Supporting Information for

Strongly Coupled Ag/Sn-SnO₂ Nanosheets toward CO₂ Electroreduction to Pure HCOOH Solutions at Ampere-Level Current

Min Zhang¹, Aihui Cao², Yucui Xiang¹, Chaogang Ban¹, Guang Han^{3, 4, *}, Junjie Ding¹, Li-Yong Gan^{1, 4, 5, *}, and Xiaoyuan Zhou^{1, 4, 5, *}

¹College of Physics and Center of Quantum Materials and Devices, Chongqing University,

Chongqing 401331, P. R. China

² State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002, P. R. China

³ College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China

⁴ Institute of New Energy Storage Materials and Equipment, Chongqing 401135, P. R. China

⁵ State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, P. R. China

*Corresponding authors. E-mail: <u>xiaoyuan2013@cqu.edu.cn</u> (Xiaoyuan Zhou); ganly@cqu.edu.cn (Li-Yong Gan), guang.han@cqu.edu.cn_(Guang Han)

S1 Experimental Procedures

S1.1 Characterization

Powder X-ray diffraction (PXRD) patterns were recorded on an Empyrean X-ray diffractometer at 40 kV and 40 mA with Cu K α radiation in 2 θ ranging from 10° to 80°. Field emission scanning electron microscopy (FESEM) was performed on a Quattro S microscope operated at 5 kV. Transmission electronic microscopy (TEM) and high-resolution TEM (HRTEM) equipped with energy dispersive X-ray spectrometer (EDX) were conducted on a Talos-F200S microscope operated at 200 kV. X-ray photoelectron spectroscopy (XPS) and Ultroviolet Photoelectron Spectrometer (UPS) analyses were performed on a Thermo Fisher Scientific XPS ESCALAB 250Xi instrument with an Al-Ka (1486.8 eV) X-ray source. The X-ray absorption spectra of Ag and Sn K-edge (XANES and EXAFS experiments) were carried out in fluorescence mode at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facility (SSRF), China. The EXAFS raw data were then background-subtracted, normalized and Fourier transformed by the standard procedures with the IFEFFIT package. Operando attenuated total reflection-infrared (ATR-IR) spectra were recorded on the IRTracer100 instrument. 1H NMR was conducted on AVANCE NEO 400 evolution with DMSO as internal standard.

S1.2 Electrochemical Measurements

During the electrolysis, gaseous products were detected by an on-line gas chromatography (GC) (Agilent 7820A) equipped with a molecular sieve 5 Å and two porapak Q columns continuously. The concentration of H_2 and CO was analyzed by a thermal conductivity detector (TCD) and a flame ionization detector (FID), respectively. The quantification of gaseous products was carried out using a conversion factor derived from the standard calibration gases. Liquid products were collected at the end of each electrocatalysis and analyzed by ¹H NMR (Aligent

DD2-400). For the NMR, 0.5 mL of the catholyte was mixed with 0.1 mL of D_2O containing dimethyl sulfoxide (DMSO, 10 ppm) as the internal standard. The concentration of formate was quantitatively determined from its NMR peak area relative to that of the internal standard using the calibration curve from a series of standard formate solutions.

The half-cell cathodic energy efficiency (CEE) was calculated as follows:

CEE=(1.23-E_{formate})/(1.23-E_{applied})×FE_{formate}×100%

where $E_{formate} = -0.2$ V vs. RHE is the thermodynamic potential of CO₂ reduction to formate. FE_{formate} is the Faradaic efficiency of formate production. $E_{applied}$ is the applied potential vs. RHE.

The electrochemical impedance spectroscopy (EIS) was recorded at -0.73 V with the frequency ranging from 0.1 to 10^5 Hz at the AC amplitude of 5 mV.

The adsorption of OH⁻ as a surrogate of CO_2^{*-} was examined through a cathodic LSV scan between -0.4 and 0.38 V in Ar-saturated aqueous 0.1 M KOH solution at a scan rate of 10 mV s⁻¹.

Electrochemically active surface area (ECSA) was obtained by measuring the electrochemical double-layer capacitance from the scan-rate dependence of CVs in a potential range of -0.18 to -0.08 V. The electrochemical impedance spectroscopy (EIS) was recorded at -0.73 V with the frequency ranging from 0.1 to 10^5 Hz at the AC amplitude of 5 mV.

For ATR-IR measurements, the loaded $Ag/Sn-SnO_2$ (or $Sn-SnO_2$) electrode was used as the working electrode, along with Ag/AgCl as the reference electrode, and platinum wire as the counter electrode.

S2 Supplementary Figures and Tables

Fig. S1 Characterization of SnS₂ NSs: (a) XRD pattern; (b) TEM image; (c) HAADF-STEM image

Fig. S2 Characterization of Ag-SnS₂ NSs: (**a**) TEM image; (**b**, **c**) STEM images; (**d**) HAADF-STEM image; (**e**) corresponding EDX spectrum; (**f**) EDX mapping images

Fig. S3 Characterization of Ag₂SO₄/SnO₂ NSs: (**a**, **b**) TEM images; (**c**) SAED pattern; (**d**) HRTEM image; (**e**, **f**) corresponding FFT patterns; (**g**) HAADF-STEM and EDX mapping images

Fig. S4 Characterization of Ag₂SO₄/SnO₂ NSs: (**a**) PXRD pattern; XPS spectra of (**b**) full spectrum, (**c**) Ag 3d spectrum, (**d**) Sn 3d spectrum, (**e**) S 2p spectrum, (**f**) O 1s spectrum.

PXRD pattern exhibits that all the diffraction peaks of the product can be indexed to the Ag₂SO₄ and SnO₂ phase (**Fig. S4a**). The surface chemical state and composition of the Ag₂SO₄/SnO₂ NSs were further characterized by X-ray photoelectron spectroscopy (XPS). As shown in **Fig. S4b**, there are a series of peaks corresponding to Sn, Ag, O, C, and S elements in the survey spectrum of the Ag₂SO₄/SnO₂ NSs. Ag 3d spectra showed Ag 3d_{5/2} and Ag 3d_{3/2} peaks at binding energies of 367.5 and 373.5 eV, respectively, indicating the metallic Ag⁺ characteristics of sample surfaces (**Fig. S4c**). **Fig.** S4d shows the Sn 3d spectrum, in which peaks at 494.6 and 486.3 eV correspond to Sn 3d_{3/2} and 3d_{5/2} orbitals of Sn⁴⁺. In the S 2p spectra (**Fig. S4e**), two splitting peaks around 168.6 and 169.8 eV are assigned to S⁶⁺ 2p_{3/2} and 2p_{1/2} orbitals. In the O 1s spectrum (**Fig. S4f**), the peak at 531.9 eV is associating with the S-O bonds in SO₄²⁻ species, and the peak at 529.9 eV is assigned to the Sn-O bonds. In addition, a peak around 533 eV was also detected which is ascribed to hydroxyl groups.

Fig. S5 XRD pattern of Ag/Sn-SnO₂ NSs

Fig. S6 HAADF-STEM image and corresponding EDX line scans of Ag/Sn-SnO₂ NSs

Fig. S7 XRD patterns of SnO₂ NSs and Sn-SnO₂ NSs

Fig. S8 Characterization of SnO₂ NSs and derived Sn-SnO₂ NSs: (**a**) TEM image, (**b**) HAADF-STEM image, (**c**) HRTEM image of SnO₂ NSs; (**d**, **e**) HAADF-STEM images, (**f**) HRTEM image of Sn-SnO₂ NSs

Fig. S9 High-resolution XPS spectra: (**a**) Ag 3d of Ag/Sn-SnO₂ NSs; (**b**) Sn 3d of Ag/Sn-SnO₂ NSs and Sn-SnO₂ NSs; (**c**) O 1s of Ag/Sn-SnO₂ NSs and Sn-SnO₂ NSs

The O 1s spectra for Ag/Sn-SnO₂ NSs and Sn-SnO₂ NSs were resolved into three peaks at the binding energies of 529.4, 531.6, and 534.2 eV, corresponding to the lattice oxygen of Sn–O, oxygen atoms adjacent to O_{vacs} , and the adsorbed oxygen (O_{ads}), respectively (**Fig. S9c**).

The oscillation curves of Ag K-edge for Ag/Sn-SnO₂ in the K range of $0-14.0 \text{ Å}^{-1}$ also displayed obvious decrease in oscillation intensity with respect to Ag foil and Ag₂O (**Fig. S10**), indicating the existence of two silver phases.

Fig. S11 Wavelet transform EXAFS of Ag of Ag foil, Ag/Sn-SnO₂, and Ag₂O

Nano-Micro Letters

Fig. S12 Sn K-edge EXAFS oscillations of Sn foil, SnO₂, Sn-SnO₂, Ag/Sn-SnO₂ and SnO

Fig. S13 The Sn^{4+}/Sn and Ag^{+}/Ag reduction waves of $Ag/Sn-SnO_2$ in cyclic voltammetry curves

The cyclic voltammetry (CV) test was first conducted in an Ar-saturated 0.5 M KHCO₃ electrolyte to investigate the Ag and Sn-SnO₂ interaction. As shown in **Fig. S13**, the Sn⁴⁺ to Sn reduction peak shifted from -0.39 V (for Sn-SnO₂) to -0.37 V (for Ag/Sn-SnO₂), while the Ag⁺/Ag reduction peak shifted from 0.75 V (for Ag powder) to 0.63 V (for Ag/Sn-SnO₂), suggesting that the interphase electron transfer from Ag to Sn atoms, during which Sn atoms as electron acceptor became electron enrichment.

Fig. S14 Electrocatalytic CO₂RR performance of Sn-SnO₂ NSs in CO₂-saturated 0.5 M KHCO₃: (**a**) Polarization curves in Ar- or CO₂-saturated solution; (**b**) Total current densities at designated potentials; (**c**) FE for formate, CO and H₂; (**d**) Partial current densities of formate

Fig. S15 Electrocatalytic CO₂RR performance of Ag/Sn-SnO₂ NSs in CO₂-saturated 0.5 M KHCO₃: (**a**) Polarization curves in Ar- or CO₂-saturated solution; (**b**) Total current densities at designated potentials; (**c**) FE for formate, CO and H₂; (**d**) Partial current densities of formate

Fig. S16 Electrocatalytic CO₂RR performance of Ag powder in CO₂-saturated 0.5 M KHCO₃: (a) Polarization curves in Ar- or CO₂-saturated solution; (b) Total current densities at designated potentials; (c) FE for CO and H₂; (d) Partial current densities of CO

Fig. S17 Electrocatalytic CO₂RR performance of Ag powder in CO₂-saturated 0.5 M KHCO₃: (a) Polarization curves in CO₂-saturated solution; (b) FE for formate; (c) Partial current densities of formate

Where the content of Ag in Ag/Sn-SnO₂ was indirectly controlled by changing the concentration of Ag⁺ in the ion exchange experiment. Firstly, 0.1 g of SnS₂ NSs were dispersed in 80 mL of ethanol with sonication for 30 min. Then, 20 mL of ethanol solution of AgNO₃ (0.12, 0.24, 0.36, 0.48, 0.5 mM, name 1, 2, 3, 4, 5) was added to the above mixture with magnetic stirring for 12 h at 60 °C. Subsequently, the Ag⁺-exchanged SnS₂ NSs was collected, washed, and dried, and it was further calcined at 500 °C for 2 h in O₂ with a heating rate of 5 °C min⁻¹. Finally, Ag/Sn-SnO₂-X (X=1, 2, 3, 4, 5) were obtained via an in situ electrochemical self-reconstruction process.

$a_{0.12}$ Sn-SnO₂ D (mA cm⁻² Ag/Sn-SnO -5 -10 0.0 $\bigtriangleup j \, (mA \, cm^{-2})$ ESCA-corrected j_{formate} 15 0.00 -20 0.03 -25 Sn-SnO Ag/Sn-SnO 0.00 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 40 60 80 100 20 Potential (V vs. RHE) Scan rate (mV s⁻¹) d C 800 100 Sn-SnO, Ag/Sn-SnO 80 Overpotential (mV) 700 60 - Z''Ω) mV dec 107.2 600 20 Sn-SnO Ag/Sn-SnC 500 0.3 40 80 100 120 -0.9 -0.6 -0.3 0.0 0.6 20 60 $\log [\dot{j}_{formate} (\text{mA cm}^{-2})]$ **Ζ'**(Ω)

Nano-Micro Letters

Fig. S18 The Sn-SnO₂ NSs and Ag/Sn-SnO₂ NSs for electrocatalytic CO₂ reduction: (**a**) ESCAs; (**b**) ESCAs-normalized formate partial current density; (**c**) Tafel plots; (**d**) Nyquist plots (insert is simplified randles circuit)

In a simplified Randles circuit, R_s and R_{ct} represent the solution resistance and charge transfer resistance, respectively. C_{dl} element models the double-layer capacitance. The kinetics for Faradaic CO₂RR is determined by charge transfer resistance (R_{ct}).

Fig. S19 LSV curves of Ag/Sn-SnO₂ NSs and Sn-SnO₂ NSs in Ar-saturated 0.1 M KOH electrolyte

Fig. S20 Comparison of the performance of Ag/Sn-SnO₂ NSs with other Sn-based catalysts of H-type reactor

Fig. S21 Stability test for Ag/Sn-SnO₂ NSs at a potential of -0.97 V vs. RHE

Fig. S22 The recycled Ag/Sn-SnO₂ NSs after stability test: (**a**) XRD pattern; high-resolution XPS spectra of (**b**) Ag 3d, and (**c**) Sn 3d; (**d**) TEM image; (**e**) HRTEM image; (**g**) corresponding EDS mapping images

Fig. S23 Flow-type reactor configuration for electrocatalytic CO₂ reduction: (**a**) schematic diagram; (**b**) actual photograph

Fig. S24 Electrocatalytic CO₂RR performance in Flow-type reactor using 1M KOH as electrolyte: (a) Polarization curves; (b, c) Total current densities of Sn-SnO₂ NSs (b) and Ag/Sn-SnO₂ NSs (c); (d, e) FE for formate, CO and H₂ of Ag/Sn-SnO₂ NSs (d) and Sn-SnO₂ NSs (e); (f) Partial current densities of formate

Fig. S25 Side- and top-view of the initial models: (a, b) Sn-SnO₂; (c, d) Ag/Sn-SnO₂

Fig. S26 The optimized intermediate species along the reaction pathways for CO₂ electroreduction to formate on the (**a**) Sn-SnO₂ and (**b**) Ag/Sn-SnO₂

Fig. S27 Calculated adsorption configuration of *H on catalysts: (**a**, **b**) Sn-SnO₂; (**c**, **d**) Ag/Sn-SnO₂

Fig. S28 MEA with PSE layer electrolyzer for pure HCOOH production: (**a**, **b**) Schematic diagram, and digital image; (**c**, **d**) SEM images of the sulfonated styrene-divinylbenzene copolymer proton conductor

Fig. S29 Electrocatalytic CO₂RR performance of Ag/Sn-SnO₂ NSs in MEA with PSE layer reactor: (a) LSV curve, (b) FE of all products, (c) Partial current densities of HCOOH using DI water as carrier flow; (d) LSV curve, (e) FE of all products, (f) Partial current densities of HCOOH using humidified N₂ as carrier flow

Table S1 Ag K-edge EXAFS fitting results for Ag/Sn-SnO₂, Ag foil, and Ag₂O

sample	shell	Ν	σ ² (Å ²)	ΔE_0 (eV)	R (Å)	R-factor
Ag foil	Ag-Ag	12	$9.6 {\pm} 0.2$	2.0 ± 0.2	$2.86 {\pm} 0.00$	0.002
Ag_2O	Ag-O	4	1.2 ± 1.9	2.0 ± 1.5	2.05 ± 0.01	0.020
Ag/Sn-SnO ₂	Ag-O Ag-Ag Ag-Sn	1.1±0.2 2.1±1.1 2.3±1.2	5.4±5.9	0.9±1.3 -8.1±4.1	2.03±0.01 2.83±0.03 2.92±0.02	0.013

N: Coordination numbers; σ : Debye-Waller parameters, R: coordination distances; R-factor: goodness of fit, ΔE_0 energy shift. S_0^2 is amplitude reduction factor ($S_0^2=0.83$ was obtained by Ag foil fitting and applied for other sample fitting).

sample	shell	Ν	σ² (Ų)	ΔE_0 (eV)	R (Å)	R-factor
Sn foil	Sn-Sn1 Sn-Sn2	4 8	10.5 ± 1.0 4.9 ± 1.4	$0.4 {\pm} 0.8$	3.00 ± 0.00 3.74 ± 0.07	0.020
SnO ₂	Sn-O Sn-Sn1 Sn-Sn2	6.5 ± 0.5 1.5 ± 0.5 4.4 ± 1.8	1.3 ± 1.3 0.1 ± 2.0 0.1 ± 2.0	-1.0 ± 0.9 -4.9 ± 2.3 4.3 ± 2.1	$\begin{array}{c} 2.15 {\pm} 0.01 \\ 3.17 {\pm} 0.02 \\ 3.70 {\pm} 0.02 \end{array}$	0.017
Sn-SnO ₂	Sn-O Sn-Sn1 Sn-Sn2	4.7 ± 0.4 3.1 ± 0.4 4.0 ± 0.9	1.7 ± 0.9	3.6 ± 1.3 4.4 ± 6.9 3.3 ± 2.1	2.05 ± 0.01 3.20 ± 0.04 3.72 ± 0.01	0.018
Ag/Sn-SnO ₂	Sn-O Sn-Ag Sn-Sn1 Sn-Sn2	3.7 ± 0.3 2.0 ± 0.7 2.1 ± 0.7 3.2 ± 0.9	2.8±0.9	3.3 ± 1.8 5.8 ± 2.5 3.3 ± 2.1	2.04 ± 0.01 3.01 ± 0.02 3.15 ± 0.02 3.70 ± 0.01	0.018

N: Coordination numbers; σ : Debye-Waller parameters, R: coordination distances; R-factor: goodness of fit, ΔE_0 energy shift. S_0^2 is amplitude reduction factor (S_0^2 =0.88 was obtained by Sn foil fitting and applied for other sample fitting)

Catalyst	Electrolyte	Potential (V vs. RHE)	<i>j_{formate}</i> (mA cm ^{−2})	FE _{formate} (%)	Reference
Ag/Sn-SnO ₂	0.5 M KHCO ₃	-1.37	48	90	This work
InSn-3	0.1 M KHCO ₃	-0.9	34.15	86	S1
Cu ₆ Sn ₅ /Sn	0.5 M NaHCO ₃	-1.15	31	70	S2
CuSn-3	0.5 M KHCO ₃	-1.0	26	90	S3
$H-SnS_2$	0.1 M KHCO ₃	-1.0	25	87	S4
Ag-Sn/GO	0.5 M NaHCO ₃	-0.94	21.3	88.3	S5
Cu@Sn nanocones	0.5 M NaHCO ₃	-1.1	16	85	S6
Ag-Sn	0.5 M NaHCO ₃	-0.8	16	80	S 7
SnO_2QWs	0.1 M KHCO ₃	-1.156	13.7	85	S 8
SnO _x NPs	0.5 M NaHCO ₃	-1.2	9	80	S9
SnO _x	0.1 M KHCO ₃	-0.75	6.7	80	S10

Table S3 Comparison of the catalytic performance of various electrocatalysts for CO_2RR to formate production in H-type reactor

Table S4 Comparison of the catalytic performances of various electrocatalysts for CO_2RR to formate production in Flow-type reactor

Catalyst	Electrolyte	Potential	İ formate	FE _{formate}	Stability	Doforonao
Catalyst		(V vs. RHE)	(mA cm ⁻²)	(%)	Stability	Kererence
Ag/Sn-SnO ₂	1 M KOH	-2.0	2000	90	200 h; 200 mA cm ⁻²	This work
Sn-ene QDs	1 M KOH	-2.0	923	89	100 h; 200 mA cm ⁻²	S11
InP QDs	3 M KOH	-2.6	930	90	4 h; 400 mA cm ⁻²	S12
Bi flakes	1 M KOH	-0.7	677	83	6 h; 500 mA cm ⁻²	S13
Bi-ene-NW	1 M KOH	-0.97	570	91	18 h; 200 mA cm ⁻²	S14
$ZnIn_2S_4$	1 M KOH	-1.0	490	93	60 h; 300 mA cm ⁻²	S15
Bi NSs	1 M KOH	-0.67	400	89	10 h; 197 mA cm ⁻²	S16
Sn _{2.7} Cu	1 M KOH	-0.7	370	84	40 h; 243 mA cm ⁻²	S17
Ni-In ₂ O ₃ @C	1 M KOH	-1.0	350	90	55 h; 200 mA cm ⁻²	S18
FTO/C	1 M KHCO ₃	-1.0	330	90	160 h; 100 mA cm ⁻²	S19
Pits-Bi NS	1 M KOH	-1.5	325	92	110 h; 200 mA cm ⁻²	S20

	Catalyst	j _{total} (mA)	<i>јнсоон</i> (mA cm ⁻²)	FE _{HCOOH} (%)	Stability (h; mAcm ⁻² ; moL L ⁻¹)	Reference
	Ag/Sn-SnO ₂	1000	350	90	200 h; 100 mA cm ⁻² ; 0.14 ^[a]	This work
		800	270	90	25 h; 100 mA cm ⁻² ; 0.27 ^[b]	T IIIS WOLK
	In ₂ O ₃ @C	320	80	\setminus	3 h; 30 mA cm ⁻² ; $[a]$	S21
	2D-Bi	800	200	200 78 100 h; 30 mA cm ⁻² ; $0.1^{[a]}$		S22
	Bi MS	220	175	84	110 h; 160 mA cm ⁻² ; 0.13 ^[a]	S23
	nBuLi-Bi	800	400	88	100 h; 30 mA cm ⁻² ; 0.1 ^[a]	524
		300	150	85	30 h; 30 mA cm ⁻² ; 0.35 ^[c]	524
	Pb ₁ Cu	900	225	225 90 180 h; 100 mA cm ⁻²		S25
	BiSn	250	225	90	12 h; 100 mA cm ⁻² ; 0.41 ^[a]	S26

Table S5 Comparison of the catalytic performances of various electrocatalysts for CO_2RR to pure HCOOH solution in the MEA with PSE layer reactor

[a] Formic acid was released by feeding a flow of deionized water (anode-coupled OER reaction); [b, c] Formic acid was released by feeding a flow of N_2 vapour flow (b: anode-coupled OER reaction, c: anode-coupled HOR reaction)

Supplementary References

- [S1] J. Wang, S. Ning, M. Luo, D. Xiang, W. Chen, X. Kang, Z. Jiang, S. Chen, In-Sn alloy core-shell nanoparticles: In-doped SnOx shell enables high stability and activity towards selective formate production from electrochemical reduction of CO2, Appl. Catal. B: Environ. 288 (2021) 119979. <u>https://doi.org/10.1016/j.apcatb.2021.119979</u>
- [S2] Y. Wang, Y. Chen, Y. Zhao, J. Yu, Z. Liu, Y. Shi, H. Liu, X. Li, W. Zhou, Laserfabricated channeled Cu6Sn5/Sn as electrocatalyst and gas diffusion electrode for efficient CO2 electroreduction to formate. Appl. Catal. B: Environ. 307 (2022) 120991. <u>https://doi.org/10.1016/j.apcatb.2021.120991</u>
- [S3] M. Ren, H. Zheng, J. Lei, J. Zhang, X. Wang, B.I. Yakobson, Y. Yao, J.M. Tour, CO2 to formic acid using Cu-Sn on laser-induced graphene. ACS Appl. Mater. Interfaces 12 (2020) 41223-41229. <u>https://doi.org/10.1021/acsami.0c08964</u>
- [S4] A. Zhang, Y. Liang, H. Li, S. Wang, Q. Chang, K. Peng, Z. Geng, J. Zeng, Electronic tuning of SnS2 nanosheets by hydrogen incorporation for efficient CO2 electroreduction. Nano Lett. 21 (2021) 7789-7795. https://doi.org/10.1021/acs.nanolett.1c02757
- [S5] X. Zhang, F. Li, Y. Zhang, Alan M. Bond, J. Zhang, Stannate derived bimetallic nanoparticles for electrocatalytic CO2 reduction, J. Mater. Chem. A, 6 (2018) 7851-7858. <u>https://doi.org/10.1039/C8TA02429D</u>
- [S6] C. Chen, Y. Pang, F. Zhang, J. Zhong, B. Zhang, Z. Cheng, Sharp Cu@ Sn nanocones on Cu foam for highly selective and efficient electrochemical reduction of CO2 to formate, J. Mater. Chem. A, 6 (2018) 19621-19630. <u>https://doi.org/10.1039/C8TA06826G</u>
- [S7] W. Luc, C. Collins, S. Wang, H. Xin, K. He, Y. Kang, F. Jiao, Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J. Am. Chem. Soc. 139 (2017) 1885-1893. <u>https://doi.org/10.1021/jacs.6b10435</u>

- [S8] S. Liu, J. Xiao, X.F. Lu, J. Wang, X. Wang, X.W. Lou, Efficient electrochemical reduction of CO2 to HCOOH over sub-2 nm SnO2 quantum wires with exposed grain boundaries. Angew. Chem. Inter. Ed. 58 (2019) 8499-8503. https://doi.org/10.1002/anie.201903613
- [S9] M.K. Kim, H. Lee, J.H. Won, W. Sim, S.J. Kang, H. Choi, M. Sharma, H.S. Oh, S. Ringe, Y. Kwon, H.M. Jeong, Design of less than 1 nm scale spaces on SnO2 nanoparticles for high-performance electrochemical CO2 reduction. Adv. Funct. Mater. 32 (2021) 2107349. <u>https://doi.org/10.1002/adfm.202107349</u>
- [S10] Y. Cheng, J. Hou, P. Kang, Integrated capture and electroreduction of flue gas CO2 to formate using amine functionalized SnOx nanoparticles. ACS Energy Lett. 6 (2021) 3352-3358. <u>https://doi.org/10.1021/acsenergylett.1c01553</u>
- [S11] M. Zhang, S. Zhou, W. Wei, D.-D. Ma, S.-G. Han, X. Li, X.-T. Wu, Q. Xu, Q.-L. Zhu, Few-atom-layer metallene quantum dots toward CO2 electroreduction at ampere-level current density and Zn-CO2 battery. Chem Catal. 2 (2022) 3528-3545. <u>https://doi.org/10.1016/j.checat.2022.10.001</u>
- [S12] I. Grigioni, L.K. Sagar, Y.C. Li, G. Lee, Y. Yan, K. Bertens, R.K. Miao, X. Wang, J. Abed, D.H. Won, F.P. García de Arquer, A.H. Ip, D. Sinton, E.H. Sargent, CO2 electroreduction to formate at a partial current density of 930 mA cm⁻² with InP colloidal quantum dot derived catalysts. ACS Energy Lett. 6 (2020) 79-84. <u>https://doi.org/10.1021/acsenergylett.0c02165</u>
- [S13] Z. Xing, X. Hu, X. Feng, Tuning the microenvironment in gas-diffusion electrodes enables high-rate CO2 electrolysis to formate. ACS Energy Lett. 6 (2021) 1694-1702. <u>https://doi.org/10.1021/acsenergylett.1c00612</u>
- [S14] M. Zhang, W. Wei, S. Zhou, D.-D. Ma, A. Cao, X.-T. Wu, Q.-L. Zhu, Engineering a conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability, Energy Environ. Sci. 14 (2021) 4998-5008. <u>https://doi.org/10.1039/D1EE01495A</u>
- [S15] L.P. Chi, Z.Z. Niu, X.L. Zhang, P.P. Yang, J. Liao, F.Y. Gao, Z.Z. Wu, K.B. Tang, M.R. Gao, Stabilizing indium sulfide for CO2 electroreduction to formate at high rate by zinc incorporation. Nat. Commun. 12 (2021) 5835. <u>https://doi.org/10.1038/s41467-021-26124-y</u>
- [S16] J. Yang, X. Wang, Y. Qu, X. Wang, H. Huo, Q. Fan, J. Wang, L. M. Yang, Y. Wu, Bibased metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv. Energy Mater. 10 (2020) 2001709. <u>https://doi.org/10.1002/aenm.202001709</u>
- [S17] K. Ye, Z. Zhou, J. Shao, L. Lin, D. Gao, N. Ta, R. Si, G. Wang, X.J.A.C.I.E. Bao, In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for highperformance CO2 electroreduction. Angew. Chem. Int. Ed. 59 (2020) 4814-4821. <u>https://doi.org/10.1002/anie.201916538</u>
- [S18] Z. Chen, G. Yu, B. Li, X. Zhang, M. Jiao, N. Wang, X. Zhang, L. Liu, In situ carbon encapsulation confined nickel-doped indium oxide nanocrystals for boosting CO2 electroreduction to the industrial level. ACS Catal. 11 (2021) 14596-14604. <u>https://doi.org/10.1021/acscatal.1c04182</u>
- [S19] Y.J. Ko, J.Y. Kim, W.H. Lee, M.G. Kim, T.Y. Seong, J. Park, Y. Jeong, B.K. Min, W.S. Lee, D.K. Lee, H.S. Oh, Exploring dopant effects in stannic oxide nanoparticles

for CO2 electro-reduction to formate. Nat. Commun. 13 (2022) 2205. https://doi.org/10.1038/s41467-022-29783-7

- [S20] Y. Yuan, Q. Wang, Y. Qiao, X. Chen, Z. Yang, W. Lai, T. Chen, G. Zhang, H. Duan, M. Liu, H. Huang, In situ structural reconstruction to generate the active sites for CO2 electroreduction on bismuth ultrathin nanosheets. Adv. Energy Mater. 12 (2022) 2200970. <u>https://doi.org/10.1002/aenm.202200970</u>
- [S21] Z. Wang, Y. Zhou, D. Liu, R. Qi, C. Xia, M. Li, B. You, B.Y. Xia, Carbon-confined indium oxides for efficient carbon dioxide reduction in a solid-state electrolyte flow cell. Angew. Chem. Inter. Ed. 61 (2022) e202200552. <u>https://doi.org/10.1002/anie.202200552</u>
- [S22] C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. Liang, E. Stavitski, H.N. Alshareef, H. Wang, Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4 (2019) 776-785. <u>https://doi.org/10.1038/s41560-019-0451-x</u>
- [S23] Y. Zhang, R. Zhang, F. Chen, F. Zhang, Y. Liu, X. Hao, H. Jin, X. Zhang, Z. Lu, H. Dong, F. Lu, W. Wang, H. Liu, Y. Chen, Mass-transfer-enhanced hydrophobic Bi microsheets for highly efficient electroreduction of CO2 to pure formate in a wide potential window. Appl Catal B: Environ 322 (2023) 122127. https://doi.org/10.1016/j.apcatb.2022.122127
- [S24] L. Fan, C. Xia, P. Zhu, Y. Lu, H. Wang, Electrochemical CO2 reduction to highconcentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11 (2020) 3633. <u>https://doi.org/10.1038/s41467-020-17403-1</u>
- [S25] T. Zheng, C. Liu, C. Guo, M. Zhang, X. Li, Q. Jiang, W. Xue, H. Li, A. Li, C.-W. Pao, J. Xiao, C. Xia, J. Zeng, Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotech. 16 (2021) 1386-1393. <u>https://doi.org/10.1038/s41565-021-00974-5</u>
- [S26] L. Li, Z. Liu, X. Yu, M. Zhong, Achieving high single-pass carbon conversion efficiencies in durable CO2 electroreduction in strong acids via electrode structure engineering. Angew. Chem. Inter. Ed. 15 (2023) e202300226. <u>https://doi.org/10.1002/anie.202300226</u>