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Fig. S1 SEM images of Gr@CNT intertwined networks in CNF framework 
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Fig. S2 a Digital image of the sedimentation experiment of CNF, Gr@CNT and Gr@CNT/CNF 

dispersions (~5.0 mg/mL) holding on 30 min, and b The corresponding Zeta potential of 

dispersions with a dilutional concentration of ~0.5 mg/mL 

The sedimentation experiment of CNF, Gr@CNT and Gr@CNT/CNF dispersions before and 

after holding on 30 mins were conducted in Fig. S2a. Comparatively, the CNF and 

Gr@CNT/CNF dispersions still maintained in a stable state after holding on 30 min, whereas 

the obvious phase segregation occurred in Gr@CNT dispersion with the same holding time. 

This phenomenon implied that CNF molecules played a positive contribution on the dispersion 

of Gr@CNT nanoparticles in aqueous solution. Moreover, the corresponding Zeta potentials of 

these dispersions with a dilutional concentration of 0.5 mg/mL were measured by a Malvern 

Zetasizer NANO-ZS (Malvern Instruments, Worcestershire, U.K.) (Fig. S2b). The medium 

level of dispersion stability of CNF and Gr@CNT/CNF dispersions was verified, where the 

absolute Zeta potential was higher than 25 mV [S1].  

 

Fig. S3 Digital images of the inks with different solid contents 

 

Fig. S4 Digital image of the smooth extrusion of Gr@CNT functional ink 
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Fig. S5 Shear stress of the functional inks with various Gr@CNT proportions as a function of 

shear rate 

 

Fig. S6 Digital image and infrared image of 3D-printed frame under a relatively high-

temperature environment 

 

Fig. S7 The electrical conductivity of 3D-printed frames with various Gr@CNT proportions 
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Fig. S8 a EMI SE property of the conventionally compacted sample in the X-band frequency 

range, and b The corresponding average EMI SE and SSE values 

 

Fig. S9 The electromagnetic parameters (SEtotal, SEA, and SER) of 3D-printed FI frames 

 

Fig. S10 a Schematic of the assembled thermal-dissipation models with electronic, packaging 

material with c-SE module, and heat sink. b, c Digital images of the tested samples with pure 

packaging material and packaging material with c-SE module 
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Fig. S11 The intrinsic thermal conductivity of air, packaging material and G2C3 sample 

 

Fig. S12 Schematic of the meshes generated by the pure packaging material and the packaging 

material integrated with c-SE module 

Table S1 The detailed compositions of carbon-based functional inks 

      Composition 

Abbreviation 
Gr / g CNT / g CNF / g PVP / g 

G5C0 1.0 0.0 0.3 0.15 

G4C1 0.8 0.2 0.3 0.15 

G3C2 0.6 0.4 0.3 0.15 

G2C3 0.4 0.6 0.3 0.15 

G1C4 0.2 0.8 0.3 0.15 

G0C5 0.0 1.0 0.3 0.15 

(Gr: graphene, CNT: carbon nanotube, CNF: cellulose, PVP: polyvinylpyrrolidone) 

Table S2 The detailed printing information 

X/Y Axis 

movement speed 

(mm/s) 

Z Axis 

movement speed 

(mm/s) 

X/Y axis movable 

limit 

(mm) 

Z axis movable 

limit 

(mm) 

Syringe volume 

(mL) 

40 20 150 50 30 
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Table S3 Comparison of the lighter, stronger, and fitter characteristics of 3D-printed Gr@CNT 

EMI SE frame in this work and other SE materials previously reported in the literature 

Composites ρ (g/cm3) EMI SE (dB) Refs. 

Ni/C 0.25 43.1  [S2] 

CNT/ANF 0.12 35.9  [S3] 

Gr/PU 0.588 59.8  [S4] 

Gr/Cu 0.72 32.6  [S5] 

CNT@Gr/Cs 1.05 45.3  [S6] 

Gr/C 0.30 50.7  [S7] 

CF 0.50 48.9  [S8] 

CNT/NR 0.50 44.0  [S9] 

Gr/PLA 0.98 27.8  [S10] 

PYC 0.48 54.8  [S11] 

GN/Fe3O4/EP 0.34 37.3  [S12] 

Gr@CNT/CNF 0.076 61.4 This work 

(CNT: carbon nanotube, ANF: aramid nanofiber, Gr: graphene, PU: Polyurethane, PDA: 

Polydopamine, Cs: Carbon-matrix nanocomposites, CF: carbon foam, NR: Natural rubber, 

PLA: Polylactic acid, PYC: Pyrolytic carbon, GN: Graphene nanosheets, EP: Epoxy)  

Table S4 The simulation parameters and boundary conditions (COMSOL Multi-physics) 

Item 
Heat source  

(Core electronic) 

Heat sink material 

(Packaging material) 

Heat sink material 

(3D printing frame) 

Sample size 

(x×y×z, mm3) 
16×16×1 21×21×2.5 21×21×2.5 

Thermal 

conductivity 

(W·m-1·K-1) 

1.38 0.60 2.187 

Specific heat 

capacity 

(J·kg-1·K-1) 

703.00 1000.60 999.88 

Surface emissivity 

(%) 
0.80 

Heat power 

(W) 
1.00 / 

Initial temperature 

(K) 
293.15 
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