Supporting Information for

Proton-Prompted Ligand Exchange to Achieve High-Efficiency

CsPbI₃ Quantum Dot Light-Emitting Diodes

Yanming Li^{1, 2,†}, Ming Deng^{1, 2, 4,†}, Xuanyu Zhang^{1, 2, 5}, Lei Qian^{1, 2, 3}, and Chaoyu Xiang^{1, 2, 3, *}

¹ Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo 315300, P. R. China

² Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China

³ Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China

⁴ Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang 315211, P. R. China

⁵ University of Nottingham Ningbo China, Ningbo 315100, P. R. China

†Yanming Li and Ming Deng contributed equally to this work.

*Corresponding author. E-mail: <u>xiangchaoyu@nimte.ac.cn</u> (Chaoyu Xiang)

Supplementary Figures and Tables

Fig. S1 a Different amounts of 5AVA (0.1, 0.2, and 0.3 M) were dissolved in excess HI and mixed with 1 ml ethyl acetate to form a 5AVAI ligand solution. **b** The photo of CsPbI₃ QDs synthesized by 0.2 M 5AVAI under ultraviolet light (365 nm). **c** The synthesized CsPbI₃ QDs were treated with HI (without 5AVA), and the QDs were purified once

Fig. S2 CsPbI₃ QDs without 5AVAI treatment were added with 0, 20, and 40 μ L 5AVAI ligands for ligand exchange, and the QDs were decomposed to different degrees after adding 5AVAI

Fig. S3 The size distribution histograms of QDs corresponding to TEM images are **a** CsPbI₃ QDs with 5AVAI and **b** CsPbI₃ QDs without 5AVAI respectively

Fig. S4 X-ray photoelectron spectroscopy (XPS) was used to characterize the CsPbI₃ QDs with and without 5AVAI treatment, showing the high-resolution XPS spectrum of Pb 4f

Fig. S5 AFM images of CsPbI₃ QDs films a with and b without 5AVAI

Fig. S6 Time-resolved PL delay curves of glass/QDs, glass/QDs/40 nm PO-T2T, and glass/QDs/6 nm TmPyPB/40 nm PO-T2T measured under the same conditions

Fig. S7 Cross-sectional TEM image of LEDs based on 5AVAI-treated CsPbI₃ QDs

Fig. S8 Tauc plots of CsPbI₃ QDs a with and b without 5AVAI

Fig. S9 UPS spectra of CsPbI₃ QDs with and without 5AVAI

Fig. S10 Device energy level diagrams for all functional layers

Fig. S11 Normalized EL spectra of LEDs based on a CsPbI₃ QDs treated by 5AVAI and b CsPbI₃ QDs under different driving voltages. The inset image shows the luminescence of the device at the highest driving voltage

Fig. S12 J–V characteristics of hole-only devices (ITO/PEDOT:PSS/QDs/MoO_x/Al)

Fig. S13 LED's EQE histogram is based on CsPbI₃ QDs **a** with 5AVAI and **b** without 5AVAI

Perovskite	EL (nm)	Max. EQE (%)	L _{max} (cd m ⁻²)	T ₅₀ (min)	References
CsPb(Br/I) ₃ QDs	630	5.1	~2200	~2	Nano Energy 62 , 434–441
				$(100 \text{ cd } \text{m}^{-2})$	(2019)
CsPbI3 QDs	630	6.4	1212	78	Nano Lett. 21, 8756–8763
				$(\sim 30 \text{ cd } m^{-2})$	(2021)
CsPbI ₃ QDs	634	7.1	1391	33	J. Am. Chem. Soc. 144,
				$(200 \text{ cd } \text{m}^{-2})$	13302–13310 (2022)
CsPb(Br/I) ₃ QDs	625	12.9	3382	-	Small 16, 2001062 (2020)
CsPb(Br/I) ₃ QDs	645	14.1	794	180	Nat. Photonics 12 , 681–687
				$(100 \text{ cd } \text{m}^{-2})$	(2018)
CsPb(Br/I)3 QDs	646	18.2	1206	10	Adv. Funct. Mater. 31,
				$(100 \text{ cd } \text{m}^{-2})$	2106871 (2021)
MAPb(Br/I)3 QDs	620	20.3	627	342	Nature 591 , 72–77 (2021)
				$(100 \text{ cd } \text{m}^{-2})$	
CsPbI3 QDs	636	20.8	3775	7.4	Nano Lett. 22, 8266–8273,
				$(110 \text{ cd } \text{m}^{-2})$	(2022)
CsPb(Br/I) ₃ QDs	637	21.8	6491	15	Adv. Funct. Mater. 33,
				$(120 \text{ cd } \text{m}^{-2})$	2300116 (2023)
CsPbI ₃ QDs	640	23.0	~1000	600	Angew. Chem. Int. Ed. 60,
				$(200 \text{ cd } \text{m}^{-2})$	16164–16170 (2021)
CsPb(Br/I)3 QDs	640	23.5	1510	97	Adv. Mater. 35, 2209002
				$(100 \text{ cd } \text{m}^{-2})$	(2023)
CsPbI3 QDs	645	24.45	7494	647	This work
				$(209 \text{ cd } \text{m}^{-2})$	

Table S1 Performance summary of high-performance red (EL < 650 nm) QLEDsdevices based on perovskite colloidal quantum dots