive material CoP, a thin 
layer of nickel nanothorn arrays (NTAs) was preferentially 
deposited on the SPNYs. That is, a piece of the embroidered 
SE was immersed into a 50-mL beaker with 10% (volume 
concentration)  H2SO4 solution for the surface pretreatment of 
1 h. The fabric was then removed and washed with the deion-
ized (DI) water, ethanol, and acetone in order, followed by a 
drying process in the vacuum oven for 2 h under 60 °C. The 
electrodeposition of the Ni NTAs was conducted via a chrono-
amperometry mode, with the pretreated SE as the working 
electrode, a stainless steel plate (3.0 × 4.0 cm2) as the counter 
electrode, and a saturated calomel electrode (SCE) as the refer-
ence electrode. The base electrolytic solution was composed of 
30 mM  NiSO4, 0.4 M  H3BO3, and 0.2 M  C6H5NA3O7·2H2O, 
with the pH around 4 ~ 5. To optimize the synthetic conditions, 
the electrodeposition was performed at various potentials (1.0, 
1.2, 1.4, and 1.6 V), and the resulted products were then rinsed 
thoroughly by the DI water and stored in the vacuum oven 
under 60 °C.

2.2.3  Decoration of the CoP Microspheres on the Ni 
NTAs@SE

The cobalt phosphide was electrodeposited via the similar 
electrochemical configuration as Ni NTAs, while the electro-
lytic solution consisted of 10 mM  CoCl2, 0.1 M  Na3C6H5O7, 
0.6 M  NaH2PO2, with nitrogen bubbled through for 30 min 
before using. The electrodeposition was performed at differ-
ent potentials (0.9, 1.1, and 1.3 V) and durations (500, 750, 
1000, and 1250 s) for further confirming the most suitable 
conditions. The electrolytic solutions with different Ni/Co 
ratios (1:0, 1:1) were also applied for a comparison.

2.3  Characterization and Electrochemical 
Measurements

The chemical phases of SE, Ni NTAs@SE, and CoP@Ni 
NTAs@SE were all determined by the X-ray diffraction 

(XRD: Cu target, Ka, λ = 0.15406 nm) with a Bruker D8 
Advance X-ray diffractometer and a scanning transmission 
electron microscope (STEM: Jeol JEM-2100F). The mor-
phologies were measured by an EDS detector equipped with 
scanning electron microscopy (SEM: TESCAN VEGA3).

Raman spectra were recorded via a micro-Raman spectro-
scope (JY-HR800) with the laser emitting at 532 nm. Fou-
rier transform infrared spectroscopy (FTIR) was achieved by 
applying a Spectrum 100 spectrometer (PerkinElmer) in the 
range of 600–3500 cm−1 at a resolution of 4 cm−1.

The electrochemical measurements were performed at 
room temperature via an electrochemical workstation instru-
ment of Princeton Versa STAT3. For the single-electrode 
measurement, a three-electrode electrochemical cell was 
applied, and a piece of platinum plate and a Hg/HgO elec-
trode served as the counter and reference electrodes, respec-
tively, and the as-prepared electrode acted as the working 
electrode, with a 1 M LiOH aqueous solution as the elec-
trolyte. For the all-solid-state SC electrochemical measure-
ment, one electrode of the in-plane SC acted as both the 
counter and reference electrodes, while another electrode 
served as the working electrode. The cyclic voltammetry 
(CV), galvanostatic charge and discharge (GCD), and the 
electrochemical impedance spectroscopy (EIS) were all 
applied. The gravimetric and areal capacitances derived 
from GCD curves were calculated by Eq. 1 [35, 46]:

The energy density (E) and power density (P) of the 
device were all derived from Eqs. 2 and 3 [46]:

where I, ΔU, Δt, m, and S are the discharge current (A), the 
voltage window (V), the discharging duration (s), the mass 
loading of the electroactive CoP (g), and the surface area 
of the device  (cm2). Specifically, the mass loadings of CoP 
were measured by the weighing samples before and after 
the CoP electrodeposition, and the interdigital fingers were 
approximated as elliptic cylinders for calculating the device 
surface area.

2.4  Fabrication of All‑Solid‑State Embroidery SCs

The gel PVA/LiOH electrolyte was prepared by dissolving 
5 g PVA and 1.2 g LiOH in 50 mL DI water at 85–90 °C 

(1)C = I ⋅ t∕(ΔU ⋅ m(S))

(2)E = C ⋅ ΔU2∕(2 ⋅ 3600)

(3)P = 3600 ⋅ E∕(Δt)
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for 1.5 h. The all-solid-state SCs were then assembled by 
pouring the as-prepared PVA/LiOH gel electrolyte on the 
electroactive materials-loaded embroidery and drying at 
room temperature for 2 h.

3  Results and Discussion

3.1  Characterization of CoP@Ni NTAs@SE

The schematic diagram of the CoP@Ni NTAs@SE fabrica-
tion is demonstrated in Fig. 1a–c, where an interdigitally 
patterned embroidery was successfully developed via the 
computerized programming. Firstly, the target patterns were 
designed and drawn by the soft kit, and a piece of the SPNYs 
was then threaded into the embroidery machine for stitching 
the embroidery, with a piece of the common cotton fabric 
stuck on the workbench as the substrate. With the aid of 
the computerized wearable technology, the embroidering 
machine stitched the conductive SPNYs patterns on the cot-
ton fabric automatically, and as shown in Fig. 1d, the con-
ductive SE can be processed on a large scale. The resulted 
SE showed not only great conductivity, but also excellent 
flexibility. For a demonstration, the practical embroidering 
stitching was recorded as a short video file, as shown in the 
supporting files.

To synthesize the electroactive materials on the conduc-
tive fabric, electrodeposition is usually considered to be one 
of the effective approaches, owing to its significant advan-
tages, like the rapid synthesis, the proper temperature, the 
high mass loadings, etc. [47, 48]. However, the conductivity 
of working electrode usually has a major impact on the elec-
trodeposition [16], especially when the surface conductivity 
is inhomogeneous, and it would not deliver the expected 
results. Here, as compared to the SEM images of the original 
SPNYs in Fig. 2b, the microscopic surfaces of the embroi-
dered SPNYs were slightly damaged, as shown in Fig. 2c, 
where the irregular defects clearly appeared on the SPNYs. 
Thus, to acquire a decent layer of the electroactive materi-
als, the damaged surfaces of SE need to be further restored 
before the following steps. To restore the damaged SPNYs 
surfaces and provide homogeneously conductive substrate, 
a thin layer of the metallic nickel was created via the elec-
trodeposition, as shown in Fig. 3a, b. For maximizing the 
role of the nickel layer, the electrodepositions with different 
voltages were conducted, respectively. As shown in Fig. S2a, 
very fine and dense nickel nanoparticles evenly wrapped 
the SPNYs when the electrodepositing voltages were lower 
than 1.2 V, and when the voltages were around 1.6 V, the 
nickel dendrites with lengths above tens of microns largely 
emerged, inevitably leading to the falling off of the materials, 

Fig. 1  a Schematic diagram of a cone of the conductive silver-plated nylon yarns and a piece of the cotton fabric. b Diagram of the computer-
aided programming. c Diagram of the conductive SE. d Real photographs of the SE products
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as shown in Fig. S2c. By contrast, nickel layer obtained at 
a moderate voltage of 1.4 V showed the very uniform mor-
phology of nanorods or nanothorns (NTAs), as shown in 
Fig. 2d. To confirm the most advantageous nickel morphol-
ogy for loading CoP, the cyclic voltammetry was then used 
to study the pseudocapacitive performances of CoP grown 
on the different nickel layers. Figure 4a shows that the gravi-
metric capacitance of CoP on nickel layer obtained at 1.4 V 
was higher than that on the smooth nickel surfaces (depos-
ited lower than 1.2 V). And CoP on the nickel layer from 
1.6 V exhibited disproportional capacitance degradations, 
due to the weak adhesion between the nickel dendrites and 
the SPNYs. Thus, 1.4 V was considered to be the most suit-
able voltage for the electrodeposition. To acquire a proper 
nickel thickness, the electrodepositing durations of 1000, 
1500, 2000, and 2500 s were then performed, and it indi-
cated that less and incomplete nickel layers were coated 
on SPNYs when the duration was too short, and large and 
longer Ni NTAs can be produced when the duration exceeds 
2000 s. Therefore, the reasonable electrodepositing duration 
was confirmed to be 2000 s. The conductivities of SPNYs 
at different stages were tested by the four-point probe sheet 
resistance test, as listed in Table 1.

The electroactive material of CoP was then electrodepos-
ited on the as-prepared Ni NTAs, as shown in Fig. 3c, d. 
Generally, studies on the nickel or cobalt composites are nor-
mally performed by investigating different Ni-to-Co ratios 
for gaining the optimal electrochemical performance [16, 
49, 50]. In this regard, here, three distinct and empirical 
ratios (Ni/Co = 1:0, Ni/Co = 1:1, Ni/Co = 0:1) were carried 
out to make a comparison pending the capacitance between 
electrodes with different nickel-to-cobalt ratios. As shown 
in Fig. 4b, CV curves of both pure nickel phosphide and Ni/
Co 1:1 phosphide showed much smaller loops than the pure 
cobalt phosphide, which means the mixing of nickel phos-
phide into the cobalt phosphide is almost in vain. Therefore, 
the electroactive material of the pure cobalt phosphide was 
used for the further study. Experiments with different CoP 
electrodepositing voltages and durations were conducted in 
order to gain the most suitable synthetic conditions. Fig-
ure 4c shows the CV curves of CoP formed at three differ-
ent electrodepositing voltages (0.9, 1.1, and 1.3 V), where 
CoP obtained at 1.1 V displayed the highest electrochemi-
cal performance. Correspondingly, the SEM images of CoP 
obtained at 0.9 and 1.3 V are also shown in Fig. S3a, b for 
comparison. It can be seen that more dense and compact 

particles were formed at 0.9 V, and the microspheres cov-
ered by the irregular fakes or sheets (could be the Co(OH)2 
formed by the hydrogen evolution [51, 52]) were obtained 
at 1.3 V, as shown in Fig. S3b. Notably, the unwanted impu-
rities can negatively affect the CoP synthesis. By contrast, 
Fig. 2e shows that a layer of very uniform microspheres 
deposited on Ni NTAs@SE at a moderate voltage of 1.1 V, 
with a large number of macropores between each other, 
which could benefit the ion diffusion between the electrolyte 
and the electroactive materials. This is consistent with the 
above result from the CV curves, and it is reasonable to con-
trol the CoP electrodeposition at a moderate voltage of 1.1 V.

Subsequently, to investigate and control the optimum mass 
loading, Fig. 4d gives the information on CV curves based 
on CoP mass loadings at different electrodepositing dura-
tions, where the gravimetric capacitance enlarged gradually 
as the loading of CoP increased, from 0.95 mg cm−2 at 500 s 
to 2.38 mg cm−2 at 1000 s, but a degradation was observed at 
the mass loading of 2.86 mg cm−2 at 1250 s. Thus, it is better 
to control the CoP amount around 2.38 mg cm−2 obtained at 
the electrodepositing duration of 1000 s. Finally, the most 
suitable electrodepositing condition for fabricating the elec-
trode is nickel layer 1.4 V at 2000 s and cobalt phosphide 
1.1 V at 1000 s. The resulted electrode showed the weight 
percentages of silver-plated nylon yarns, Ni layer, and CoP 
layer were 67.63%, 21.97%, and 11.56%, respectively. The 
cross-section information of the resulted CoP@Ni NTAs@
SE is also displayed in Fig. S5a, b, including the SEM image 
and real photograph, which shows that the interdigital fin-
gers have the quasi-elliptical cross section, with the long and 
short axes around 1 and 0.7 mm.

EDS mapping images of the CoP microspheres are 
displayed in Fig. 2f, g, with the red and blue represent-
ing elements Co and P, respectively, and the spectrum in 
Fig. S4 clearly exhibits the existence of Co and P, with the 
atomic percentage ratio to be 53.28:46.72 (nearly 1:1). The 
SAED image in Fig. 2h also discloses a series of lattice 
planes, mainly including CoP (201) and CoP (220) from 
inside to outside. Figure 2i shows the high-resolution TEM 
image, and the lattice fringes have an interplane spacing 
of 0.233 nm corresponding to CoP (201) plane. The XRD 
curves in Fig. 2j show the strong peak situated at the 2θ of 
38.18° in all three samples, representing the crystal plane 
of Ag (111). Interestingly, the peak strength became weaker 
in Ni NTAs@SE but stronger in CoP@Ni NTAs@SE, and 
this could be probably because of the coverage of nickel and 
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CoP on the SPNYs, where the Ni NTAs decreased the silver 
exposure and the CoP reinforced the peak strength because 
of the crystal plane of CoP (111) in the same location. The 

strongest characteristic peak of CoP (101) was well located 
in 31.58°, and the other (200), (220), and (311) can be also 
properly observed, which is well in agreement with both the 

Fig. 2  a SEM images of the overview of the SE single finger. b A single fiber of the original SPNYs. c Damaged fiber surface of the SPNYs. 
d A single fiber of the Ni NTAs. e Microspheres of the CoP@Ni NTAs@SE. f–g EDS mapping of Co and P. h SEAD pattern. i TEM image of 
CoP. j XRD curves of the SE, Ni NTAs@SE, and CoP@Ni NTAs@SE
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results of SEAD and XRD patterns. This further proved that 
CoP was successfully synthesized via the electrodeposition.

Raman spectra of SE in Fig. S6a showed two characteris-
tic peaks at 1356 cm−1 (D-band) and 1590 cm−1 (G-band), 
indicating the structural defects and disorders of carbons 
in the nylon yarns. For the Ni NTAs@SE and CoP@Ni 
NTAs@SE, no more peaks were observed, and the D-band 
and G-band peaks were weakened disproportionally due 
to the encapsulation of Ni and CoP on the SPNYs, which 
is consistent with the previous studies [53, 54]. The FTIR 
result in Fig. S6b shows no significant difference among 
the three curves, and only weak peaks were observed in SE, 
which might be from the organic compositions in the thin 
silver particle-coated nylon yarns. This also laterally sup-
ports the aforementioned analysis.

3.2  Electrochemical Properties of the All‑Solid‑State 
Embroidery Supercapacitor

An interdigitally patterned embroidery SC was successfully 
fabricated under the above conditions. As a matter of fact, 
patterns within the work limit of the embroidery machine 
are able to be knitted on the proper fabric substrate, and a 
demonstration is successfully shown in the following discus-
sion. By pouring the gel electrolyte (1 M PVA/LiOH) on the 
CoP@Ni NTAs@SE, the electrochemical properties of one-
piece all-solid-state SC were evaluated via the means of CV, 
GCD, and EIS. Figure 5a shows the CV curves of CoP@Ni 
NTAs@SE at the lower voltage scanning rate range, from 
10 to 80 mV s−1. It can be seen that the typical pseudoca-
pacitive redox peaks moved proportionally to the two ends 
of the voltage when the scanning rate increased, with the 

Fig. 3  a–c Schematic diagram of the fabrication CoP@Ni NTAs@SE. d Overview of the CoP@Ni NTAs@SE. e Real images of the SE, Ni 
NTAs@SE and CoP@Ni NTAs@SE
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enclosed shape kept nearly original. The peak movement is 
mainly because of the polarization triggered by the fast elec-
tron migration and slow ion diffusion [34]. Similarly, higher 
voltage scanning rates were also applied, which unexpectedly 
showed the enlarged areas with almost the original shape, as 
shown in Fig. 5b. However, when the CV was carried out at 
the scanning rate of 1000 mV s−1, the corresponding curve 
was prone to the undesirable oval shape. Correspondingly, 
the GCD curves at different areal current densities were also 

displayed, as shown in Fig. 5c. It is noted that a voltage win-
dow of 0.8 V was acquired, which is closely matched with that 
of the CV curves. It also indicated that the voltage drop was 
about 0.04 V at the lowest current density of 0.6 mA cm−2 
and increased to 0.32 V at the highest current density of 
6 mA cm−2, displaying a low internal resistance [55, 56].

Based on the charge and discharge curves, both the areal 
and gravimetric capacitances were derived and calculated, 
as shown in Fig. 5d. The highest specific capacitance of 
156.6 mF cm−2 (65.72 F g−1) was obtained at the current 
density of 0.6 mA cm−2 (0.25 A  g−1). As the current den-
sity increased, both the areal and gravimetric capacitances 
dropped accordingly, and the lowest specific capacitance of 
33.5 mF cm−2 (14.06 F g−1) was acquired at the highest cur-
rent density of 6 mA cm−2 (2.5 A g−1). This is because the 
insufficient pseudocapacitive reactions occurred between the 
electrolytic ions and the electroactive materials at the very 
fast electrons embedding and disembedding processes. To 
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Table 1  Electrical resistances of different SPNYs

Yarn condition Resistivity 
(Ω·cm·square−1)

Thickness (nm)

Pristine SPNYs 0.067 20–50
Embroidered SPNYs 0.635 20–50
Ni NTAs@SPNYs 0.294 800–1200
CoP@Ni NTAs@SPNYs 25.83 2000–3000
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examine the flexibility of the embroidery SC, the device was 
bent from 0° to 180° up to 300 times, with a bending radius 
of 1.5 mm. The corresponding curves to the 50th, 100th, 
200th, and 300th GCD are displayed in Fig. 5e, respectively. 
It showed that within 200 times, the original curve shape 
was retained very well without significant changes, dem-
onstrating a decent electrochemical stability under various 
deformations. However, the charging/discharging duration 
decreased greatly, when it cycled to the 300th time. This 
might be the result of structural damages from both the Ni 
layers and the CoP particles [57]. Figure 5f displays the 
cycling stability of the CoP@Ni NTAs@SE by charging 
and discharging up to 5000 times at various current den-
sities. It was noted that the specific capacitance dropped 
more dramatically at the current density of 0.25 A g−1 in 
the first 1000 cycles, from 67.82 to 57.34 F g−1, and the 
corresponding capacitance retention declined to 86.11% at 
the same time. This is probably because the electrolyte ions 
diffuse adequately to the electroactive material surfaces at a 
low current density, where the redox was carried out more 
effectively than that at higher current densities, leading to 
more structural defects and much faster capacitance degrada-
tion [58, 59]. After increasing the charging and discharging 
currents, the capacitance was retained much better, with the 
capacitance loss less than 5% after the 5000th time.

To investigate the overall resistance, EIS was performed 
from 100 kHz to 0.01 Hz with a voltage amplitude of 5 mV 
as shown in Fig. 5g. As the inset displays, the intercept 
on the high-frequency region shows a low solution resist-
ance, with about 18.42 Ω, reflecting the decent movement 
of the solid-state electrolyte ions. The moderate semicircle 
region represents the charge transfer resistance, which can 
be determined to be around 160 Ω. The linear part at the 
low-frequency region shows the typical Warburg impedance 
curve, with the phase angle greater than 45°. The moder-
ate slope reflects that the diffusing condition within the 
electrode is one of the factors posing negative effects on 
the capacitive behavior of the device [60, 61]. The Ragone 
plot (energy density vs. power density) of the device is 
properly drawn for comparisons. As shown in Fig.  5h, 
the areal and gravimetric values are plotted in violet and 
orange, respectively, and it shows that a high energy den-
sity of 0.013 mWh cm−2 (5.55 Wh kg−1) was achieved at 
a power density of 0.24 mW cm−2 (100 W kg−1), which 
is comparable and even superior to the recently reported 
studies with the interdigital configuration based on  MoS2@

rGO (0.0019 mWh cm−2 at 0.08 mW cm−2) [38], 3D gra-
phene (0.00042 mWh cm−2 at 1 mW cm−2) [62], polyaniline 
(0.00092 mWh cm−2 at 1 mW cm−2) [63], graphene film 
(0.0025 mWh cm−2 at 1.2 mW cm−2) [64], cellular graphene 
film (0.00022 mWh cm−2 at 0.98 mW cm−2) [65], graphene/
CNTs film (0.00034 mWh cm−2 at 0.68 mW cm−2) [66], 
 MnO2 CNTs (0.00088 mWh cm−2 at 0.16 mW cm−2) [67].

On the whole, the high performance of the CoP@Ni 
NTAs@SE SC can be summarized as follows: (1) The crea-
tive and advanced computerized embroidering techniques real-
ized an interdigitally patterned conductive embroidery, (2) the 
conductive SPNYs-based embroidery substrate offered both 
fast electron transporting passage and excellent flexibility, (3) 
the subsequent Ni NTAs conductive layers provided not only 
improved conductivities, but also porous structures for loading 
the electroactive materials, and (4) the cobalt phosphides pos-
sess not only outstanding pseudocapacitance, but also a wide 
voltage window from negative to positive ranges.

3.3  Application of the Embroidery SCs

For a demonstration of the flexible and wearable SCs, 
various patterned embroideries were properly processed. 
As shown in Fig. 6a, two and four pairs of the embroi-
dered SCs in series were successfully achieved. And the 
CV curves of two-pair devices are accordingly shown in 
Fig. 6b, where a wide range of the voltage windows from 
1.5 to 1.8 V were explored and the curves acquired at 
the scanning rate of 100 mV s−1 almost kept unchanged. 
Similarly, the corresponding GCD curves are also plot-
ted in Fig. 6c, and the as-obtained SCs were able to be 
charged and discharged within 1.8 V at the current density 
of 2.4 mA cm−2, yet with an aggravated IR drop, possi-
bly caused by the extended series circuit [68]. Figure 6d 
displays the embroidered SCs on the real garment, where 
the “PolyU” monogrammed SCs were suitably created. 
A short video is attached in the supporting file (Video 
S2) for displaying the practical embroidering process. 
Besides, the corresponding CV and GCD curves are also 
plotted in Fig. 6f, and the pattern-embroidered SCs suc-
cessfully powered a LED in Fig. 6e. But, it was also noted 
that the CV loop is not as symmetric as that of SCs with 
interdigital configuration, and this is mainly caused by the 
increase in the series resistance arising from the compli-
cated “PolyU” monogrammed circuit.
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4  Conclusions

By implementing the strategy of loading novel pseudoca-
pacitive material on the flexible textiles, the embroidered 
in-plane supercapacitors were successfully created via the 
computer-aided textile technology and the electrochemical 
synthesis approaches. Great flexibility and remarkable elec-
trochemical performances were accordingly achieved owing 
to the porous nickel nanothorns-anchored CoP microspheres. 
Finally, a monogrammed SC was properly embroidered in 
series on the laboratory gown, inspiring a promising per-
spective for integrating more wearable technologies into the 
next generation of wearable energy storage devices.
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