Supporting Information for

Nitrogen-Doped Magnetic-Dielectric-Carbon Aerogel for High-Efficiency Electromagnetic Wave Absorption

Shijie Wang¹, Xue Zhang¹, Shuyan Hao¹, Jing Qiao^{1, 2, *}, Zhou Wang¹, Lili Wu¹, Jiurong Liu^{1, *}, Fenglong Wang^{1, 3, *}

¹ Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China

² School of Mechanical Engineering, Shandong University, Jinan 250061, P. R. China

³ Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China

*Corresponding authors. E-mails: jingqiao@sdu.edu.cn (J.Q); jrliu@sdu.edu.cn (J.R.L); fenglong.wang@sdu.edu.cn (F.L.W)

Supplementary Figures and Tables

Fig. S2 Zeta potential

Fig. S3 FT-IR of xerogel before and after adding metal ions

Fig. S4 Chitosan-derived xerogel before and after adding metal ions

Fig. S5 XPS spectra of Ni/MnO-CA, a C 1s. b O 1s. c Ni 2p and d Mn 2p

Fig. S7 The field emission scanning electron microscope (FE-SEM). a1 CA. b1–2 Ni-CA and c1–2 MnO-CA, the inset was parallel to the direction of ice crystal. EDS mappings, a2 CA. b3 Ni-CA and c3 MnO-CA

According to the weight loss in TGA curves, the carbon contents in aerogels could be calculated by the following equations, where M was the relative molecular mass of the corresponding substance.

$$wt\%_{\text{Carbon}} = 1 - wt\%_{\text{Residue}} \times \frac{M_{\text{Ni}}}{M_{\text{NiO}}}$$
 Eq. S1

$$wt\%_{\text{Carbon}} = 1 - wt\%_{\text{Residue}} \times \frac{3M_{\text{MnO}}}{M_{\text{Mn}_{3}O_4}}$$
 Eq. S2

$$wt\%_{\text{Carbon}} = 1 - wt\%_{\text{Residue}} \times \frac{M_{\text{Ni}} + 3M_{\text{MnO}}}{M_{\text{NiO}} + M_{\text{MnO}_4}}$$
 Eq. S3

Fig. S8 The 3D RL plots. a CA. The 2D contours of RL values versus frequency and thickness. b CA

Fig. S9 The 3D RL plots. **a** Ni/MnO-CA-1.5 and **b** Ni/MnO-CA-2.0. The 2D contours of RL values versus frequency and thickness. **c** Ni/MnO-CA-1.5 and **d** Ni/MnO-CA-2.0

Fig. S10 a C₀ values. b Dielectric loss tangent and c Magnetic loss tangent

Fig. S11 2D impedance matching plots

Electromagnetic Formulas

According to transmission line theory, the reflection loss (RL) in this work is calculated by the followed formulars:

RL =
$$20 \log \left| \frac{Z_{in} - Z_0}{Z_{in} + Z_0} \right|$$
 Eq. S5

where Z_{in} and Z_0 represent the impendence of the absorbing coating and air. In addition,

 $\mu_{\rm r}$, $\varepsilon_{\rm r}$, f, d and c refer to complex permeability, complex permittivity, frequency, thickness and velocity of light, respectively.

In generally, the polarization-relaxation process of electromagnetic wave absorption is evaluated by the Cole–Cole plot. The plot based on modified Debye theory is introduced by the following equations:

$$\varepsilon' = \varepsilon_{\infty} + \frac{\varepsilon_{s} - \varepsilon_{\infty}}{1 + (2\pi f)^{2} \tau^{2}}$$
 Eq. S6

$$\varepsilon'' = \frac{2\pi f \tau(\varepsilon_{\rm s} - \varepsilon_{\infty})}{1 + (2\pi f)^2 \tau^2} + \frac{\sigma}{2\pi f \varepsilon_0}$$
 Eq. S7

where ε_s , ε_∞ and ε_0 represent permittivity at electrostatic field, permittivity at high frequency limit and permittivity of vacuum, respectively; τ , *f* and σ are the polarization relaxation time, frequency and conductivity, respectively. The above two equations can be combined and simplified as below:

$$(\varepsilon' - \frac{\varepsilon_{\rm s} + \varepsilon_{\rm s}}{2})^2 + (\varepsilon'' - \frac{\sigma}{2\pi f \varepsilon_0})^2 = (\frac{\varepsilon_{\rm s} - \varepsilon_{\rm s}}{2})^2 \qquad \text{Eq. S8}$$

In the Cole–Cole plot, the semicircle indicates the presence of polarization relaxation, while the tail-like straight line represents the conductivity.

The loss capacity is calculated by the attenuation coefficient (α):

$$\alpha = \frac{\sqrt{2\pi f}}{c} \sqrt{\left(\mu'' \varepsilon'' - \mu' \varepsilon'\right) + \sqrt{\left(\mu'' \varepsilon'' - \mu' \varepsilon'\right)^2 + \left(\mu' \varepsilon'' + \mu'' \varepsilon'\right)^2}}$$
 Eq. S9

Radar cross section (RCS) simulation by CST microwave studio:

RCS is used to simulate the far-field response of absorber to illustrate the actual stealth performance of the material. Herein, the model construction and excitation configuration are as follows: The model width of the perfect electric conductor (PEC) plate is 200.0 mm × 200.0 mm, and the thickness is 2.0 mm. The thickness of coating (the aerogel-paraffin layer, as a absorber) is 3.0 mm. The far field, the incident electromagnetic wave and the position of the model are shown below (Fig. S12). What needs to be explained in the figure is that the incident electromagnetic wave is vertically polarized wave. For the setting of polarized wave, the incident azimuth angles are restricted within the condition of " $-60^\circ \le \text{phi} \le 60^\circ$, theta = 90°". In addition, we chose the 6 GHz (C band), 9 GHz (X band) and 15 GHz (Ku band) as the frequency of the far-field monitor. The RCS values are described by the formular:

$$\sigma(dB m^2) = 10 \log(\frac{4\pi S}{\lambda^2} \left| \frac{E_s}{E_i} \right|)^2$$
 Eq. S10

where S is the area of the simulated plate and λ is the wavelength of incident wave; E_i and E_s represent the electric field strength of the incident and scattered waves, respectively.

Fig. S12 Illustration of the CST simulation model

Fig. S13 The 3D far-field response of RCS simulations at 5 GHz of **a** PEC, **b** CA, **c** Ni-CA, **d** MnO-CA and **e** Ni/MnO-CA

Fig. S14 The 3D far-field response of RCS simulations at 15 GHz of **a** PEC, **b** CA, **c** Ni-CA, **d** MnO-CA and **e** Ni/MnO-CA

Fig. S15 Infrared thermal images of CA on a constant temperature heating plate of 90 °C

Fig. S16 Infrared thermal images of Ni-CA on a constant temperature heating plate of 90 $^{\circ}$ C

Fig. S17 Infrared thermal images of MnO-CA on a constant temperature heating plate of 90 $^{\circ}$ C

Materials	EAB	RL _{min}	Thickness	Filler Rate	Refs.
	(GHz)	(dB)	(mm)	(wt%)	
MnO/Co/C	5.30	-68.89	2.64	50	[S1]
Ni/TiO ₂ /C	6.70	-74.50	2.00	15	[S2]
Cu-NC-10	5.25	-63.80	2.01	35	[S3]
MoO ₂ /CoNi/NPC	4.72	-54.00	1.97	35	[S4]
NCFs@WS ₂	6.24	-81.10	3.5	10	[S5]
Co/MnO/CNTs	5.36	-58.00	2.65	35	[S6]
MXene/graphene oxide/Co ₃ O ₄	6.88	-71.87	2.07	17	[S7]
NiCo/C/CNT/rGO	7.6	-58.80	1.80	20	[S8]
NRGO/MWVNTs	5.20	-53.30	3.46	15	[S9]
NiO/NiFe2O4@N-rGA	6.58	-57.70	2.13	15	[S10]
Cu/CuO/C	5.5	-44.00	2.40	50	[S11]
ZnCo2O4@ZIF-67	5.79	-59.18	1.97	30	[S12]
Fe ₃ O ₄ -SnO ₂	5.60	-66.50	3.00	30	[S13]
Ni/MnO-CA	7.36	-64.09	2.53	10	This work

 Table S1 Detailed information for the performance comparison with other absorbers

Supplementary References

- [S1] X. Zhang, X. Tian, C. Liu, J. Qiao, W. Liu et al., MnCo-MOF-74 derived porous MnO/Co/C heterogeneous nanocomposites for high-efficiency electromagnetic wave absorption. Carbon 194, 257–266 (2022). <u>https://doi.org/10.1016/j.carbon.2022.04.001</u>
- [S2] J. Qiao, X. Zhang, C. Liu, L. Lyu, Z. Wang et al., Facile fabrication of Ni embedded TiO₂/C core-shell ternary nanofibers with multicomponent functional synergy for efficient electromagnetic wave absorption. Compos. Part B Eng. 200, 108343 (2020). <u>https://doi.org/10.1016/j.compositesb.2020.108343</u>
- [S3] H. Liang, L. Zhang, H. Wu, Exploration of twin-modified grain boundary engineering in metallic copper predominated electromagnetic wave absorber. Small 18, e2203620 (2022). <u>https://doi.org/10.1002/smll.202203620</u>
- [S4] N. Zhang, K. Zhang, W. Chen, Y. Wang, T. Liu et al., Constructing hierarchical hollow flower-like MoO₂/CoNi/NPC microspheres via water-in-oil system assisted supramolecular self-assembly for high-efficient electromagnetic wave absorption. J. Alloys Compd. 170684 (2023). https://doi.org/10.1016/j.jallcom.2023.170684

- [S5] X. Liu, S. Zhang, M. Yu, X. Zhao, Y. Jia et al., WS₂ nanosheets anchored on Ndoped carbon fibers for superior electromagnetic wave absorption. Chem. Eng. J. 465, 142932 (2023). <u>https://doi.org/10.1016/j.cej.2023.142932</u>
- [S6] W. Xue, G. Yang, S. Bi, J. Zhang, Z.-L. Hou, Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO₂/ZIF-8@ZIF-67 for electromagnetic wave absorption. Carbon 173, 521–527 (2021). <u>https://doi.org/10.1016/j.carbon.2020.11.016</u>
- [S7] Z. Cai, Y. Ma, K. Zhao, M. Yun, X. Wang et al., Ti₃C₂T_x MXene/graphene oxide/Co₃O₄ nanorods aerogels with tunable and broadband electromagnetic wave absorption. Chem. Eng. J. 462, 142042 (2023). <u>https://doi.org/10.1016/j.cej.2023.142042</u>
- [S8] L. Yang, Y. Wang, Z. Lu, R. Cheng, N. Wang et al., Construction of multidimensional NiCo/C/CNT/rGO aerogel by MOF derivative for efficient microwave absorption. Carbon 205, 411–421 (2023). <u>https://doi.org/10.1016/j.carbon.2023.01.057</u>
- [S9] R. Shu, Z. Wan, J. Zhang, Y. Wu, J. Shi, Synergistically assembled nitrogendoped reduced graphene oxide/multi-walled carbon nanotubes composite aerogels with superior electromagnetic wave absorption performance. Compos. Sci. Technol. 210, 108818 (2021). <u>https://doi.org/10.1016/j.compscitech.2021.108818</u>
- [S10] Q. Wang, J. Wang, Y. Zhao, Y. Zhao, J. Yan et al., NiO/NiFe₂O₄@N-doped reduced graphene oxide aerogel towards the wideband electromagnetic wave absorption: Experimental and theoretical study. Chem. Eng. J. 430, 132814 (2022). <u>https://doi.org/10.1016/j.cej.2021.132814</u>
- [S11] Y. Guo, Q. Chang, Z. Shi, J. Xie, J. Yun et al., Regulating conduction and polarization losses by adjusting bonded N in N-doped Cu/CuO/C composites. J. Colloid Interface Sci. 639, 444–453 (2023). <u>https://doi.org/10.1016/j.jcis.2023.02.093</u>
- [S12] Y. Zhao, W. Wang, Q. Wang, H. Zhao, P. Li et al., Construction of excellent electromagnetic wave absorber from multi-heterostructure materials derived from ZnCo₂O₄ and ZIF-67 composite. Carbon 185, 514–525 (2021). <u>https://doi.org/10.1016/j.carbon.2021.09.049</u>
- [S13] R. Kuchi, V. Dongquoc, P.C. Van, D. Kim, J.-R. Jeong, Synthesis of porous Fe₃O₄-SnO₂ core-void-shell nanocomposites as high-performance microwave absorbers. J. Environ. Chem. Eng. 9, 106585 (2021). <u>https://doi.org/10.1016/j.jece.2021.106585</u>