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S1 Experimental Section 

S1.1 Synthesis of Ph–3MVIm–Br 

Firstly, 1,3,5–tris(bromomethyl)benzene (12.00 g, 33.0 mmol), 1–vinylimidazole 

(10.34 g, 108.7 mmol) and BHT (0.60 g, 2.70 mmol) were dissolved in CH3CN (300 

mL). The above solution was rigorously stirred for 60 h at 338 K. The crude product 

was filtered and dissolved in water. Then, the aqueous solution was evaporated under 

reduced pressure at 323 K. Subsequently, the resultant monomer was dried under high 

vacuum at 348 K. The results of 1H NMR spectra for Ph–3MVIm–Br was shown in 

Fig. S1. 

S1.2 Exploration and Optimization of Radiation Synthesis Conditions of the 

PMP DN ICH 

The gel fraction (GF) and conductivity were shown in Figs. S2 and S3, respectively. 

The GF represents the mass fraction of the cross–linked content of the gel system that 

cannot be dissolved by the relevant solvent [S1]. As shown in Fig. S2a, the GF of the 

PMP DN ICH increased with the absorbed dose, while the conductivity decreased 

with the absorbed dose (Fig. S3a). Higher GF typically implies a higher crosslinking 

density and a denser network. The denser network hinders ion transport, thus 

decreasing the conductivity [S2]. According to the results of GF and conductivity, the 

optimal absorbed dose of the PMP DN ICH was determined to be 20 kGy. This results 
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also explains the increase in GF and decrease in conductivity with the increasing 

monomer (VBImBr) concentration (Figs. S2b and S3b) and the crosslinker 

(Ph–3MVIm–Br) concentration (Figs. S2c and S3c), respectively. Figs. S2d and S3d 

shown the GF and conductivity of the PMP DN ICH as a function of the MXene 

contents. With an increase in the MXene contents, the GF increased, while the 

conductivity first increased and then decreased. The abundant –OH functional groups 

on the surface of MXene formed many hydrogen bonds in the gels, which increased 

the crosslinking density [S3]. Additionally, a well–connected MXene network can be 

formed to enhance the ion transport capacity of the gels [S4]. However, the content of 

MXene in the system was excessive for dispersion, which is detrimental to the 

conductivity of the gels [S5]. 

In summary, the optimal synthesis conditions of the PMP DN ICH were determined as 

follows: absorbed dose of 20 kGy, monomer concentration of 8 mol L–1, crosslinker 

concentration of 0.02 mol L–1, and MXene content of 1.5 wt.%. The gel synthesized 

under these conditions was used in the subsequent experimental investigation. 

S1.3 Gel Fraction Tests 

The irradiated PMP DN ICH sample was dried in a vacuum. The gel fraction was 

estimated gravimetrically through the measurement of the insoluble parts of the 

samples after extraction in H2O for 5 days, then calculated as follows: 

%100)W/W(fraction Gel 0g =       (S1) 

Where the Wg was the weight of the gel part and the W0 was the original total dry 

weight. The samples were tested in parallel in three groups. 

S1.4 Temperature Resistance 

The temperature resistance property of the PMP DN ICH at various temperature (−60, 

−25, 0, 25, 40, 60, and 80 °C) were immediately evaluated after the PMP DN ICH 

was storage at various temperature for 4 h. The samples were tested in parallel in 

three groups. 

S1.5 Durable Stability Tests 

The stability behavior of the PMP DN ICH were evaluated by water retention (WR) at 

different times (at room temperature, 40%–60% relative humidity). The weight 

changes of the PMP DN ICH were measured and then compared with the original 

weight. The samples were tested in parallel in three groups. The WR was calculated 

by the following equation (S2): 
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%100W/)WW(WR 00 −=       (S2) 

Where W and W0 represent the weight after storage and the original weight, 

respectively. 

S1.6 Oxidation Stability Test of MXene in the PMP DN ICH 

The proportion of each substance in the MXene + H2O + PVA + ILs solution was as 

follow: 27.72 mg MXene: 0.9 g H2O: 0.1 g PVA: 1.848 g monomer: 12.77 mg 

cross–linker. For MXene + H2O and MXene + H2O + PVA solutions, Refer to the 

above steps for the proportion of components. Then, the gels under the appropriate 

conditions were prepared by freeze-thaw or further irradiation technology. 

The antioxidant stability of MXene in the above solutions were tested by adding the 

same volume of H2O2 (30%, 0.5 mL) solution to the above solutions. For gels, the 

oxidation state of MXene at different times was recorded after the gels were soaked in 

H2O2 (30%) solution and removed. 

S1.7 In Vitro Antibacterial Activity Tests 

The antibacterial properties evaluation of the PMP DN ICH were measured according 

to the preliminary work [S6]. The antibacterial ability was evaluated by the following 

equation (S3): 

( ) %100locontrnegtiveofcountrialbactesamplesofcountrialbacte-1ratealntibacteriA =  (S3) 

S1.8 Areal Capacitance 

The area specific capacitance CA (mF cm−2) of the PMP DN ICH-based SC was 

calculated from the GCD curves as following: 

)V A/(tIC  =       (S4) 

I (mA): the constant charge/discharge current; Δt (s): the discharge time; A (cm2): the 

surface total area of the AC electrode; ΔV (V): the voltage window during the 

discharge progress. 

S1.9 Energy Density and Power Density 

The energy density (E, μWh cm−2 and power density (P, μW cm−2 of the SC were 

calculated according to the following equations: 
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)36002/(VCE 2
AA =        (S5) 

t/3600EP AA =       (S6) 

S2 Supplentary Figures and Tables 

 

Fig. S1 1H NMR spectra of Ph–3MVIm–Br in D2O 

Ph–3MVIm–Br: 1H NMR δH (400 MHz, D2O, ppm) δ 7.72 (d, 3H, –N–CHCH–N–), 

7.45 (d, 3H, –NCHCH–N–), 7.39 (s, 3H, –Ph–(CH2)3–), 7.03 (dd, 3H, –CH=CH2), 

5.72 (dd, 3H, –CH=CH2), 5.37 (s, 6H, –Ph–(CH2)3–), 5.37 (dd, 3H, –CH=CH2). 
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Fig. S2 The gel fraction of the PMP DN ICH as a function of: a Absorbed dose (the 

concentration of the monomer and cross–linker were 10 mol L–1 and 0.02 mol L–1, 

respectively, and the MXene content was 1.0 wt.%). b Monomer concentration (the 

absorbed dose was 20 kGy; the cross–linker concentration was 0.02 mol L–1, and the 

MXene content was 1.0 wt.%). c Cross–linker concentration (the absorbed dose was 

20 kGy; the monomer concentration was 8 mol L–1, while the MXene content was 1.0 

wt.%). d Different contents of MXene (the absorbed dose was 20 kGy; the monomer 

concentration was 8 mol L–1, while the cross–linker concentration was 0.02 mol L–1). 

The error bars represent standard deviation; sample size n = 3 

 

Fig. S3 Conductivity of the PMP DN ICH as a function of: a Absorbed dose (the 
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concentration of the monomer and cross–linker were 10 mol L–1 and 0.02 mol L–1, 

respectively, and the MXene content was 1.0 wt.%). b Monomer concentration (the 

absorbed dose was 20 kGy; the cross–linker concentration was 0.02 mol L–1, and the 

MXene content was 1.0 wt.%). c Cross–linker concentration (the absorbed dose was 

20 kGy; the monomer concentration was 8 mol L–1, while the MXene content was 1.0 

wt.%). d Different contents of MXene (the absorbed dose was 20 kGy; the monomer 

concentration was 8 mol L–1, while the cross–linker concentration was 0.02 mol L–1). 

The error bars represent standard deviation; sample size n = 3 

 

Fig. S4 EDS spectra of the PMP DN ICH 

 

Fig. S5 Comparison the tensile a and compressive b stress–strain curves of the 

Pre–PMP DN ICH and PMP DN ICH 
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Fig. S6 a, b Photos of the Pre–PMP DN ICH undergoing stretching and compression. 

c, d Cyclic tensile and compressive loading–unloading curves of the PMP DN ICH at 

strains of 50% and 70% for 10 successive cycles. e Photographs showing the 

temperature tolerance behaviors of the Pre–PMP DN ICH. f, g Tensile and 

compressive stress–strain curves for the Pre–PMP DN ICH from −60 to 25 °C 

 

Fig. S7 Comparison of the Pre–PMP DN ICH (left) and PMP DN ICH (right) at 80 °C 

for different storage time 
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Fig. S8 Nyquist plots of Pre–PMP DN ICH a and PMP DN ICH b at different 

temperature 

The Fig. S8 shown the EIS curves of the Pre–PMP DN ICH and PMP DN ICH at 

different temperature. All curves presented a linear trend, which proved that the ion 

conduction within the DN ICH was a non–Faradic process, no redox reaction 

occurred, and with no matter or charge crossing the electrode–conductor interface 

[S7].  

 

Fig. S9 Conductivity as a function of the temperature of PMP DN ICH in comparison 

with previously reported temperature tolerance hydrogels [S7–S14] 
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Fig. S10 Comparisons the luminance of LEDs (working voltage of 3.0 V) by using 

PMP DN ICH as conductor at different states 

 

Fig. S11 Photos showing of Pre–PMP DN ICH and PMP DN ICH on the original and 

30 d 

 

Fig. S12 Nyquist plots of Pre–PMP DN ICH a and PMP DN ICH b at different 

storage days 
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Fig. S13 a TGA patterns of VBImBr, Ph–3MVIm–Br, MXene, PVA, and PMP DN 

ICH, respectively. b DSC curves of Pre–PMP DN ICH and PMP DN ICH 

 

Fig. S14 a Photo showing of MXene + H2O, MXene + H2O + PVA, and MXene + 

H2O + PVA + ILs solutions during their reaction with H2O2 for 30 days. b Digital 

images showing the H2O2 interaction effect on MXene + H2O + PVA hydrogel, 

Pre–PMP DN ICH, and PMP DN ICH 
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Fig. S15 Adhesion properties of the PMP DN ICH. a Adhesive behavior of the PMP 

DN ICH adhering to different substrates. b Adhesion mechanisms between the PMP 

DN ICH and the varying substrates. c Schematic diagram of the adhesion testing 

process of the PMP DN ICH. d, e Adhesion strength of PMP DN ICH adhering to 

different substrates of glass, nickel foam, Fe, Cu, and Al. The error bars represent 

standard deviation; sample size n = 3 

As expected, the PMP DN ICH also exhibited good adhesiveness to different 

substrates (Fig. S15), which was primarily ascribed to the abundant intermolecular 

forces (e.g., hydrogen bond, coordinate bond, ion–ion interaction, dipole–dipole 

interactions, and van der waals interactions) among the component [S9, S15].  
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Fig. S16 The relative resistance changes with the tensile strain of 50% during the five 

continuous loading–unloading cycles 

 

Fig. S17 The CV curves of the PMP DM ICH SC at various voltage windows (the 

scan rate of 20 mV s−1) 

 

Fig. S18 GCD profile of the PMP DN ICH SC a at different stroge days, b within 

various temperatures, c under different pressures, d at different bending angles 
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Table S1 Comparison of the temperature coefficient of resistance (TCR) of the PMP 

DN ICH with other reported previously representative hydrogel materials 

Table S2 Comparison of the electrochemical performance of the PMP DN ICH SC 

with other representative hydrogel materials-based SC reported previously 

 

Electrolyte Temperature range (ºC) TCR (%/ºC) Refs. 

PMP DN ICH 30–60 −1.96 This work 

PAA–Zr4+/Gly/IL gel 0–50 −1.891 [S16] 

PDA–rGO/SA/PAM 

organohydrogel–1 

15–60 −1.45 [S17] 

PS/PPy/CNTs hydrogel 14.5–68.2 −0.56 [S18] 

TG2P3 hydrogel 20–80 −1.2 [S19] 

PVA/PAS–PPy gel 25–75 −0.64 [S20] 

Ionohydrogels (Al2.8IL25) 0–45 −0.035 [S21] 

PCOH–8 15–60 −1.64 [S22] 

CH–GT hydrogel 20–100 −0.83 [S23] 

TA@HAP NWs–PVA(W/EG) 

hydrogel 

30–80 −0.536 [S24] 

PNA/PVP/TA/Fe3+ 3:5 hydrogel 30–37 −1.39 [S25] 

Electrolyte Current 

density 

Capacitance Potential 

window (V) 

Temperature 

range (°C) 

Refs. 

PMP DN ICH 1 mA cm–2 263.08 mF cm–2 0–1.3 −60–80 This 

work 20 mV s–1 57.00 mF cm–2 

PAA–PVA/PAM/Zn

2+ organohydrogel 

2 A g–1 40 mAh g–1 0–1.8 −25–25 [S26] 

PVA/Agar–EMIMB

F4–Li2SO4 

0.3 A g–1 28.8 F g–1 0–1.0 −30–80 [S27] 

PEI–PVA–Bn–LiCl 20 mV s–1 16.7 mF cm–2 0–1.4 25 [S28] 

PMEL 0.5 mA cm–2 243.3 mF cm–2 0–0.8 −10–80 [S29] 

PVA/PAMAA/Gly/ 

NaCl 

organohydrogel 

0.5 mA cm–2 75.75 mF cm–2 0–1.0 −20–25 [S10] 

PHAA15N40/PDA150 0.025 A cm–1 0.37 F g–1 0–1.0 0–90 [S30] 

DES 0.5 A g–1 71.52 F g–1 0–1.2 −20–80 [S31] 

H2SO4/PVA 0.5 mA cm–2 299.79 mF cm–2 0–0.8  [S20] 

EPY 0.8 mA cm–2 212 mF cm–2 0–0.8 −30–60 [S32] 

PANI–PPG 0.2 mA cm–2 95.8 mF cm–2 0–0.8 −60–100 [S33] 

XG–ionogel 10 mV s–1 41 mF cm–2 0–2.5 −40–100 [S34] 

MMT/PVA 0.05 mA cm–2 2.89 mF cm–2 0–0.8  [S35] 
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Movie S1 The luminance of LEDs (working voltage of 3.0 V) by using PMP DN ICH 

as conductor at different tensile states 

 

Movie S2 The luminance of LEDs (working voltage of 3.0 V) by using PMP DN ICH 

as conductor at different compression states 

 

Movie S3 Monitoring of the repeated wrist movements using a wireless wearable 

sensor 
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Movie S4 Monitoring of finger bending with different bending angles using a wireless 

wearable sensor 

 

Movie S5 Monitoring of the transmission of distress signals of “GO” using a wireless 

wearable sensor 

 

Movie S6 Monitoring of the transmission of distress signals of “SOS” using a 

wireless wearable sensor 
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Movie S7 Monitoring of the transmission of distress signals of “HELP” using a 

wireless wearable sensor 

 

Movie S8 The PMP DM ICH SC powering an electronic meter 

 

Movie S9 The PMP DM ICH SC powering a LED bulb 

 

Movie S10 The PMP DM ICH–TENG powering 68 LED bulbs 
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