Supplementary Information for

Versatile MXene Gels Assisted by Brief and Low-Strength Centrifugation

Weiyan Yu^{1,2}, Yi Yang^{1,2}, Yunjing Wang², Lulin Hu^{1,2}, Jingcheng Hao^{2,3,*}, Lu Xu^{1,2,*} and Weimin Liu^{1,2}

¹ State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China

² Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, P. R. China

³ Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Jinan 250100, P. R. China

*Corresponding authors. E-mail: jhao@sdu.edu.cn (Jingcheng Hao); xulu@licp.cas.cn (Lu Xu)

Supplementary Figures and Tables

Fig. S1 a, b TEM and **c, d** AFM observations of exfoliated ultrathin $Ti_3C_2T_x$ MXene. SEM images of **e** pristine Ti_3AlC_2 MAX phase and **f** multilayered $Ti_3C_2T_x$ MXene obtained after etching. Insets in **a** and **d** are the particle size distribution and heigh profile of the MXene nanosheets

Nano-Micro Letters

Fig. S2 Zeta potential measurements of $Ti_3C_2T_x$ dispersions at different pH values. T = 25 °C

Fig. S3 Photographs of pH 10 $Ti_3C_2T_x$ dispersions at different particle concentrations (in mg mL⁻¹) after centrifugation at 10000 ×g for 30 s. T = 25 °C

Fig. S4 Photographs of pH 10, 0.5 mg mL⁻¹ Ti₃C₂T_x dispersions after exposure to different relative centrifugal forces (RCFs, in \times g) for 30 s. T = 25 °C

Nano-Micro Letters

Fig. S5 Photographs of pH 10 Ti₃C₂T_x dispersions at different particle concentrations (in mg mL⁻¹) after addition of **a** Fe²⁺ and **b** Zn²⁺ to a final mass ratio of 3:8 (metal chloride-to-MXene). **c** Photographs of an aqueous dispersion containing 2 mg mL⁻¹ Ti₃C₂T_x nanosheets and 5 mmol L⁻¹ Fe²⁺ before and after exposure to 400 ×g centrifugation for 30 s. T = 25 °C

Fig. S6 SEM observations of freeze-dried pH 10 MXene gels **a** and dispersions **b**. Scale bar = $20 \ \mu m$

Fig. S7 3D macrostructures of a pH 10 MXene gel a before and b after complete lyophilization

Fig. S8 Cryogenic SEM observations on a pristine pH 10 MXene gel. Scale bar = $5 \mu m$

Fig. S9 Comparison in viscoelasticity between the $Ti_3C_2T_x$ gels with an identical water content of ~98 wt% triggered by centrifugation and divalent metal ions. T = 25 °C

Fig. S10 Photographs of 10 mg mL⁻¹, pH 10 MXene dispersions prepared with different alkalis **a** before and **b** after centrifugation at 400 ×g for 30 s. SEM images of the centrifugation-assisted MXene gels prepared with **c** KOH, **d** NH₄OH and **e** (C₄H₉)₄NOH. T = 25 °C

Fig. S11 Rheological property of the centrifugation-assisted MXene gel with different internal pH values. T = 25 $^{\circ}$ C

Fig. S12 Changes in viscoelasticity of the MXene gels over time at a constant shear frequency and strain of 1 Hz and 5%, respectively. T = 25 °C

Fig. S13 a Raman and b XRD profiles of lyophilized MX ene gels at different pH values. T = 25 °C

Fig. S14 a Photographs and b internal microstructures of pH 2 MXene gels prepared using H₂SO₄ and HNO₃. T = 25 °C

Fig. S15 a Full XPS and b XPS F 1s spectra of a lyophilized MXene gel after alternately changing pH between 4 and 10. T = $25 \degree C$

Table S1 Contents of each terminal group	determined by the	he deconvolution	and integration of
corresponding band areas from the XPS pr	rofiles		

рН	-F	-0	-ОН
pH=4	50.4%	23.9%	25.7%
pH=10	30.3%	48.0%	21.7%
pH=4	48.2%	24.0%	27.8%

Nano-Micro Letters

Fig. S16 FTIR profile of a freeze-dried MXene gel after alternately changing its internal pH value between 4 and 10. T = $25 \text{ }^{\circ}\text{C}$

Fig. S17 Internal microstructure of a pH 4 gel after addition of an equal amount of NaCl instead of NaOH

Fig. S18 Effect of **a** applied normal load and **b** initial particle concentration on the CoF of a pH 8 MXene gel. Sliding velocity = 10 mm s⁻¹. T = 25 °C

Nano-Micro Letters

Fig. S19 Width and depth profiles of the wear scar on a steel substrate lubricated with MXene gels in different pH values

Fig. S20 Variations in the CoF of a pH 4 MXene gel upon alternately changing sliding velocity between 2 and 40 mm s⁻¹. T = 25 $^{\circ}$ C

Fig. S21 a Internal self-assembled structure and **b** CoF of the MXene-PDDA composite gel at pH 2 and 8. **c** 3D surface topography and **d** abrasive volume of a steel substrate lubricated with the PDDA-containing gel at pH 2 and 8 under 10 N and 10 mm s⁻¹. T = 25 °C

Nano-Micro Letters

Fig. S22 Photographs of an electrode fabricated with the $Ti_3C_2T_x$ gel

Fig. S23 Photographs of the pH 4 and 10 $Ti_3C_2T_x$ gels after immersed in water reservoirs stained with dye methylene blue for better visualization for 30 days. T = 25 °C

Fig. S24 GCD curves of **a** pH 4 and **b** 10 MXene gels at current densities between 0.1 and 50 A g⁻¹. T = 25 °C

Gels	Electrolyte	Potential (V)	Specific capacitance (F g ⁻	Cyclic stability	Refs.
MXene/Fe ²⁺	3 M H ₂ SO ₄	-1.1 to -0.15 (Hg/Hg ₂ SO ₄)	¹) ~270 (10 mV s ⁻¹) ~255 (100 mV s ⁻¹)	97.1% after 10,000 cycles	[S1]
MXene/HA	$3 \text{ M} \text{H}_2 \text{SO}_4$	-1.1 to -0.15 (Hg/Hg ₂ SO ₄)	~255 (10 mV s ⁻¹) ~90 (100 mV s ⁻¹)	91.7% after 10,000 cycles	[S2]
MXene/H ₂ SO ₄ hydrogel film	$3 \text{ M} \text{H}_2 \text{SO}_4$	-1.1 to -0.1 (Hg/Hg ₂ SO ₄)	~375 (10 mV s ⁻¹)	90% after 10,000 cycles	[S3]
H2SO4-thawed MXene	$3 \text{ M} \text{H}_2 \text{SO}_4$	-1.2 to -0.2 (Hg/Hg ₂ SO ₄)	~393 (5 mV s ⁻¹)	95.5% after 10,000 cycles	[S4]
MXene/rGO hydrogel film	$3 \text{ M} \text{H}_2 \text{SO}_4$	-1.1 to -0.15 (Hg/Hg ₂ SO ₄)	$\begin{array}{l} \sim 300 \; (10 \; mV \; s^{\text{-1}}) \\ \sim 280 \; (100 \; mV \; s^{\text{-1}}) \end{array}$	94.3% after 10,000 cycles	[85]
MXene/GO	$3 \text{ M} \text{H}_2 \text{SO}_4$	-0.5 to 0.3 (Ag/AgCl)	$\begin{array}{l} {\sim}470~(10~mV~s^{\text{-}1}) \\ {\sim}380~(100~mV~s^{\text{-}1}) \end{array}$	~98% after 8,000 cycles	[S6]
MXene/Al ³⁺	1 M H ₂ SO ₄	-0.4 to 0.3 (Ag/AgCl)	~275 (100 mV s ⁻¹)	~90% after 5,000 cycles	[S7]
MXene/rGO/CNT	$3 \text{ M} \text{H}_2 \text{SO}_4$	-0.6 to 0.25 (Ag/AgCl)	~300 (100 mV s ⁻¹)	97.1% after 10000 cycles	[S8]
Zn ²⁺ /MXene hydrogel film	1 M H ₂ SO ₄	-0.6 to 0.2 (Ag/AgCl)	$\begin{array}{l} \sim 390 \; (10 \; mV \; s^{\text{-1}}) \\ \sim 350 \; (100 \; mV \; s^{\text{-1}}) \end{array}$	~98% after 10,000 cycles	[S9]
MXene	3 M H ₂ SO ₄	-1.1 to -0.15 (Hg/Hg ₂ SO ₄)	pH 4: ~635 (5 mV s ⁻¹) ~604 (10 mV s ⁻¹) ~408 (100 mV s ⁻¹) pH 10: ~344 (5 mV s ⁻¹) ~322 (10 mV s ⁻¹) ~305 (100 mV s ⁻¹)	pH 4: 85.9% after 10,000 cycles pH 10: 96.7% after 10,000 cycles	This work

Table S2 Electrochemical peri	formances of the	MXene gel-base	d electrodes reported
previously			

gels
5

Aerogels	Electrical conductivity (S m ⁻¹)	Refs.
MXene/CNF	1.8	[S10]
MXene/rGO	695.9	[S11]
MXene/rGO/CNT	9-92	[S8]
MXene/CNF/CNT	2400	[S12]
MXene/polyimide	4	[S13]
MXene/silver nanowire	1532	[S14]
MXene/acidified CNT	447	[S15]
MXene/rGO	36.2	[S16]
MXene	20400 (pH 4) 3800 (pH 10)	This work

Fig. S25 a N_2 adsorption/desorption isotherms and **b** pore size distribution of lyophilized $Ti_3C_2T_x$ gels at 25 °C

Fig. S26 a Temperature variations of the $Ti_3C_2T_x$ gels after irradiated by a 3 W cm⁻² NIR light for 400 s. **b** Effect of irradiation power on the temperature increment of a pH 10 $Ti_3C_2T_x$ gel. It can be seen that a power above 3 W cm⁻² would cause a relatively abrupt temperature elevation that may lead to severe water evaporation and changes in the gel properties

Fig. S27 Photograph of the jellyfish-shaped MXene gel coating on a PET substrate in the bending state

Fig. S28 Photographs of **a** extrusion of the gel through a needle syringe and **b** extrusion-printing of the MXene gel into anti-counterfeiting passwords

Supplementary References

- [S1] Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo et al., Fast gelation of Ti₃C₂T_x MXene initiated by metal ions. Adv. Mater. **31**, 1902432 (2019). <u>https://doi.org/10.1002/adma.201902432</u>
- [S2] Z. Wu, Y. Deng, J. Yu, J. Han, T. Shang et al., Hydroiodic-acid-initiated dense yet porous Ti₃ C₂ t_x MXene monoliths toward superhigh areal energy storage. Adv. Mater. 35, e2300580 (2023). <u>https://doi.org/10.1002/adma.202300580</u>
- [S3] M.R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017). <u>https://doi.org/10.1038/nenergy.2017.105</u>
- [S4] X. Huang, J. Huang, D. Yang, P. Wu, A multi-scale structural engineering strategy for high-performance MXene hydrogel supercapacitor electrode. Adv. Sci. 8, e2101664 (2021). <u>https://doi.org/10.1002/advs.202101664</u>
- [S5] Z. Wu, X. Liu, T. Shang, Y. Deng, N. Wang et al., Reassembly of MXene hydrogels into flexible films towards compact and ultrafast supercapacitors. Adv. Funct. Mater. 31, 2102874 (2021). <u>https://doi.org/10.1002/adfm.202102874</u>
- [S6] P. Dutta, A. Sikdar, A. Majumdar, M. Borah, N. Padma et al., Graphene aided gelation of MXene with oxidation protected surface for supercapacitor electrodes with excellent gravimetric performance. Carbon 169, 225–234 (2020). https://doi.org/10.1016/j.carbon.2020.07.041
- [S7] Z. Zhang, Z. Yao, Y. Li, S. Lu, X. Wu et al., Cation-induced Ti3C2Tx MXene hydrogel for capacitive energy storage. Chem. Eng. J. 433, 134488 (2022). <u>https://doi.org/10.1016/j.cej.2021.134488</u>
- [S8] X. Yang, Y. Yao, Q. Wang, K. Zhu, K. Ye et al., 3D macroporous oxidation-resistant $Ti_3C_2T_x$ MXene hybrid hydrogels for enhanced supercapacitive performances with ultralong cycle life. Adv. Funct. Mater. **32**, 2109479 (2022). https://doi.org/10.1002/adfm.202109479
- [S9] T. Yun, G.S. Lee, J. Choi, H. Kim, G.G. Yang et al., Multidimensional Ti₃C₂T_x MXene architectures *via* interfacial electrochemical self-assembly. ACS Nano 15, 10058–10066 (2021). <u>https://doi.org/10.1021/acsnano.1c01727</u>

- [S10] N. Wu, Y. Yang, C. Wang, Q. Wu, F. Pan et al., Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater. 35, e2207969 (2023). <u>https://doi.org/10.1002/adma.202207969</u>
- [S11] S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti₃C₂T x MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193– 11202 (2018). <u>https://doi.org/10.1021/acsnano.8b05739</u>
- [S12] T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15, 98 (2023). <u>https://doi.org/10.1007/s40820-023-01073-x</u>
- [S13] J. Liu, H.-B. Zhang, X. Xie, R. Yang, Z. Liu et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14, e1802479 (2018). <u>https://doi.org/10.1002/smll.201802479</u>
- [S14] H. Liu, Z. Huang, T. Chen, X. Su, Y. Liu et al., Construction of 3D MXene/Silver nanowires aerogels reinforced polymer composites for extraordinary electromagnetic interference shielding and thermal conductivity. Chem. Eng. J. 427, 131540 (2022). <u>https://doi.org/10.1016/j.cej.2021.131540</u>
- [S15] Z. Deng, P. Tang, X. Wu, H.-B. Zhang, Z.-Z. Yu, Superelastic, ultralight, and conductive Ti₃C₂T x MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13, 20539–20547 (2021). <u>https://doi.org/10.1021/acsami.1c02059</u>
- [S16] D. Jiang, J. Zhang, S. Qin, Z. Wang, K.A.S. Usman et al., Superelastic Ti₃C₂T_x MXenebased hybrid aerogels for compression-resilient devices. ACS Nano 15, 5000–5010 (2021). <u>https://doi.org/10.1021/acsnano.0c09959</u>