Supporting Information for

Two-Dimensional Cr₅Te₈@Graphite Heterostructure for

Efficient Electromagnetic Microwave Absorption

Liyuan Qin^{1, 2}, Ziyang Guo¹, Shuai Zhao^{2, *}, Denan Kong², Wei Jiang², Ruibin Liu², Xijuan Lv^{2, *}, Jiadong Zhou^{2, 3, *}, and Qinghai Shu^{1, 4, *}

¹ School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China

² Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China

³ Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, P. R. China

⁴ Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063099, P.
R. China

*Corresponding authors. E-mail: <u>zhaoshuai117@bit.edu.cn</u> (Shuai Zhao); <u>lvxj@bit.edu.cn</u> (Xijuan Lv); <u>jdzhou@bit.edu.cn</u> (Jiadong Zhou); <u>ghshu121@bit.edu.cn</u> (Qinghai Shu)

Supplementary Figures and Tables

Fig. S1 Structure of Cr_5Te_8 crystals. **a** Raman spectra and **b** XRD pattern of Cr_5Te_8 . **c** Intensity line profile of the rectangle marked in **Fig. 1c**, showing the high quality of Cr_5Te_8 crystals

Fig. S2 Reflection loss curves of Cr_5Te_8 and EG at different thicknesses and different loadings. **a–c** RL values at 10 wt% loadings (**a**), 50 wt% loadings (**b**), and 70 wt% (**c**) loadings of Cr_5Te_8 , showing the dependence of EMA performance on the high loading rate. **d** RL values at 10 wt% loadings of EG, showing the poor EMA performance of EG at low loading

Materials	$\mathbf{RL}_{\min}\left(\mathbf{dB}\right)$	Thickness (mm)	Refs.
High-entropy CrO _X	-30.7	3.2	[S1]
SiC/SiO ₂	-54.68	4.49	[S2]
Fe/FeO _x @C	-28.9	2.0	[S3]
NiSe ₂ /FeSe@NC	-52.8	2.1	[S4]
$Ti_3C_2T_x/MoS_2$	-52.1	4.1	[S5]
CoNi/MnO@C	-55.2	2.6	[S6]
NiFe ₂ O ₄ -G	-48.1	3.0	[S7]
CoFe@NC/rGO	-53.0	2.4	[S 8]
MoSe ₂ @rGO	-56.9	5.67	[S9]
PC/Fe ₃ O ₄ @PDA	-46.67	2.4	[S10]
rGO/Cu/Fe ₃ O ₄	-18.3	3.1	[S11]
C@MoO ₂ /G	-33.5	5.0	[S12]
CoFe-CNT-rGO	-56.1	2.73	[S13]
Cu/C@MoS ₂	-48.22	2.5	[S14]
FeCo/C	-35.9	4.0	[S15]
Cr5Te8@EG	-57.6	1.4	This work

Table S1 Comparison of the minimum RL (RL_{min}) and corresponding thickness of different materials

Materials	RL _{min} (dB)	Loading (wt %)	Refs.
Fe/FeO _x @C	-28.9	60	[S3]
rGO/Cu/Fe ₃ O ₄	-18.3	55	[S11]
Ni@C-CoNi	-51.4	50	[S16]
BCN/C/Co	-56.7	48	[S17]
MoSe ₂ @rGO	-56.9	40	[S9]
CoFe@NC/rGO	-53.0	35	[S8]
C@MoO ₂ /G	-33.5	30	[S12]
PC/Fe ₃ O ₄ @PDA	-46.67	30	[S10]
Cu/C@MoS ₂	-48.22	30	[S14]
FeCo/C	-35.9	30	[S15]
NiO/NiFe2O4@NG	-52.61	25	[S18]
NiFe ₂ O ₄ -G	-48.1	20	[S7]
WS ₂ /CoS ₂ @CCF	-51.26	20	[S19]
$CoO/FeCo_2O_4/Ti_3C_2T_x$	-41.06	10	[S20]
Cr5Te8@EG	-57.6	10	This work

Table S2 Comparison of the RLmin and corresponding loading of different materials

Fig. S3 Impedance matching capability of Cr_5Te_8 and EG. Impedance matching curves under different thicknesses of Cr_5Te_8 **a**, EG **b**. The Z values of Cr_5Te_8 are far larger than the value of 1 and the Z values of EG are far small than the value of 1, indicating their poor impedance matching capability

Fig. S4 a₁ the electromagnetic parameters, and **a**₂ reflection loss of Cr_5Te_8 @expanded graphite heterojunction under 10% of loading rate. **b**₁ the electromagnetic parameters, and **b**₂ reflection loss of Cr_5Te_8 physically mixed with expanded graphite under 10% of loading rate. **c**₁ the electromagnetic parameters, and **c**₂ reflection loss of Cr_5Te_8 physically mixed with expanded graphite under 30% of loading rate. Note: Cr_5Te_8 @expanded graphite heterojunction is synthesized using a 1:1 mass ratio of raw materials (CrCl₃ to unexpanded graphite). Cr_5Te_8 physically mixed with expanded graphite is prepared using 1:1 mass ratio of Cr_5Te_8 to expanded graphite

Fig. S5 Polarization relaxation ability of Cr_5Te_8 and EG. Cole-Cole curves of Cr_5Te_8 **a** and EG **b**, respectively. More Cole-Cole semicircles appear in ECTs than those for Cr_5Te_8 and EG, showing the significance of hetero-interface polarization behaviors of ECTs

Fig. S6 Characterization of EG band structure. The **a** bandgap, **b** work function, and **c** valence band top of EG

Fig. S7 Specific surface area and pore structure of ECT-1, ECT-2, ECT-3, and EG. **a** N₂ adsorption-desorption isotherm curves of ECT and EG, showing the influence of light and porous EG content on the specific surface area. **b** Pore size distribution curves of ECT and EG

Fig. S8 RCS simulation of ECT-1 and ECT-3. RCS simulated curves at different incident thetas of PEC, ECT-1, and ECT-3, displaying that ECT-1 has a superior contribution to EMA attenuations than ECT-3

Supplementary References

- [S1] B. Zhao, Y. Du, Z. Yan, L. Rao, G. Chen et al., Structural defects in phaseregulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 33(1), 2209924 (2023). <u>https://doi.org/10.1002/adfm.202209924</u>
- [S2] Z. Xiang, Y. Wang, X. Yin, Q. He, Microwave absorption performance of porous heterogeneous SiC/SiO₂ microspheres. Chem. Eng. J. 451(part 2), 138742 (2023). <u>https://doi.org/10.1016/j.cej.2022.138742</u>
- [S3] M. Zhang, L. Wang, S. Bao, Z. Song, W. Chen et al., A finite oxidation strategy for customizing heterogeneous interfaces to enhance magnetic loss ability and microwave absorption of Fe-cored carbon microcapsules. Nano Res. 16, 11084– 11095 (2023). <u>https://doi.org/10.1007/s12274-023-5511-7</u>
- [S4] Z. Yang, T. Wang, J. Wang, Z. Luo, Q. Zhang et al., Heterogeneous N-doped carbon composite NiSe₂-FeSe double-shell hollow nanorods for tunable and highefficient microwave attenuation. Carbon 201, 491–503 (2023). <u>https://doi.org/10.1016/j.carbon.2022.09.023</u>
- [S5] M. Li, W. Zhu, X. Li, H. Xu, X. Fan et al., Ti₃C₂T_x/MoS₂ self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption. Adv. Sci. 9(16), 2201118 (2022). <u>https://doi.org/10.1002/advs.202201118</u>
- [S6] Y. Liu, X. Zhou, Z. Jia, H. Wu, G. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mnbased MOFs-derived composites. Adv. Funct. Mater. 32(34), 2204499 (2022). <u>https://doi.org/10.1002/adfm.202204499</u>

- [S7] Y. Wang, L. Yao, Q. Zheng, M.-S. Cao, Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res. 15(7), 6751–6760 (2022). https://doi.org/10.1007/s12274-022-4428-x
- [S8] S. Wei, T. Chen, Z. Shi, S. Chen, Preparation of CoFe@N-doped C/rGO composites derived from cofe prussian blue analogues for efficient microwave absorption. J. Colloid Interf. Sci. 610, 395–406 (2022). https://doi.org/10.1016/j.jcis.2021.12.051
- [S9] X. Fu, Q. Zheng, L. Li, M. Cao, Vertically implanting MoSe₂ nanosheets on the rGO sheets towards excellent multi-band microwave absorption. Carbon 197, 324–333 (2022). <u>https://doi.org/10.1016/j.carbon.2022.06.037</u>
- [S10] Y. Xie, Y. Guo, T. Cheng, L. Zhao, T. Wang et al., Efficient electromagnetic wave absorption performances dominated by exchanged resonance of lightweight PC/Fe₃O₄@PDA hybrid nanocomposite. Chem. Eng. J. 457, 141205 (2023). <u>https://doi.org/10.1016/j.cej.2022.141205</u>
- [S11] G. Fang, C. Liu, Y. Yang, K. Peng, Y. Cao et al., Regulating percolation threshold via dual conductive phases for high-efficiency microwave absorption performance in C and X bands. ACS Appl. Mater. Interfaces 13(31), 37517– 37526 (2021). <u>https://doi.org/10.1021/acsami.1c10110</u>
- [S12] C. Wu, Z. Chen, M. Wang, X. Cao, Y. Zhang et al., Confining tiny MoO₂ clusters into reduced graphene oxide for highly efficient low frequency microwave absorption. Small 16(30), 2001686 (2020). <u>https://doi.org/10.1002/smll.202001686</u>
- [S13] R. Meng, T. Zhang, X. Liu, P. Jiao, J. Li et al., Graphene oxide-assisted Cosintering synthesis of carbon nanotubes with enhanced electromagnetic wave absorption performance. Carbon 185, 186–197 (2021). <u>https://doi.org/10.1016/j.carbon.2021.09.018</u>
- [S14] Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of MoS₂-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. **32**(18), 2112294 (2022). <u>https://doi.org/10.1002/adfm.202112294</u>
- [S15] L. Rao, L. Wang, C. Yang, R. Zhang, J. Zhang et al., Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption. Adv. Funct. Mater. 33(16), 2213258 (2023). <u>https://doi.org/10.1002/adfm.202213258</u>
- [S16] M. Sun, D. Wang, Z. Xiong, Z. Zhang, L. Qin et al., Multi-dimensional Ni@C-CoNi composites with strong magnetic interaction toward superior microwave absorption. J. Mater. Sci. Technol. 130, 176–183 (2022). https://doi.org/10.1016/j.jmst.2022.05.016

- [S17] H. Tian, J. Qiao, Y. Yang, D. Xu, X. Meng et al., ZIF-67-derived Co/C embedded boron carbonitride nanotubes for efficient electromagnetic wave absorption. Chem. Eng. J. 450(part 1), 138011 (2022). <u>https://doi.org/10.1016/j.cej.2022.138011</u>
- [S18] J. Luo, H. Guo, J. Zhou, F. Guo, G. Liu et al., Rational construction of heterogeneous interfaces for bimetallic MOFs-derived/rGO composites towards optimizing the electromagnetic wave absorption. Chem. Eng. J. 429, 132238 (2022). <u>https://doi.org/10.1016/j.cej.2021.132238</u>
- [S19] Y. Guo, H. Liu, D. Wang, Z.M. El-Bahy, J.T. Althakafy et al., Engineering hierarchical heterostructure material based on metal-organic frameworks and cotton fiber for high-efficient microwave absorber. Nano Res. 15(8), 6841–6850 (2022). <u>https://doi.org/10.1007/s12274-022-4533-x</u>
- [S20] H. Wang, X. Sun, Y. Xin, S. Yang, P. Hu et al., Ultrathin self-assembly MXene/Co-based bimetallic oxide heterostructures as superior and modulated microwave absorber. J. Mater. Sci. Technol. 134, 132–141 (2023). <u>https://doi.org/10.1016/j.jmst.2022.05.061</u>