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S1 Main Raw Materials 

Poly(p-phenylene-2,6-benzobisoxazole) (PBO) fibers, with a density of 1.56 g/cm3 and 

the trade name Zylon HMPBO, were purchased from Toyobo Co. Ltd. (Osaka, Japan). 

Boron nitride, with the particle size of 5~10 μm and thickness of 100~500 nm, was 

received from Zhejiang Yamei Nano Technology Co., Ltd (Jiaxing, China). Sodium 

sulfate (Na2SO4, 99%) was purchased from Shanghai Aladdin Biochemical Co., Ltd. 

(Shanghai, China). Trifluoroacetic acid (99%), methanesulfonic acid (99%), sodium 

hydroxide (97%), potassium hydroxide (97%), sodium nitrite (99%) and iron powder 

(99.5%) were all received from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, 

China). Benzidine (98%) was received from Shanghai Bailiwick Chemical Technology 

Co., Ltd (Shanghai, China). Hydrochloric acid (37%) was purchased from Beijing 

Chemical Works (Beijing, China). Methanol (99.85%) was purchased from Shanghai 

Sigma Aldrich Trading Co., Ltd. (Shanghai, China). 

S2 Characterizations 

Fourier transform infrared (FT-IR) spectra of the samples were obtained on Bruker 

Tensor 27 equipment (Bruker Corp., Germany). X-ray photoelectron spectroscopy 

(XPS) analyses of the samples were carried out by Kratos Axis Ultra DLD equipment 

(Kratos Corp., UK). X-ray diffraction (XRD) spectra of the samples were carried out 

on a Shimadzu-7000 type X-ray diffraction (Shimadzu, Japan). Thermogravimetric 

analyses (TGA) of the samples were carried out by STA 449F3 (NETZSCH C Corp., 

Germany) at 10oC/min (argon atmosphere), over the whole range of temperature 

(40~800oC). Transmission electron microscope (TEM) images of the samples were 

collected on a Talos F200X/TEM microscope (FEI Company, USA). Scanning electron 

microscope (SEM) morphologies of the samples were observed using a VEGA3-LMH 

(TESCAN Corp., Czech Republic). In-plane thermal conductivity coefficient (λ∥) and 

through-plane thermal conductivity coefficient (λ⊥) of the samples were characterized 

with Hot Disk TPS2200 thermal constant analyzer (AB Co., Sweden). Infrared thermal 

images of the samples were obtained by Ti 300 infrared thermography (Fluke Co., 
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USA). The microscale combustion calorimetry (MCC) was based on an MCC-2 

microscale combustion calorimeter (FTT Company, UK) with a heating rate of 1oC/s 

in an air atmosphere, over the whole range of temperature (20~700°C). The volume 

resistivity of the samples was measured by high resistance meter tester according to the 

standard of IEC 60243-1: 2013. The breakdown strength of the samples was measured 

via an MPD-104 high-voltage generator (Partulab Technology Co. Ltd, China). 

Dielectric properties of the samples were measured by WK6500B precision impedance 

analyzer (Wayne Kerr Electronics Corp., UK). Dielectric properties of the samples at -

50~200°C were measured by Agilent4294A precision impedance analyzer (Agilent 

Technologies Inc., USA). Tensile properties of the samples were measured by a tensile 

testing machine (Instron Co., USA) according to ASTM D5568-08. 

S3 Supplementary Figures 

 

Fig. S1 Schematic diagram of the preparation for m-BN 

 

Fig. S2 Schematic diagram of the exfoliation for the PBO fiber into PNF 
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Fig. S3 Optical photographs of m-BN sol left to form m-BN gel for 24 h (a, a’); 

optical photographs of PNF solution after being left for 24 h (b, b’) 

 

Fig. S4 SEM images showing the inside of the PNF (a, a’) and BN/PNF gels (b, b’) 

 

Fig. S5 Optical and SEM images of the conch 
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Fig. S6 SEM images of the surface for m-BN/PNF nanocomposite paper 

 

Fig. S7 High-resolution N 1s XPS spectra of BN (a) and m-BN (b); TGA curves of 

BN and m-BN (c) 

 

Fig. S8 SEM images of BN (a) and m-BN (b) 
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Fig. S9 Fitting λ∥ (a) and λ⊥ (b) of BN/PNF and m-BN/PNF nanocomposite paper 

by modified Hashin-Shtrikman model 

 

Fig. S10 λ∥ (a) and λ⊥ (b) of PNF paper and m-BN/PNF-50 nanocomposite paper at 

different temperature 

 

Fig. S11 The process of charging the mobile phone with the lithium-ion rechargeable 

battery 
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Fig. S12 Heat release rate curves of PNF paper and m-BN/PNF-50 nanocomposite 

paper 

 

Fig. S13 ε (a) and tanδ (b) of BN/PNF nanocomposite paper at room temperature 
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S4 Supplementary Table 

Table S1 Comparison of the properties of m-BN/PNF-50 nanocomposite paper with 

those of other reported electrical insulating paper 

Materials λ / W/(m·K) 

Breakdown 

strength / 

kV/mm 

Tensile 

strength / 

MPa 

Thermal 

decomposition 

temperature / oC 

Refs. 

RC/BTNF composite film -- 370.0 110.0 ~330 [S1] 

RC/PDA@BTNF  

composite film 
-- 515.0 129.0 ~340 [S2] 

BNNS/CNF aerogel  

nano-paper 
2.40 -- -- 293 [S3] 

BN/MoS2/PCNF 

composite film 
2.30 -- 55.5 ~300 [S4] 

h-BN/CNF composite film 1.50 -- -- 292 [S5] 

CNF/GNP-g-L/D  

composite film 
9.36 -- 82.5 350 [S6] 

ANF-NFC/mica@PDA 

composite film 
-- 33.5 28.8 231 [S7] 

Hot-pressed PPTA nanopaper -- 92.8 159.6 564 [S8] 

f-BNNS/s-ANFs  

composite paper 
0.224 93.5 50.5 -- [S9] 

aBNN/ANF 

nanocomposite film 
4.61 90.0 175.0 538 [S10] 

BNNSs/ANF composite 

insulating paper 
4.34 59.6 64.0 522 [S11] 

h-BN@AgNPs/ANFs 

composite paper 
1.03 -- 42.0 -- [S12] 

ANF/chitosan/Al2O3 

composite film 
-- 279.2 232.0 575 [S13] 

ANF/MTM  

nanocomposite film 
-- 77.2 126.5 -- [S14] 

HAP/ANF  

nanocomposite paper 
-- 92.4 73.5 500 [S15] 

NTS/ANF-X 40/60 nanopaper -- 164.0 175.0 565 [S16] 

m-BN/PNF-50 

nanocomposite paper 
9.68 324.2 193.6 640 
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