Supporting Information for

Boosting Sodium Storage of Fe_{1-x}S/MoS₂ Composite via Heterointerface Engineering

Song Chen^{1, 2}, Shaozhuan Huang², Junping Hu², Shuang Fan^{1, 2}, Yang Shang², Mei Er Pam², Xiaoxia Li², Ye Wang⁴, Tingting Xu⁴, Yumeng Shi^{1, 3, *}, Hui Ying Yang^{2, *}

¹International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China

²Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore

³Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China

⁴Key Laboratory of Material Physics of Ministry of Education, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, People's Republic of China

*Corresponding authors. E-mail: yanghuiying@sutd.edu.sg (Hui Ying Yang); yumeng_shi@163.com (Yumeng Shi)

Supplementary Figures

Fig. S1 a XRD pattern and b SEM image of PB nanocubes. SEM images of c FeCN nanocubes and d FeCN/MoS₂ composite

Fig. S2 Survey XPS spectra of the Fe_{1-x}S/MoS₂ composite

Fig. S3 a XRD pattern, b, c SEM images, d, e TEM images and f HRTEM image of $Fe_{1-x}S$ nanocubes

Fig. S4 Nitrogen adsorption-desorption isotherms of Fe_{1-x}S/MoS₂ composite/Fe_{1-x}S nanocubes

Fig. S5 CV curves of $Fe_{1-x}S$ nanocube electrode for the first five cycles

Fig. S6 Galvanostatic charge-discharge profiles of $Fe_{1-x}S$ nanocube electrode at 100 mA g^{-1}

Fig. S7 Galvanostatic charge-discharge profiles of $Fe_{1-x}S$ nanocube electrode at various current densities

Fig. S8 SEM image of Fe1-xS/MoS2 composite after cycling

Fig. S9 CV curves of Fe_{1-x}S/MoS₂ composite at different scan rates

Fig. S10 a CV curves of $Fe_{1-x}S$ nanocubes at different scan rates. **b** Normalized contribution ratio of capacitive capacities at different scan rates

Fig. S11 a *In situ* EIS spectra evolution of $Fe_{1-x}S$ electrode at different charge/discharge potentials. **b** First charge/discharge profile of $Fe_{1-x}S$ electrode at 100 mA g⁻¹ with labeled points for EIS. **c** EIS spectra of $Fe_{1-x}S$ electrode after different cycles

Fig. S12 E vs. t curve for a single GITT during discharge process

Na-ion chemical diffusion coefficient (D_{Na}) is calculated based on the following equation [S1]:

$$\mathbf{D} = \frac{4L^2}{\pi\tau} \left(\frac{\Delta E_s}{\Delta E_t}\right)^2$$

where L is Na⁺ diffusion length (approximately equal to the electrode thickness for compact electrode), τ is the relaxation time, ΔE_s is the steady state voltage change by the current pulse, ΔE_t is the voltage change during the current pulse after excluding *iR* drop.

Fig. S13 Contour plots of *in situ* XRD results and the corresponding selected diffraction patterns of $Fe_{1-x}S/MoS_2$ composite electrode during the initial four cycles at 200 mA g⁻¹

Fig. S14 The migration path on a $Fe_{1-x}S$ surface, and b $Fe_{1-x}S/MoS_2$ interface

Supplementary References

[S1]D.T. Ngo, H.T.T. Le, C. Kim, J.Y. Lee, J.G. Fisher, I.D. Kim, C.J. Park, Massscalable synthesis of 3D porous germanium–carbon composite particles as an ultrahigh rate anode for lithium ion batteries. Energy Environ. Sci. 8, 3577-3588 (2015). https://doi.org/10.1039/C5EE02183A